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Abstract
This paper presents the development of the 2014 Cambridge
University conversational telephone Mandarin Chinese LVCSR
system for the DARPA BOLT speech translation evaluation. A
range of advanced modelling techniques were employed to both
improve the recognition performance and provide a suitable in-
tegration with the translation system. These include an im-
proved system combination technique using frame level acous-
tic model combination via joint decoding. Sequence trained
deep neural network (DNN) based hybrid and tandem systems
were combined on-the-fly to produce a consistent decoding out-
put during search. A multi-level paraphrastic recurrent neural
network LM (RNNLM) modelling both alternative paraphrase
expressions and character sequences while preserving a consis-
tent character to word segmentation was also used. This sys-
tem gave an overall character error rate (CER) of 29.1% on the
BOLT dev14 development set.
Index Terms: conversational speech transcription, speech
translation, system combination, RNNLM, character LM

1. Introduction
Conversational telephone speech (CTS) translation still remains
a challenging task to date. Highly variable speech data is col-
lected under limited bandwidth and mixed with complex back-
ground acoustic events. The informal speech style and rich
choice of expressions introduce further variation. When only
limited in-domain training material is available, this task be-
comes even more challenging. Advanced modelling techniques
and system combination approaches are required to handle the
above rich variabilities and obtain state-of-the-art speech recog-
nition performance. The quality of the speech recognition sys-
tem outputs significantly impacts the performance of down-
stream machine translation (MT) systems [1]. In addition to a
desired minimum error rate, there are also important design is-
sues that need to be considered when developing speech recog-
nition systems for speech translation.

First, conventional system combination techniques nor-
mally perform hypothesis combination at word level using a
combination of voting counts and confidence scores [2, 3]. As a
consistent sequence level decoding output from any component
speech recognizers is no longer retained, the resulting combined
recognition outputs are likely to be sub-optimal for the down-
stream translation system. Hence, system combination meth-
ods that can produce a single consistent recognition output are
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preferred. Second, a consistent form of word tokenization is
required for both the recognition and translation stages for the
Mandarin speech translation task considered in this paper [1, 4].
The Chinese language is syllable based and has no natural word
boundaries available. It is important to use a common consistent
word segmentation during both speech recognition and transla-
tion [4]. As ambiguity can occur in the character to word seg-
mentation process [5], language modelling techniques that not
only use a single consistent character to word segmentation, but
also can implicitly learn alternative word segmentations, for ex-
ample, incorporating character sequence LMs [6], are preferred.

This paper presents the development of the 2014 Cam-
bridge University conversational telephone Mandarin Chinese
large vocabulary continuous speech recognition (LVCSR) sys-
tem for the DARPA Broad Operational Language Translation
(BOLT) speech translation evaluation. A range of techniques
were employed in the system to take the above issues into ac-
count. These include the use of conversation side based vo-
cal tract length normalization (VTLN) [7] and cepstral param-
eter normalization in front-end processing; improved pitch ex-
traction and smoothing for Mandarin; efficient HTK based se-
quence level discriminative training [8] of deep neural net-
work [9] based hybrid [10] and tandem [11, 12] acoustic mod-
els; a multi-level paraphrastic recurrent neural network LM
(RNNLM) [13, 14] that models both alternative paraphrase ex-
pressions and character sequences; improved system combina-
tion using frame level acoustic model combination. The evalua-
tion system gave an overall character error rate (CER) of 29.1%
on the BOLT dev14 development set.

The rest of this paper is organized as follows. The de-
scription of the acoustic training and test data used for sys-
tem development is presented in section 2. The acoustic mod-
elling, language modelling techniques and system combination
approaches used to construct the system are described in sec-
tions 3, 4 and 5. The evaluation system’s architecture and per-
formance are presented in section 7. Section 8 concludes and
discusses possible future work.

2. Task Description
This section describes various data resources that were used for
the development of the CU Mandarin CTS LVCSR system.

