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Overview

• Characteristics of the Speech Signal

– A continuous-valued time series generated by encoding various of excitation
with a complex time-varying non-linear filter.

– various kinds of energy excited by

• Multi-Class Extensions

– combining binary SVMs
– multi-class SVMs

• Structured SVMs for Continuous Speech Recognition

– joint feature spaces for structured modelling
– large margin training
– relationship with other models
– lattice based implementation
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Characteristics of the Speech Signal

• A continuous-valued time series generated by encoding various of excitation
with a complex time-varying non-linear filter.

– Continuous-valued: impact on our choice of models and need to be careful
with the numerical computation.

– Time series: the model need to be able to represent this, and the training
and decoding efficiencies are often of concern.

– Speech signals are presented in the form of rapidly-varying functions.

• Speech signals produced by humans are often pre-processed with signal
processing methods and used as the input features to the automatic speech
recognition (ASR) system.

– ASR need to handle the variability of humans: coarticulation, time-varying
(mood, aging, ...), gender, accent, and etc.

– ASR need to face difficulties existed in the other signal processing methods:
channel variations, noise, ....
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Resources Available for Building ASR

• Phonetic knowledge characterizing how phones are produced with articulator
movements.

– Some rules need to be verified across a large amount of speakers.
– State-of-the-art ASR often adopts statistic models trained with a large

amount of speech data (e.g., 3000 hours – 1.08G samples).

• Lexical and syntax knowledge is available for a given language and can aid
speech recognition.

– Our-of-vocabulary words.
– Ill-formed sentences.
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Some Basis of Stochastic ASR

• Continuous speech signals are sampled to discrete waveforms, then compressed
to a sequence of individual speech frames according to the short-time stationary
property (10∼30ms/sec), assuming the vocal tract is time-invariant.

• Source-filter model based on maximum a posteriori criterion,

ŵ = argmax
w

P (w|O) ∝ argmax
w

P (O|w)P (w).

– O refers to the input speech frame sequence, w refers to the word sequence.
– P (w) and P (O|w) are called the language model and the acoustic model.
– argmaxw is to decode for the most likely hypothesis.

• Hidden Markov Models (HMMs) are most commonly used under the framework.
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(Cont. Density) Hidden Markov Models

• The sound of a phonetic unit can often be divided into several states, denoted
as s, according to its production procedure. Assume s is 1st-order Markovian,

P (s) =
T∏

t=1

P (qt = st|, qt−1 = st−1).

• It is sensible to regard the phone as produced by another process associated
to s. Let us assume the process only depends on the current state, i.e.,

P (O|s) =
T∏

t=1

P (ot|s) =
T∏

t=1

P (ot|qt = st).
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(Cont. Density) Hidden Markov Models (Cont.)

• Now we have a HMM, denoted it as λ,

P (O|λ) =
∑

s

P (O|s,λ)P (s|λ)

• In ASR, we usually use constant transition probabilities between different
states, denoted as P (qt = st|, qt−1 = st−1) = at−1,t.

• Modern ASR uses continuous density to model the observation probabilities.
Assuming the frames belong to a certain state are i.i.d, Gaussian mixture
models are commonly used to approach any continuous density associated
with that state by any precision, i.e.,

bj(ot) = P (ot|qt = j) =
M∑

m=1

cjmN (ot,µjm,Σjm).
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HMM Acoustic Models & Decoding

• A set of acoustic models contains HMMs relevant to every phone (syllable,
word, and etc.) of the target langauge.
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• Modern ASRs use a tuple of concatenated phones rather than a single phone
to build an HMM, to capture coarticulation changes inter/intra words (e.g.,
triphone: ‘IY’ ‘T’ ‘CH’ ‘IY’ ‘Z’ → ‘sil’+‘IY’-‘T’ ‘IY’+‘T’-‘CH’ . . .)

– Relevant states to triphone HMMs with the same central unit are often
clustered to avoid data sparseness and reduce system complexity.
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(Deep) Neural Networks in ASR

• To our knowledge, DNN applications in ASR (in addition to LM) include 3
aspects:

– Acoustic models: use the pseudo posteriors from DNN to obtain the
observation probabilities.

– Tandem feature detectors: to extract discriminative neural net features and
use them together with the original observations.

– Speech attribute detectors: use DNNs to extract a set of asynchronous
speech attributes.

• The DNN most commonly used in ASR is deep feedforward NNs (expect for
LM, where people also use deep recurrent NNs).

• The training approaches in use include:

– Layer-wised generative pre-training (RBM and etc.)
– Layer-wised discriminative pre-training.
– Normalized random initialization.
– 2nd-order optimization.
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DNN-HMM Acoustic Models

• A DNN with phone or tied-state targets (
√

) is fitted into HMM acoustic
models by converting the pseudo posteriors into the observation probabilities,

lnP (ot|st) = lnP (st|ot)− lnP (st) + C,

where C is a negative constant, C ∝ lnP (ot).

• Comparing DNN-HMM acoustic models to GMM-HMM acoustic models,

– GMMs are trained generatively (needs an additional pass of discriminative
training to be discriminatively), individually, and sequentially.

– A DNN is trained discriminatively and globally on frame-level (also can be
trained on sequence level by back-propagating the statistics generated and
collected using sequential criterion).

– A DNN can take the observations of several concatenated frames as the
input directly, utilizing the context information.
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Tandem Feature Detectors

• The way of using tandem features:

– Extract neural net features.
– Combine the neural net features with the original input observations.
– De-correlate and reduce the dimensions of the tandem features.
– Use tandem features rather than the original observations as the input to

the diagonal GMM-HMM acoustic models.

• Different kinds of DNN features:

– DNN output posteriors: phone posteriors and tied-state posteriors.
– Bottleneck DNN: build a DNN (either phone or tied-state targets) with a

bottlenecked hidden layer; use the linear output of the bottleneck layer as
the DNN features.

• GMM-HMM systems with DNN (tied-state posteriors) bottlenecked tandem
features are reported to have comparable performance to DNN-HMM systems.
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Speech Attribute Detectors

• Some researchers claim the linear-chain structure of HMMs is not suitable to
cover speech variations, and it may ignore some useful knowledge. Therefore
proposed to use detection-based system.

– Extract and utilize various of features from the speech signals based on prior
knowledge from linguistics, signal processing, neuroscience, . . .

– To use more complex model and system structure.
– The accuracy of detectors was a key factor impact on the performance.

Knowledge Source, Models, Data, and Tools
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• Recent studies utilized DNN to detect articulation derived speech attributes,
and got good results.
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