Discriminative Dynamic Gaussian Mixture
Selection for Accented Speech Recognition



Principle of Tied-State HMMs

 Tied-sate HMMs are usually used in context-dependent
acoustic modeling
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How accents impact on pronunciations?

e Accents cause pronunciation changes (‘n’ changes to ‘') that
vield relevant acoustic samples shift to unexpected subspaces

* e.g.Samples belong to ‘blue’ locat at a subspace of ‘green’
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Handle Accent Changes by Model
Augmentation

 Model Augmentation uses extra (auxiliary) Gaussians trained
by accented samples to cover accent changes

* e.g.the subspace of ‘green’ with accented samples belong to
‘blue’ is covered by auxiliary Gaussians of ‘blue’
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Side-Effect of Model Augmentation

* Model Augmentation reconstructs tied-states statically by
borrowing auxiliary Gaussians and degrades model resolution
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Dynamic Gaussian Mixture Selection (DGMS)

* Since the augmented tied-states suffer from resolution ability
loss while the left ones do not, model augmentation leads to

serious performance degradation in pruned beam search

* We dynamically reconstruct the statically reconstructed tied-
states by selecting k Gaussians nearest to current input frame
to compute its acoustic likelihood
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A Key Issue of DGMS

* In DGMS method, each statically reconstructed tied-state has
a selection number k used to dynamically reconstructed it

e Hundreds of k exist in a set of acoustic models

— How to decide these k? (regard them as a parameter vector)
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Discrete Variable Optimization

* Deciding the parameter vector is actually a discrete variable
optimization problem
 The optimization criterion

— Discriminative criteria (MCE, MPE, MMIE etc.) always outperforms

generative criteria (ML, MAP etc.)
— We choose MCE criterion, which leads to discriminative DGMS

* The optimization algorithm
— The selection numbers are discrete variables with no derivatives that
causes traditional optimization methods unsuitable (EM, BFGS etc.)

— There are exponentially possible vectors and are hard to be exhausted
— We hire GA to heuristically accelerate the optimization



Minimum Classification Error Criterion (MCE)

* MCE minimizes an estimation of train-set sentence errors

1d(0)) = 1/ (1+ =)

 MCE embeds acoustic score difference between competing
and target models d(O) into a sigmoid function to
— Count sentence errors by different degrees
— Guarantee derivatives of the parameters exist (unnecessary for us)
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Genetic Algorithm (GA)

* GAis arandom “search for solution” algorithm
— Mimics the survival of the fittest process of natural evolution
— To find the optimum by examining over only a small fraction of the
possible candidates
 Employ GA to find the optimal selection numbers
— See each parameter vector as a possible candidate (a chromosome)

— We use [(d(O)) as the fittest-function to evaluate the candidates: the
fitter the candidate, the smaller its fittest-function

— 1(d(0O)) is computed on the acoustic models with DGMS enabled using
current parameter vector; the competing string is approximated with
the best one among N-Best hypotheses



Essential Steps of GA

Generating new candidates randomly from the population by

— Mating: fitter candidates have the e e .
priority to mate
— Mutation

Updating the population; repeating above steps; candidate
with the smallest fittest-function value is the optimum
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Gaussian-component Number in Output

Experiments

We evaluate discriminative DGMS on multi-accent speech
recognition task (with three accents: Chuan, Yue, and Wu)

— @Gaussian mixture model sizes in state observation densities for some
representative tied-states with/without DGMS (the left figure)

— Normalized relative model resolution for representative tied-states
with/without DGMS evaluated on Yue accent (the right figure)
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Experiments (Cont.)

— DGMS alleviates performance loss in pruned beam search
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— Discriminative DGMS reduces free grammar syllable recognition error rate
(without pruning search)

Yue Wu PTH

Data Type Chuan

Relative SyIIz'abIe Error 3.63% 4.04% 3.96% -0.32%
Rate Reduction
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What’s More ...

Many omitted details and algorithms are presented in our
paper
— “Discriminative Dynamic Gaussian Mixture Selection with Enhanced
Robustness and Performance for Multi-Accent Speech Recognition”
The performance on sentence level (not given here) are even
significantly better than that of syllable level

— 11% relative error rate reduction without pruning; 33% when t = 300

Whether discriminative DGMS works on conventional HMMs
and the relationship between continuous and this discrete
variables discriminative HMMs are not yet clear

Other criteria, more complex control strategy (other than the
k-NN), and context-dependent selection may also work



Thank for your listening!