2.1. Acoustic training, test data and audio segmentation

Acoustic models were trained on 301 hours of Mandarin Chi-
nese conversational telephone speech data released by the LDC
for the DARPA BOLT program, bolt14train. These include 32
hours of Call Home Mandarin data (CHM), 56 hours of Call
Friend Mandarin data (CFM) and additional 213 hours of con-
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versation telephone Mandarin speech collected by Hong Kong
University of Science and Technology (HKUST). The training
data set consists of a total of 1479 conversations. Among these,
253 CHM and CFM conversations contain multiple speakers per
conversation side. A 4.5 hour BOLT development set of Man-
darin Chinese conversational telephone speech data dev14, con-
sisting of 57 speakers from a total of 19 conversations, was used
for performance evaluation. Manual audio segmentation was
also used to allow translation outputs to be accurately scored.
A 72 hour training subset of the 301 hour full set used in the
NIST RT04 Mandarin system, rt04train, and an associated 2
hour development set dev04 containing 24 conversations were
also used in the initial system development.

2.2. Lexicon, character to word segmentation and phone set

A 63k recognition word list was used in decoding. It consists of
a total of approximately 52k multiple character Chinese words,
5k single character Chinese words and additional 5k frequent
English words. A 44k subset of the 52k multiple character
Chinese words were obtained using an LDC released Mandarin
Chinese lexicon. A left to right maximum word length based
character to word segmentation method [15] based on the above
52k multiple character words was applied to text data. The re-
sulting character to word segmented acoustic transcripts con-
tain on average 1.426 characters per word. A base phone set
containing 46 toneless (124 tonal) phones was used [15].

2.3. Language model training data

The baseline 4-gram back-off LM was trained using a total of 1
billion words of text data from the following two types of text
sources: 2.6M words of data from the acoustic transcripts; 1 bil-
lion words of additional web data collected by various research
sites including Cambridge University, IBM Research, SRI and
University of Washington under the DARPA EARS and GALE
programs [1]. Numeric terms were first converted into spoken
forms before the left to right maximum word length based char-
acter to word segmentation scheme described in section 2.2 was
applied. A 120 million word subset of the 1 billion word full set
used in the earlier RT04 CU Mandarin system [16] was also
used in the initial system development.

3. Acoustic Modelling
3.1. Front-end processing

An important part of the speaker level diversity in conversa-
tional speech can be attributed to the variation of vocal tract
length [7]. The first-order effect of a difference in vocal tract
length can be approximated via a scaling of the formant po-
sitions. A female speaker, for example, can exhibit formants
roughly 20% higher than those of a male speaker. In or-
der to handle this problem, vocal tract length normalization
(VTLN) [7] was used. VTLN is performed in a supervised
mode on the training data and unsupervised manner on the test
data. A maximum likelihood (ML) frequency scaling factor of
the speech spectrum is estimated at a speaker level before being
applied to the spectrum to produce normalized PLP [17] fea-
tures. Cepstral mean and variance normalization was also used
to further remove speaker level variability. The advantage of
VTLN lies in its low complexity and effectiveness. It can also
be efficiently implemented and applied to a range of back-end
acoustic models considered in this paper, conventional GMM-
HMMs, DNN hybrid and tandem systems.

In tonal languages like Mandarin Chinese, prosodic pitch
variation occurs at a sentence level in the form of long and
smooth contours where short and sharp lexical tones are super-
imposed. It is therefore important to incorporate pitch features
into the acoustic front-end. Pitch features were extracted and
smoothed using the Kaldi toolkit [18]. The pitch parameter
along with the first and second-order differentials were mean
and variance normalized at a speaker level before being aug-
mented to the HLDA [19, 20] projected and speaker level nor-
malized PLP. This gives a feature vector of 42 dimensions.

3.2. Baseline HMM systems

The baseline tonal triphone context dependent GMM-HMM
systems was constructed using the above 42 dimensional front-
end described in section 3.1. Phonetic decision tree state clus-
tering [21] was used. In order to model complex phonolog-
ical variation patterns such as tone sandhi and glottalisation,
word position information was also used during decision tree
tying [22]. After incorporating word level position information,
the number of tonal phones is increased from 124 to 293. As
expected, the use of tonal and word position dependent ques-
tions dramatically increases the number of context dependent
phone units to consider during both training and decoding. As
not all of them are allowed by the lexicon, only the valid sub-
set under the lexical constraint is retained, after applying the
context filtering approach proposed in [22]. The system con-
tains a total of 12k tied HMM states with 28 Gaussians per state
on average. MPE [23] based HMM parameter estimation and
speaker adaptive training were performed. CMLLR [24] based
speaker adaptive training (SAT) was also used. Unsupervised
MLLR [25] based speaker adaptation was used.

