Discriminative Dynamic Gaussian Mixture Selection for Accented Speech Recognition

Zhang Chao CSLT, RIIT, Tsinghua University

Principle of Tied-State HMMs

• Tied-sate HMMs are usually used in context-dependent acoustic modeling

How accents impact on pronunciations?

- Accents cause pronunciation changes ('n' changes to 'l') that yield relevant acoustic samples shift to unexpected subspaces
- e.g. Samples belong to 'blue' locat at a subspace of 'green'

Handle Accent Changes by Model Augmentation

- Model Augmentation uses extra (auxiliary) Gaussians trained by accented samples to cover accent changes
- e.g. the subspace of 'green' with accented samples belong to 'blue' is covered by auxiliary Gaussians of 'blue'

Side-Effect of Model Augmentation

 Model Augmentation reconstructs tied-states statically by borrowing auxiliary Gaussians and degrades model resolution

Dynamic Gaussian Mixture Selection (DGMS)

- Since the augmented tied-states suffer from resolution ability loss while the left ones do not, model augmentation leads to serious performance degradation in pruned beam search
- We dynamically reconstruct the statically reconstructed tiedstates by selecting *k* Gaussians nearest to current input frame to compute its acoustic likelihood

A Key Issue of DGMS

- In DGMS method, each statically reconstructed tied-state has a selection number k used to dynamically reconstructed it
- Hundreds of *k* exist in a set of acoustic models
 - How to decide these k? (regard them as a parameter vector)

Discrete Variable Optimization

- Deciding the parameter vector is actually a discrete variable optimization problem
- The optimization criterion
 - Discriminative criteria (MCE, MPE, MMIE *etc.*) always outperforms generative criteria (ML, MAP *etc.*)
 - We choose MCE criterion, which leads to discriminative DGMS
- The optimization algorithm
 - The selection numbers are discrete variables with no derivatives that causes traditional optimization methods unsuitable (EM, BFGS *etc.*)
 - There are exponentially possible vectors and are hard to be exhausted
 - We hire GA to heuristically accelerate the optimization

Minimum Classification Error Criterion (MCE)

- MCE minimizes an estimation of train-set sentence errors $l(d(O)) = 1 / (1 + e^{-\alpha \cdot d(O)})$
- MCE embeds acoustic score difference between competing and target models d(O) into a sigmoid function to
 - Count sentence errors by different degrees
 - Guarantee derivatives of the parameters exist (unnecessary for us)

Genetic Algorithm (GA)

- GA is a random "search for solution" algorithm
 - Mimics the survival of the fittest process of natural evolution
 - To find the optimum by examining over only a small fraction of the possible candidates
- Employ GA to find the optimal selection numbers
 - See each parameter vector as a possible candidate (a chromosome)
 - We use l(d(O)) as the fittest-function to evaluate the candidates: the fitter the candidate, the smaller its fittest-function
 - l(d(O)) is computed on the acoustic models with DGMS enabled using current parameter vector; the competing string is approximated with the best one among N-Best hypotheses

Essential Steps of GA

• Maintaining a population of candidates

- Generating new candidates randomly from the population by
 - Mating: fitter candidates have the priority to mate

• Updating the population; repeating above steps; candidate with the smallest fittest-function value is the optimum

Experiments

- We evaluate discriminative DGMS on multi-accent speech recognition task (with three accents: Chuan, Yue, and Wu)
 - Gaussian mixture model sizes in state observation densities for some representative tied-states with/without DGMS (the left figure)
 - Normalized relative model resolution for representative tied-states with/without DGMS evaluated on Yue accent (the right figure)

Experiments (Cont.)

- DGMS alleviates performance loss in pruned beam search

 Discriminative DGMS reduces free grammar syllable recognition error rate (without pruning search)

Data Type	Chuan	Yue	Wu	PTH
Relative Syllable Error Rate Reduction	3.63%	4.04%	3.96%	-0.32%

What's More ...

- Many omitted details and algorithms are presented in our paper
 - "Discriminative Dynamic Gaussian Mixture Selection with Enhanced Robustness and Performance for Multi-Accent Speech Recognition"
- The performance on sentence level (not given here) are even significantly better than that of syllable level
 - 11% relative error rate reduction without pruning; 33% when t = 300
- Whether discriminative DGMS works on conventional HMMs and the relationship between continuous and this discrete variables discriminative HMMs are not yet clear
- Other criteria, more complex control strategy (other than the *k*-NN), and context-dependent selection may also work

Thank for your listening!