Machine Learning in Speech Recognition

Chao Zhang

7 March 2013

Cambridge University Engineering Department

Machine Learning Research and Communication Club, March 2013

Overview

- Characteristics of the Speech Signal
 - A continuous-valued time series generated by encoding various of excitation with a complex time-varying non-linear filter.
 - various kinds of energy excited by
- Multi-Class Extensions
 - combining binary SVMs
 - multi-class SVMs
- Structured SVMs for Continuous Speech Recognition
 - *joint* feature spaces for structured modelling
 - large margin training
 - relationship with other models
 - lattice based implementation

Characteristics of the Speech Signal

- A continuous-valued time series generated by encoding various of excitation with a complex time-varying non-linear filter.
 - Continuous-valued: impact on our choice of models and need to be careful with the numerical computation.
 - Time series: the model need to be able to represent this, and the training and decoding efficiencies are often of concern.
 - Speech signals are presented in the form of rapidly-varying functions.
- Speech signals produced by humans are often pre-processed with signal processing methods and used as the input features to the automatic speech recognition (ASR) system.
 - ASR need to handle the variability of humans: coarticulation, time-varying (mood, aging, ...), gender, accent, and *etc*.
 - ASR need to face difficulties existed in the other signal processing methods: channel variations, noise,

Resources Available for Building ASR

- Phonetic knowledge characterizing how phones are produced with articulator movements.
 - Some rules need to be verified across a large amount of speakers.
 - State-of-the-art ASR often adopts statistic models trained with a large amount of speech data (e.g., 3000 hours – 1.08G samples).
- Lexical and syntax knowledge is available for a given language and can aid speech recognition.
 - Our-of-vocabulary words.
 - III-formed sentences.

Some Basis of Stochastic ASR

- Continuous speech signals are sampled to discrete waveforms, then compressed to a sequence of individual speech frames according to the short-time stationary property ($10\sim30ms/sec$), assuming the vocal tract is time-invariant.
- Source-filter model based on maximum a posteriori criterion,

$$\hat{\mathbf{w}} = \arg \max_{\mathbf{w}} P(\mathbf{w}|\mathbf{O}) \propto \arg \max_{\mathbf{w}} P(\mathbf{O}|\mathbf{w}) P(\mathbf{w}).$$

- O refers to the input speech frame sequence, ${\bf w}$ refers to the word sequence.
- $P(\mathbf{w})$ and $P(\mathbf{O}|\mathbf{w})$ are called the language model and the acoustic model.
- $\arg\max_{\mathbf{w}}$ is to decode for the most likely hypothesis.
- Hidden Markov Models (HMMs) are most commonly used under the framework.

(Cont. Density) Hidden Markov Models

• The sound of a phonetic unit can often be divided into several states, denoted as s, according to its production procedure. Assume s is 1st-order Markovian,

$$P(\mathbf{s}) = \prod_{t=1}^{T} P(q_t = s_t | , q_{t-1} = s_{t-1}).$$

• It is sensible to regard the phone as produced by another process associated to s. Let us assume the process only depends on the current state, i.e.,

$$P(\mathbf{O}|\mathbf{s}) = \prod_{t=1}^{T} P(\mathbf{o}_t|\mathbf{s}) = \prod_{t=1}^{T} P(\mathbf{o}_t|q_t = s_t).$$

(Cont. Density) Hidden Markov Models (Cont.)

• Now we have a HMM, denoted it as λ ,

$$P(\mathbf{O}|\boldsymbol{\lambda}) = \sum_{\mathbf{s}} P(\mathbf{O}|\mathbf{s}, \boldsymbol{\lambda}) P(\mathbf{s}|\boldsymbol{\lambda})$$

- In ASR, we usually use constant transition probabilities between different states, denoted as $P(q_t = s_t |, q_{t-1} = s_{t-1}) = a_{t-1,t}$.
- Modern ASR uses continuous density to model the observation probabilities. Assuming the frames belong to a certain state are i.i.d, Gaussian mixture models are commonly used to approach any continuous density associated with that state by any precision, i.e.,

$$b_j(\mathbf{o}_t) = P(\mathbf{o}_t | q_t = j) = \sum_{m=1}^M c_{jm} \mathcal{N}(\mathbf{o}_t, \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm}).$$

HMM Acoustic Models & Decoding

• A set of acoustic models contains HMMs relevant to every phone (syllable, word, and *etc.*) of the target langauge.

- Modern ASRs use a tuple of concatenated phones rather than a single phone to build an HMM, to capture coarticulation changes inter/intra words (e.g., triphone: 'IY' 'T' 'CH' 'IY' 'Z' → 'sil'+'IY'-'T' 'IY'+'T'-'CH' ...)
 - Relevant states to triphone HMMs with the same central unit are often clustered to avoid data sparseness and reduce system complexity.

(Deep) Neural Networks in ASR

- To our knowledge, DNN applications in ASR (in addition to LM) include 3 aspects:
 - Acoustic models: use the pseudo posteriors from DNN to obtain the observation probabilities.
 - Tandem feature detectors: to extract discriminative neural net features and use them together with the original observations.
 - Speech attribute detectors: use DNNs to extract a set of asynchronous speech attributes.
- The DNN most commonly used in ASR is deep feedforward NNs (expect for LM, where people also use deep recurrent NNs).
- The training approaches in use include:
 - Layer-wised generative pre-training (RBM and etc.)
 - Layer-wised discriminative pre-training.
 - Normalized random initialization.
 - 2nd-order optimization.

DNN-HMM Acoustic Models

• A DNN with phone or tied-state targets ($\sqrt{}$) is fitted into HMM acoustic models by converting the pseudo posteriors into the observation probabilities,

$$\ln P(\mathbf{o}_t|s_t) = \ln P(s_t|\mathbf{o}_t) - \ln P(s_t) + C,$$

where C is a negative constant, $C \propto \ln P(\mathbf{o}_t)$.

- Comparing DNN-HMM acoustic models to GMM-HMM acoustic models,
 - GMMs are trained generatively (needs an additional pass of discriminative training to be discriminatively), individually, and sequentially.
 - A DNN is trained discriminatively and globally on frame-level (also can be trained on sequence level by back-propagating the statistics generated and collected using sequential criterion).
 - A DNN can take the observations of several concatenated frames as the input directly, utilizing the context information.

Tandem Feature Detectors

- The way of using tandem features:
 - Extract neural net features.
 - Combine the neural net features with the original input observations.
 - De-correlate and reduce the dimensions of the tandem features.
 - Use tandem features rather than the original observations as the input to the diagonal GMM-HMM acoustic models.
- Different kinds of DNN features:
 - DNN output posteriors: phone posteriors and tied-state posteriors.
 - Bottleneck DNN: build a DNN (either phone or tied-state targets) with a bottlenecked hidden layer; use the linear output of the bottleneck layer as the DNN features.
- GMM-HMM systems with DNN (tied-state posteriors) bottlenecked tandem features are reported to have comparable performance to DNN-HMM systems.

Speech Attribute Detectors

- Some researchers claim the linear-chain structure of HMMs is not suitable to cover speech variations, and it may ignore some useful knowledge. Therefore proposed to use detection-based system.
 - Extract and utilize various of features from the speech signals based on prior knowledge from linguistics, signal processing, neuroscience, ...
 - To use more complex model and system structure.
 - The accuracy of detectors was a key factor impact on the performance.

• Recent studies utilized DNN to detect articulation derived speech attributes, and got good results.