3.3. HTK based hybrid DNN-HMM systems

The baseline HMM systems were then used to produce state
level alignment to train hybrid DNN systems using an extended
version of the HTK toolkit [26]. The artificial neural network
(ANN) extension to HTK [8] can handle the training, classifi-
cation, and decoding of various types of ANNs along with their
mixtures. It also aims to have an integrated and efficient solu-
tion for hybrid and tandem system construction, while keeping
compatibility with all previous HTK features. In this extension,
a general ANN definition to cope with different types of models
is adopted. Each network layer can have its input formed by a
mixture of acoustic features or the outputs from any previously
defined layers, while each of them allowed to have context ex-
panded independently from adjacent frames. This allows HTK
to handle a very flexible structure formed by connecting dif-
ferent ANN layers. The only topological constraint is that any
ANN must be represented as a directed acyclic graph (DAG).
The ANN extension also retains the highly modular structure
of the original HTK toolkit so that the whole ANN module
is treated as a front-end to the back-end HMMs. Currently
both frame level DNN training using stochastic gradient descent
(SGD) and sequence level discriminative training are supported.
These will be included in the next public HTK release.

DNNs with five hidden layers were first trained using the
cross entropy (CE) criterion on a GPU before MPE based se-
quence level discriminative training was performed. A layer by
layer discriminative pre-training was used. The first 4 hidden
layers have 2000 nodes while the 5th hidden layer use 1000
nodes. 12k output layer nodes were used. 56 dimensional input
features including normalized PLP features with their differen-
tials up to the 3rd order and pitch parameters were used. The
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input vector thus had 504 dimensions, which was produced by
concatenating the current frame with 4 frames from both left
and right contexts. A tenth of the training set was randomly
selected as the held-out set for cross-validation.

3.4. Tandem systems

An alternative approach to incorporate DNNs into HMM based
acoustic models is to uses a DNN as a feature extractor, trained
to produce phoneme posterior probabilities. The resulting prob-
abilistic features [11], or bottleneck features [12, 27] are used
to train standard GMM-HMMs in a tandem fashion. As these
features capture additional discriminative information comple-
mentary to standard front-ends, they are often combined via fea-
ture concatenation. As GMM-HMMs remain as the back-end
classifier, the tandem approach requires minimum change to the
downstream techniques, such as speaker adaptation and decod-
ing, while the useful information represented by the bottleneck
features can also be retained. They also provide additional use-
ful system diversity for a combination with hybrid DNN-HMM
systems [28]. DNNs with an additional bottleneck layer were
trained using the same procedure described in section 3.4, be-
fore 26 dimensional bottleneck features were extracted. The re-
sulting features were then normalized at a speaker level before
de-correlated via a STC [30] transform and augmented to the
standard acoustic front-ends and used in training of the back-
end GMM-HMMs.

4. Language Modelling
4.1. Baseline interpolated 4-gram LM

This baseline 4-gram word level LM was trained using the 1
billion word text data and the 63k word list described in sec-
tions 2.2 and 2.3. Modified KN smoothed 4-gram LMs were es-
timated on the acoustic transcription data and web data sources
separately before a linear interpolation was used to combine
them. The interpolation weights were perplexity optimized on
dev14, dev04 and additional CHM and CFM data from earlier
NIST evaluation sets eval03 and eval97. The interpolated 4-
gram LM has a total of 48M 2-grams, 133M 3-grams and 143M
4-grams. It gave a perplexity of 151 on dev14.

4.2. Efficient RNNLM training and lattice rescoring

An important part of the language modelling problem for
speech recognition systems, and many other related applica-
tions, is to appropriately model long-distance context depen-
dencies in natural languages. Along this line, LMs that can
model longer span history contexts, for example, recurrent neu-
ral network LMs (RNNLMs) [31], have become increasingly
popular for state-of-the-art LVCSR systems. In this paper,
RNNLMs with non-class based, full vocabulary output layer
were efficiently trained on GPU in a bunch mode [32]. An
out-of-shortlist (OOS) node was also used at the output layer
to model the probability mass assigned to OOS words. A de-
tailed description of the full output RNNLM architecture can
be found in [32]. A total of 512 hidden layer nodes were used.
A 27k word input layer vocabulary and 20k word output layer
shortlist were also used.

