
1

Third Year Design Project SF2

Image Processing

1 Introduction

This project introduces you to some of the essential design tradeoffs which must be made
during the design of image data compression systems. The main purpose of such systems
is to compress as far as possible the size of data file required to store an image (typically
a real-world scene) while still preserving the quality of the decompressed image at an
acceptable level. You will be introduced to techniques which to some extent reflect the
compression inherent in the JPEG, JPEG2000 and JPEG-XR standards1.

An image compression system normally comprises three main processes:

• An input filtering (or transformation) process, which compacts most of the energy
of the image data into a relatively small number of filter output samples;

• A quantisation process, which represents these samples to some desired accuracy;

• A lossless entropy coding process, which codes the quantised samples into the mini-
mum number of bits that still allows the samples to be recovered to their quantised
accuracy in the decompressor.

The project introduces you to each of these processes in turn and allows you to make a
number of inter-related design decisions. New concepts are introduced as the project pro-
gresses, rather than by trying to introduce too much theoretical material at the beginning.
If you are unsure why you are doing any particular task, then please ask a demonstrator.

At the end of the project all groups will use their final design solutions to compress a small
set of images to given file sizes, and the quality of the reconstucted images will be assessed
both subjectively and objectively in a competition to select the best design.

The final report of the project will be expected to summarise briefly all the investigations
and pay particular attention to the design process as the solution evolves.

1JPEG (Joint Photographic Experts Group) is the image compression standard from 1992 still com-
monly used today. JPEG2000 and JPEG-XR are more modern versions which are gradually becoming
more widespread.



2

Figure 1: Overview of project

2 Project Organization

Important dates and deadlines are:

9am Thursday 8 May 2014 (Easter, week 3) Project begins.
9:15am Thursday 15 May 2014 (Easter, week 4) Hand in first interim report.
9:15am Thursday 22 May 2014 (Easter, week 5) Hand in second interim report.
11am Monday 2 June 2014 (Easter, week 6) Competition.
4pm Thursday 5 June 2014 (Easter, week 7) Hand in final project report.

During the project period, 8 hours per week are timetabled when the lab is reserved
for project use (9.00-11.00 Thursday, 14.00-18.00 Thursday and 11.00-13.00 Monday).
Demonstrators will be available to give introductory talks, guidance and help during the
morning sessions. Students are expected to attend all sessions — there is a penalty of 1
mark per hour or part thereof for missing the morning sessions.

Students will need to spend some additional 12 hours per week per project working
on their own (including report writing). Much of this time will need to be spent working
at computer terminals in the DPO, subject to availability.

Students will be issued with a Laboratory Notebook. This is to be used to record all
day-to-day activities, as a sketch book for conceptual design work, to record calculations
etc. Demonstrators may ask to see notebooks when marking reports to check that books
are used correctly with entries properly laid out and dated.

This project requires 3 reports to be submitted, i.e. 2 interim reports and a final report.
The maximum total length taken together must not exceed 14 pages, not including ap-
pendices. There is a penalty of 3 marks per day or part thereof for late submission
of interim reports. Final reports must be handed in by 4pm Thursday 5 June
2014.



3

First Interim Report (12 marks): ≤ 2 pages, plus 2 pages for appendices.

Second Interim Report (18 marks): ≤ 3 pages, plus 3 pages for appendices.

Final Report (50 marks): ≤ 9 pages, plus 6 pages for appendices.

In preparing reports, students are required to adhere to the page limits, however you
may well want to include some pictures in appendices, which have an additional page limit.
In any case, it is important to ensure that the pictures as printed actually demonstrate
the features you are trying to convey in the report. It is often better to use zoomed-up
cropped regions.

All reports are to be written individually. However, the compression schemes will be
designed within groups of two, with a single entry per group in the final competition.

Further details are provided elsewhere in this sheet and in the document ‘Third Year
Project Guide’. However, note that the ‘Third Year Project Guide’ only suggests typical
requirements: it is this document, the SF2 project handout, which you need to adhere to.



4

3 Key Design Stages

Students should carry out the following key design stages in order to achieve their final
design solutions:

1. Familiarisation with Matlab and its image processing functions.

2. Experiments with 1-D and 2-D digital FIR filters to see their effects on images, and
introduction to special techniques such as symmetric extension for dealing efficiently
with finite data sets.

3. Development of the Laplacian Pyramid as an introduction to energy compaction.
Different decimation and interpolation filters will be investigated, together with ways
to allocate quantiser step-sizes to each pyramid level.

The first interim report will be presented at this stage.

4. Development of the Discrete Cosine Transform (DCT) as a method of energy com-
paction. This is a standard block-based transform method and different transform
sizes will be investigated.

5. Development of the Lapped Bi-orthogonal Transform (LBT) as an extension to the
DCT. Different transform sizes and degrees of bi-orthogonality will be investigated.

