A General Artificial Neural Network Extension for HTK

Chao Zhang & Phil Woodland

Natural Speech Technology

Edinburgh – Cambridge – Sheffield

University of Cambridge

15 April 2015
Overview

• Design Principles
• Implementation Details
 ○ Generic ANN Support
 ○ ANN Training
 ○ Data Cache
 ○ Other Features
• A Summary of HTK-ANN
• HTK based Hybrid/Tandem Systems & Experiments
 ○ Hybrid SI System
 ○ Tandem SAT System
 ○ Demo Hybrid System with Flexible Structures
• Conclusions
Design Principles

• The design should be as generic as possible.
 ○ Flexible input feature configurations.
 ○ Flexible ANN model architectures.

• HTK-ANN should be compatible with existing functions.
 ○ To minimise the effort to reuse previous source code and tools.
 ○ To simplify the transfer of many technologies.

• HTK-ANN should be kept “research friendly”.

Generic ANN Support

- In HTK-ANN, ANNs have layered structures.
 - An HMM set can have any number of ANNs.
 - Each ANN can have any number of layers.
- An ANN layer has
 - Parameters: weights, biases, activation function parameters
 - An input vector: defined by a feature mixture structure
- A feature mixture has any number of feature elements
- A feature element defines a fragment of the input vector by
 - Source: acoustic features, augmented features, output of some layer.
 - A context shift set: integers indicated the time difference.
In HTK-ANN, ANN structures can be any directed cyclic graph.
Since only standard EBP is included at present, HTK-ANN can train non-recurrent ANNs properly (directed acyclic graph).

Figure: An example of a feature mixture.
ANN Training

- HTK-ANN supports different training criteria
 - Frame-level: CE, MMSE
 - Sequence-level: MMI, MPE, MWE
- ANN model training labels can come from
 - Frame-to-label alignment: for CE and MMSE criteria
 - Feature files: for autoencoders
 - Lattice files: for MMI, MPE, and MWE criteria
- Gradients for SGD can be modified with momentum, gradient clipping, weight decay, and max norm.
- Supported learning rate schedulers include List, Exponential Decay, AdaGrad, and a modified NewBob.
• HTK-ANN has three types of data shuffling
 ○ Frame based shuffling: CE/MMSE for DNN, (unfolded) RNN
 ○ Utterance based shuffling: MMI, MPE, and MWE training
 ○ Batch of utterance level shuffling: RNN, ASGD

Figure: Examples of different types of data shuffling.
Other Features

- Math Kernels: CPU, MKL, and CUDA based new kernels for ANNs
- Input Transforms: compatible with HTK SI/SD input transforms
- Speaker Adaptation: an ANN parameter unit online replacement
- Model Edit
 - Insert/Remove/Initialise an ANN layer
 - Add/Delete a feature element to a feature mixture
 - Associate an ANN model to HMMs
- Decoders
 - HVite: tandem/hybrid system decoding/alignment/model marking
 - HDDecode: tandem/hybrid system LVCSR decoding
 - HDDecode.mod: tandem/hybrid system model marking
 - A Joint decoder: log-linear combination of systems (same decision tree)
A Summary of HTK-ANN

- Extended modules: HFBLat, HMath, HModel, HParm, HRec, HLVRec
- New modules
 - HANNNet: ANN structures & core algorithms
 - HCUDA: CUDA based math kernel functions
 - HNCache: Data cache for data random access
- Extended tools: HDecode, HDecode.mod, HHEd, HVite
- New tools
 - HNForward: ANN evaluation & output generation
 - HNTrainSGD: SGD based ANN training
Building Hybrid SI Systems

• Steps of building CE based SI CD-DNN-HMMs using HTK
 ○ Produce desired tied state GMM-HMMs by decision tree tying (HHEd)
 ○ Generate ANN-HMMs by replacing GMMs with an ANN (HHEd)
 ○ Generate frame-to-state labels with a pre-trained system (HVite)
 ○ Train ANN-HMMs based on CE (HNTrainSGD)

• Steps for CD-DNN-HMM MPE training
 ○ Generate num./den. lattices (HLRescore & HDecode)
 ○ Phone mark num./den. lattices (HVite or HDecode.mod)
 ○ Perform MPE training (HNTrainSGD)
ANN Front-ends for GMM-HMMs

- ANNs can be used as GMM-HMM front-ends by using a feature mixture to define the composition of the GMM-HMM input vector.
- HTK can accommodate a tandem SAT system as a single system
 - Mean and variance normalisations are treated as activation functions.
 - SD parameters are replaceable according to speaker IDs.

Figure: A composite ANN as a Tandem SAT system front-end.
Standard BOLT System Results

- Hybrid DNN structure: $504 \times 2000^4 \times 1000 \times 12000$
- Tandem DNN structure: $504 \times 2000^4 \times 1000 \times 26 \times 12000$

<table>
<thead>
<tr>
<th>System</th>
<th>Criterion</th>
<th>%WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid SI</td>
<td>CE</td>
<td>34.5</td>
</tr>
<tr>
<td>Hybrid SI</td>
<td>MPE</td>
<td>31.6</td>
</tr>
<tr>
<td>Tandem SAT</td>
<td>MPE</td>
<td>33.2</td>
</tr>
<tr>
<td>Hybrid SI \otimes Tandem SAT</td>
<td>MPE</td>
<td>31.0</td>
</tr>
</tbody>
</table>

Table: Performance of BOLT tandem and hybrid systems with standard configurations evaluated on dev’14. \otimes is the joint decoding with system dependent combination weights (1.0, 0.2).
WSJ Demo Systems with Flexible Structures

- Stacking MLPs: \((468 + (n - 1) \times 200) \times 1000 \times 200 \times 3000\), \(n = 1, 2, \ldots\). Each MLP takes all previous BN features as input.
- The top MLP does not have a BN layer.
- System was trained with CE based discriminative pre-training and fine-tuning.
- Systems were trained with 15 hours Wall Street Journal (WSJ0).

<table>
<thead>
<tr>
<th>FNN Num</th>
<th>%Accuracy Train</th>
<th>%Accuracy Held-out</th>
<th>%WER 65k dt</th>
<th>%WER 65k et</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69.9</td>
<td>58.1</td>
<td>9.3</td>
<td>10.9</td>
</tr>
<tr>
<td>2</td>
<td>72.8</td>
<td>59.1</td>
<td>9.0</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>73.9</td>
<td>59.1</td>
<td>8.8</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Table: Performance of the WSJ0 Demo Systems.
Conclusions

• HTK-ANN integrates native support of ANNs into HTK.
• HTK based GMM technologies can be directly applied to ANN-based systems.
• HTK-ANN can train FNNs with very flexible configurations
 ○ Topologies equivalent to DAG
 ○ Different activation functions
 ○ Various input features
 ○ Frame-level and sequence-level training criteria
• Experiments on 300h CTS task showed HTK can generate standard state-of-the-art tandem and hybrid systems.
• WSJ0 experiments showed HTK can build systems with flexible structures.
• HTK-ANN will be available with the release of HTK 3.5 in 2015.