As RNNLMs use a complex vector space representation
of full history contexts, it is non-trivial to apply them in the
early stage of ASR systems, or to directly rescore the word lat-
tices produced by them. Instead, N-best list rescoring was nor-
mally used [31, 33]. This practical constraint limits the possible

improvements that can be obtained from RNNLMs for down-
stream applications that favor a more compact lattice represen-
tation, for example, confusion network (CN) decoding tech-
niques [3, 34]. In order to address this issue, two efficient
RNNLM lattice rescoring algorithms were proposed in [35].
The first uses an n-gram style approximation of history con-
texts. In this paper, this RNNLM rescoring approach was used.

4.3. Multi-level paraphrastic RNNLM

Linguistic factors influencing the realization of surface word se-
quences, for example, expressive richness, are only implicitly
learned by RNNLMs. Observed sentences and their associated
alternative paraphrases representing the same meaning are not
explicitly related during training. In order to further improve
the RNNLM’s coverage and generalization, the 2.6M words of
acoustic transcripts data were augmented with 15M words of
its paraphrase variants. These paraphrases were automatically
produced using the statistical paraphrase induction and gener-
ation method described in [13]. The above combined data set
was then used to train a paraphrastic RNNLM [14]. In order
to incorporate richer linguistic constraints, LMs that model dif-
ferent units, for example, syllables, words, or phrases, can be
log-linearly combined in the form a multi-level LM [6, 37] to
improve discrimination. In this paper, a multi-level paraphras-
tic RNNLM modelling both word and character sequences was
constructed. It also aims to implicitly model alternative charac-
ter to word segmentations, while retaining a consistent character
to word segmentation. This is a useful feature for the down-
stream machine translation system, as discussed in section 1.

5. System Combination
State-of-the-art LVCSR systems often use system combination
techniques [38, 39]. Two major categories of techniques are of-
ten used: hypothesis level combination and cross system adap-
tation. The former exploits the consensus among component
systems using voting as well as confidence measures, such as
ROVER [2] and confusion network combination (CNC) [3]. As
discussed in section 1, hypothesis level combination is unable
to retain a consistent decoding output from component systems.
Alternatively the second category based on cross adaptation
[41, 38, 39, 42] can be used. The acoustic and/or language mod-
els [36], of one system are adapted to the recognition outputs of
another. A consistent decoding output can then be produced
by decoding using the cross adapted system. Cross adaptation
requires the component system to be adapted having a compa-
rable or lower error rate than the supervision system. When this
assumption is invalid, cross adaptation can lead to sub-optimal
combination performance.

In order to address this issue, an improved system combina-
tion based on frame level acoustic model combination is used.
The state output probabilities of an hybrid DNN-HMM system
and a comparable tandem system is log-linearly combined with
a weighting of 1:0.4 on-the-fly in a joint decoding [28, 29].
This combination approach has three advantages over hypoth-
esis level combination and cross adaptation based combination
schemes. First, as component acoustic model scores are dy-
namically combined during recognition, a consistent decoding
output can then be produced for the downstream machine trans-
lation system. Second, the sensitivity towards to the error rate
difference between component systems can be reduced by ap-
propriately setting the log-linear interpolation weights. Third,
as component systems are log-linear combined via an intersec-
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tion of probabilities, only a reduced search space is active dur-
ing recognition. This can significantly reduce the overall run
time for the combined system.

6. Development Results
The performance of various HMM and tandem SAT systems
trained on the 72 hour training subset rt04train evaluated on
RT04 dev04 are shown in table 1. Consistent improvements
were obtained using VTLN for both baseline HMM and hybrid
systems. The improved pitch feature extraction using Kaldi also
gave further character error rate (CER) reductions over the base-
line pitch feature extraction used in [15, 37].

Front-end Processing dev04
System VTLN Kaldi Pitch CER%

HMM × × 35.9

SAT
√ × 34.5√ √

33.4

Tandem × × 29.9

SAT
√ × 29.2√ √

29.1

Table 1: Performance of HMM and tandem systems trained on
72 hour training subset rt04train evaluated on RT04 dev04.

