

Abstract

- Sigmoid and ReLU are most commonly used hidden activation functions with fixed function shapes and no adaptive parameters.
- Parameterised Sigmoid and ReLU with learnable parameters, and their integration with std. acoustic modelling were investigated.
- Parameterised Sigmoid and ReLU resulted in 3.4% and 2.0% relative WER reductions on a challenging Mandarin CTS task.
- Method requires an increase in the number of parameters in training by 0.06% and no extra parameters in the final model.

Parameterised Sigmoid Function

The generalised form of Sigmoid, or the *logistic function* is

$$f_i(a_i) = \eta_i \cdot \frac{1}{1 + e^{-\gamma_i a_i + \theta_i}},$$

where $f_i(\cdot)$ and a_i are the activation function and its input associated with node *i*, denoted as p-Sigmoid(η_i , γ_i , θ_i). ▶ η_i , γ_i , and θ_i have different effects on $f_i(a_i)$:

- \mathbf{r}_{i} defines the boundaries of $f_{i}(a_{i})$, which allows positive, zero, or negative contributions from each hidden unit.
- γ_i controls the steepness of the curve.
- \bullet θ_i applies a horizontal displacement to $f_i(\cdot)$.

Figure 1: Piecewise approximation by p-Sigmoid functions.

- By varying the parameters, p-Sigmoid($\eta_i, \gamma_i, \theta_i$) can do piecewise approximation to other functions, e.g., when $a \in [-5, +5]$,
- ▶ *p*−Sigmoid(1,30,0): step function;
- ▶ p−Sigmoid(4,1,2): soft ReLU function;
- p-Sigmoid(3,-2,3): std. ReLU function.
- If all parameters are learnt properly, many p-Sigmoid units can behave as several commonly used activation functions.

Parameterised Sigmoid and ReLU Activation Functions for DNN Acoustic Modelling

Chao Zhang and Phil Woodland

Cambridge University Engineering Department

Parameterised ReLU Function

Associate a scaling factor to either part of ReLU, to enable the 2 ends of the "hinge" to rotate separately around the "pin", i.e., > 0

$$f_i(a_i) = \begin{cases} \alpha_i \cdot a_i & \text{if } a_i \\ \beta_i \cdot a_i & \text{if } a_i \end{cases}$$

where α_i and β_i are any real numbers weighting the contributions of the positive and negative parts, respectively. ► The generalised ReLU function is denoted as p-ReLU(α_i, β_i).

Figure 2: Illustration of the hinge-like shape of p-ReLU functions.

Implementations

- Involved activation functions are implemented in HTK V3.5, for both speaker independent & dependent cases.
- \mathbf{P} -Sigmoid $(\eta_i, \gamma_i, \theta_i)$ and \mathbf{p} -Sigmoid $(\eta_i, 1, 0)$ are implemented as *ParmSigmoid* and *PSigmoid*.
- $ightarrow p-\text{ReLU}(\alpha_i, \beta_i)$ and $p-\text{ReLU}(\alpha_i, 0)$ are denoted as *ParmReLU* and *PReLU*.
- Implementation of p-Sigmoid(η_i , 1, 0) or p-ReLU(α_i , 0) can be simplified to save only $f_i(a_i)$ but not a_i , by forcing $\partial f_i(a_i)/\partial \eta_i$ or $\partial f_i(a_i)/\partial \alpha_i$ to 0 when η_i or α_i equals 0.

Experimental Setup

- CE DNN-HMMs were trained on 72 hours Mandarin CTS data.
- ► Three test sets were used, *dev04*, *eval03*, and *eval97*.
- ► 42d CMLLR(HLDA(PLP_0_D_A_T_Z)+Pitch_D_A) features.
- ► 63k word dictionary and trigram LM trained using 1 billion words.
- ▶ DNN structure $378 \times 1000^5 \times 6005$.
- ▶ η_i , γ_i , θ_i , α_i , and β_i are initialised as 1.0, 1.0, 0.0, 1.0, and 0.25.

- ≪ 0

Experiments

- ones.
- the first epoch.
- $\sim \alpha_i$ has more impact on training than β_i .

ID	Activation Function	dev04	ID	Activation Function	dev04
S0	Sigmoid	27.9	R 0	ReLU	27.6
S1 ⁺	p -Sigmoid(η_i , 1, 0)	27.6	R1	p -ReLU(α_i , 0)	26.8
S2 ⁺	p -Sigmoid(1, γ_i , 0)	27.7	R2	p -ReLU(1, β_i)	27.0
S3 ⁺	p -Sigmoid(1, 1, θ_i)	27.7	R3	p -ReLU (α_i, β_i)	27.1
S1	<i>p</i> -Sigmoid(η _i , 1, 0)	27.1	R1	p -ReLU(α_i , 0)	27.4
S2	p -Sigmoid(1, γ_i , 0)	27.5	$R2^{-}$	p -ReLU(1, β_i)	27.0
S3	p -Sigmoid(1, 1, θ_i)	27.4			
S6	p -Sigmoid $(\eta_i, \gamma_i, \theta_i)$	27.3			

Table 1: dev04 %WER for the p-Sigmoid (left) and p-ReLU (right) systems. + means the activation function parameters were trained in both PT and FT. - indicates the activation function parameters were frozen in the 1st epoch.

- Results on all test sets are listed in Table 2.

ID	Activation Function	eval97	eval03	dev04		
S 0	Sigmoid	34.1	29.7	27.9		
S1	<i>p</i> -Sigmoid(η _i , 1, 0)	32.9	28.6	27.1		
R0	ReLU	33.3	29.1	27.6		
R1	p -ReLU(α_i , 0)	32.7	28.7	26.8		
	Table 2:%WER on all test sets.					

Conclusion

• Experiments with p-Sigmoid are given in the left part of Table 1. Learning η_i , γ_i , and θ_i in PT & FT, and FT only.

Using multiple parameters is no better than using individual

• Experiments with p-ReLU are listed in the right part of Table 1. ► For ReLU DNNs, it is not necessary to freeze the parameters in

S1 and R1 had 3.4% and 2.0% lower WER than S0 and R0, by increasing the number of parameters by only 0.06%. p-Sigmoid gains by making Sigmoid similar to ReLU.

An equivalent model with Sigmoid or ReLU can be obtained by removing activation function parameters of p-Sigmoid(η_i , 1, 0) or $p-\text{ReLU}(\alpha_i, 0)$ and scaling the next layer weights accordingly.

In this paper, we found a linear scaling factor with no constraint imposed is the most useful for parameterised Sigmoid and ReLU. Experiments showed DNNs trained with parameterised Sigmoid and ReLU resulted in 3.4% and 2.0% relative reductions in WER, without increasing any extra parameters in the final model.