A General ANN Extension for HTK

Chao Zhang and Phil Woodland

Cambridge University Engineering Department

Abstract

- HTK-ANN enables ANNs with a general structure for acoustic modelling and feature extraction in HTK.
- Include recent ANN techniques, e.g., sequence training, stacking, speaker adaptation, and parameterised activation functions.
- Fully integrated to HTK, to reuse existing GMM-HMM methods for ANN-HMMs.
- HTK-ANN has been tested at CUED on data sets ranging from 3 to 1,000 hours and will be released as part of HTK V3.5 in 2015.

Design Principles

- To accommodate new models and methods, HTK-ANN should be designed as generic as possible.
- Flexible input feature configurations.
- Generic ANN model architectures.
- HTK-ANN should be compatible with existing HTK functions.
- To minimise the effort to reuse previous source codes and tools.
- To simplify the transfer of many technologies.
- HTK-ANN should be "research friendly".

ANN Training Facilities

- HTK-ANN has both frame level (CE, MMSE) and sequence level (MMI, MPE) training criteria.
- ANN labels come from frame-to-label alignment (CE & MMSE), feature files (autoencoder), and lattice files (MMI & MPE).
- Only standard EBP with SGD is available at present.
- Gradient refinement: momentum, gradient clipping, L2 norm, etc.
- Learning rate schedulers: List, Exponential Decay, Ada Grad, modified New Bob, etc.

Data Cache

- Frame based shuffling: CE/MMSE for DNN and (unfolded) RNN.
- Utterance based shuffling: MMI, MPE, and MWE training.
- Batch of utterance level shuffling: RNN, ASGD.

Generic ANN Support

- Each ANN can have any number of layers.
 - Input vector to an ANN layer is defined by a feature mixture.
 - Each feature mixture has any number of feature elements.
- A feature element defines a fragment of the input vector by source (acoustic features or ANN layers) and context shift set (integers for time difference).
- ANNs can be any directed cyclic graph (recurrent ANNs) but only directed acyclic graphs (feedforward ANNs) can be trained.

Other Features

- Math kernels: new CPU, MKL, and CUDA kernels for ANNs.
- Input transforms: compatible with HTK SI/SD input transforms.
- Speaker adaptation: ANN parameters replacement.
- Model Edit (using HHEd).
 - Insert/Remove/Initialise ANN layers.
 - Add/Delete a feature element to/from a feature mixture.
 - Associate an ANN model with HMMs
- Decoders
 - HVite: tandem/hybrid decoding/alignment/model marking
 - HDecode: tandem/hybrid system LVC lever decoding
 - HDecode.mod: tandem/hybrid system model marking
 - Joint decoder: log-linear combination of HTK systems.

Building Hybrid SI System

- Steps to build CE based SI CD-DNN-HMMs using HTK
 - Produce tied state GMM-HMMs by decision tree tying (HHEd).
 - Generate ANN-HMMs by replacing GMMs with an ANN (HHEd).
 - Generate alignments with a pre-trained system (HVite).
 - Train ANN-HMMs based on CE (HNNTrainSGD).
- Steps for CD-DNN-HMM MPE training
 - Generate num. & den. lattices (HLRescore & HDecode).
 - Phone mark num. & den. lattices (HVite or HDecode.mod).
 - Perform MPE sequence training (HNNTrainSGD).

ANN Front-ends for GMM-HMMs

- ANNs can be used as GMM-HMM front-ends by using a feature mixture to define the composition of the GMM-HMM input vector.
- HTK can accommodate a tandem SAT system as a single system.
- Mean & variance norm are treated as affine activation functions.
- SD parameters are replaceable according to speaker ids.

Experiments

- Systems were trained on 300 hours Mandarin CTS data and evaluated on 2014 DARPA BOLT project development set.
- DNNs with 2k node hidden layers and 12k node output layer.
- Joint decoding was with system dependent weights (1.0, 0.2).

<table>
<thead>
<tr>
<th>System</th>
<th>Criterion</th>
<th>%WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid SI</td>
<td>CE</td>
<td>34.5</td>
</tr>
<tr>
<td>Hybrid SI</td>
<td>MPE</td>
<td>31.6</td>
</tr>
<tr>
<td>Tandem SI</td>
<td>MPE</td>
<td>33.2</td>
</tr>
<tr>
<td>Hybrid SI ⊕ Tandem SI</td>
<td>MPE</td>
<td>31.0</td>
</tr>
</tbody>
</table>

Table 1: BOLT tandem, hybrid, and joint decoding performance.

- Systems also built using 700 hours English broadcast data selected from 7 weeks of BBC programmes.
- Evaluations on BBC 1 week development set.
- DNNs have 1k hidden nodes and 9.5k output nodes.
- System dependent weights for hybrid and tandem joint decoding were (1.0, 0.4).

<table>
<thead>
<tr>
<th>System</th>
<th>Criterion</th>
<th>%WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid SI</td>
<td>CE</td>
<td>28.4</td>
</tr>
<tr>
<td>Hybrid SI</td>
<td>MPE</td>
<td>25.9</td>
</tr>
<tr>
<td>Tandem SI</td>
<td>MPE</td>
<td>27.0</td>
</tr>
<tr>
<td>Hybrid SI ⊕ Tandem SI</td>
<td>MPE</td>
<td>24.6</td>
</tr>
</tbody>
</table>

Table 2: Multi-Genre Broadcast (MGB) Challenge developing system performance. Results were with manual segmentation, 64k vocabulary, and fg language model.