The performance of the baseline HMM, hybrid and tandem
systems trained on the 301 hour bolt14train data evaluated on
dev14 using the baseline 1 billion word trained 4-gram LM and
the multi-level paraphrastic RNNLM are shown in table 2. Sig-
nificant performance improvements of 2.8% absolute were ob-
tained on the hybrid SI system using the HTK based DNN MPE
training of section 3.3. The best performance was obtained us-
ing a hybrid MPE SAT system shown in the last line in table 2. It
was trained using the same tandem features of the tandem SAT
system in table 2. This allows CMLLR transforms to be shared
between the two systems during SAT training and adaptation.

dev14 CER%
System MPE 4-gram +rnn
HMM SAT

√
43.8 -

Tandem SAT
√

33.2 31.8

Hybrid SI × 34.5 33.2√
31.8 30.4

Hybrid SAT
√

31.4 29.9

Table 2: Performance of baseline HMM, hybrid and tandem
systems trained on 301 hour bolt14train on dev14 set using
baseline 4-gram LM and multi-level paraphrastic RNNLM.

A detailed analysis of the improvements obtained from the
multi-level paraphrastic RNNLM on the tandem SAT system in
table 2 are shown in table 3. Consistent improvements in both
perplexity and error rate were obtained using the paraphrastic
RNNLM over the baseline RNNLM trained using the origi-
nal acoustic transcripts only. Using the multi-level paraphrastic
RNNLM that models both alternative paraphrases and charac-
ter sequences gave an overall CER reductions of 1.4% absolute
over the baseline 4-gram LM trained on 1 billion words of data.

The performance of various combined systems on dev14
are shown in table 4. The first section contains three combined

dev14
System LM PPlex CER%

4-gram 151 33.2
Tandem +RNNLM 134 32.6
SAT +para. RNNLM 127 32.2

+para. multi-level RNNLM - 31.8

Table 3: Performance of baseline 4-gram, RNNLM, paraphras-
tic RNNLM and multi-level paraphrastic RNNLM on dev14.

systems derived from the hybrid SI and tandem SAT systems
in table 2. The CNC combined and cross adapted systems are
shown in the first two lines. The CER difference of the hybrid SI
and tandem SAT systems before combination are quite large, as
were shown in table 2. CNC combination gave the lowest CER
of 29.6%. Using the joint decoding method of section 5, the
same error rate was obtained. Both CNC combination and cross
adapted systems require the component hybrid SI and tandem
SAT systems to be used in decoding in parallel for CNC, or in
sequence for cross adaptation. The joint decoding combined
system only performed a single search and was 2.6x faster than
both the CNC and cross adapted systems.

Combined System Combi. dev14
Hybrid SI ⊕ Tandem SAT CNC 29.6
Hybrid SI → Tandem SAT XAdapt 30.0
Hybrid SI ⊗ Tandem SAT JointDec 29.6

Hybrid SAT ⊗ Tandem SAT JointDec 29.1

Table 4: Performance of various combined systems evaluated
on dev14 set using component sub-systems in table 2. “⊕”,
“→” and “⊗” denote CNC, cross adaptation and joint decoding.

7. Evaluation System
The CU evaluation system used a multi-pass recognition frame-
work. In the first pass the hybrid SI system of table 2 and
the baseline 4-gram LM of table 3 were used to produce ini-
tial recognition outputs. These were then used to adapt both the
hybrid SAT and tandem SAT systems of table 2. The joint de-
coding method described in section 5 was then use to combine
these two systems on-the-fly at test time. After lattice rescor-
ing using the paraphrastic multi-level RNNLM of table 3, CN
decoding produced the final output and gave a CER score of
29.1% on the dev14 set, as is shown in 4th line in table 4.

8. Conclusions
This paper described the development of the 2014 Cambridge
University conversational telephone Mandarin LVCSR system
used for the DARPA BOLT speech translation evaluation. A
range of advanced modelling techniques including an improved
system combination scheme using frame level acoustic model
combination and multi-level paraphrastic RNNLMs were were
used to achieve both an optimal recognition performance and a
suitable integration with the translation system. Future research
will focus on improving model based system combination.
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