6. Development of the Discrete Wavelet Transform (DWT), based on a tree of simple
subband filters (LeGall filters). Different depths of tree will be investigated, together
with ways to allocate quantiser step-sizes to each DWT level.

The second interim report will be presented at this stage.

7. Selection of a small number (2 to 4) of preferred options for energy compaction for
testing with the remainder of the system.

8. Experiments with quantisers. Different step sizes and widths of central clipping re-
gion will be investigated, using plots of reconstruction error versus first-order entropy
as the main design criteria.

9. Development of combined run-length / Huffman coding for converting the quantised
samples to a compact serial bit stream, loosely based on the JPEG standards.

10. Optimisation and test of a final design solution, based on all the information gathered
above, and assessed on a set of test images.

The final report will be presented at this stage.

You will find at many stages that a large number of permutations of the various
design parameters are possible. The art or skill of good design is to investigate
only the more promising options at each stage so that a near-optimal design
is obtained without excessive experimental effort. A key aim of this project is
to develop these skills. If in doubt, please ask for help!



5

4 Familiarisation with Matlab

Whether or not you are already familiar with Matlab, help can be found on the depart-
ment’s computing pages:

http://www-h.eng.cam.ac.uk/help/tpl/programs/matlab.html

The CUED guide ’Getting Started with Matlab’ is a good starting point.

The following instructions are for Windows. The computers in the DPO also dual boot
into linux and you are welcome to run Matlab from there if you prefer. If you choose to
do this, you will need to adapt the following instructions as necessary.

Use a web browser to visit: http://mi.eng.cam.ac.uk/~gmt11/SF2 where you will find
a link to download the matlab files needed for this lab. Store these in an appropriate
sub-directory (e.g. SF2) of the Z: directory (which is a link to your file space).

Start up matlab and move to this directory by typing e.g. cd Z:\SF2.

Load the provided ‘lighthouse’ image using: load lighthouse

Now investigate the functions to display monochrome images as follows. Use whos (at
the command prompt) or the workspace viewer to confirm that the 256× 256 image is in
X and there are two colour maps, map and map2.

Set the palette for 256 uniformly spaced grey levels using: colormap(map)
(note the American spelling!)

Display the image and set the axes for square pels using: image(X), axis image

Change the palette to enhance the contrast using: colormap(map2)

map2 was generated for this image by a process known as histogram equalisation, which
distorts map so that a histogram of the equalised mapping of the image intensities would
be approximately flat over the full range of grey-scale from black to white (0 to 255).

You may also try pseudo colour palettes, with any of the following arguments for col-
ormap: hot, cool, bone, copper, pink, prism, jet, hsv.

Finally return to the correct palette map.

As an alternative to using the built-in Matlab function image, you may prefer to use a
higher level function draw that we have written, which automatically generates the largest
image of the correct aspect ratio which will fit in the figure window, and will also calculate
an appropriate greyscale palette. Have a look at the file draw.m by typing edit draw.m
and ensure that you understand what it does.



6

5 Simple image filtering

An effective image lowpass filter, of odd length N , may be obtained by defining the impulse
response h(n) to be a sampled half-cosine pulse:

h(n) = G cos
(

nπ

N + 1

)
for

−(N − 1)

2
≤ n ≤ N − 1

2

where G is a gain factor, which, in order to give unity gain at zero frequency, should be
calculated such that

(N−1)/2∑
n=−(N−1)/2

h(n) = 1

(This may be done most easily by first calculating h(n) with G = 1, summing all terms,
and then dividing them all by the result.)

Take a look at the Matlab function (M-file) halfcos.m and check that it generates h for
a given N .

Use the conv function in a for loop to convolve a 15-sample half-cosine with each row of
the test image, Lighthouse. Observe the resulting image Xf and note the increased width
and the gradual fade to black at the edges, caused by conv assuming the signal is zero
outside the range of the input vectors.

Trim the filtered image Xf to its correct size and display it using:

draw(Xf(:,[1:256]+7))

Note that darkening of the sides is still visible, since the lowpass filter assumes that the
intensity is zero outside the image.

Image trimming and convolution of all the image rows can also be achieved using the
conv2 function with the ’same’ argument:

Xf = conv2(1, h, X, ’same’); draw(Xf);

Symmetric extension is a technique to minimise edge effects when images of finite size are
filtered. It assumes that the image is surrounded by a flat mirror along each edge so it
extends into mirror-images (symmetric extensions) of itself in all directions over an infinite
plane. If the filter impulse response is symmetrical about its mid point, then the filtered
image will also be symmetrically extended in all directions with the same period as the
original images. Hence it is only necessary to define the filtered image over the same area
as the original image, for it to be defined over the whole infinite plane.

Let us consider a one-dimensional example for a 4-point input signal a, b, c, d. This may
be symmetrically extended in one of two ways:

. . . d, c, b, a, b, c, d,︸ ︷︷ ︸
original

c, b, a . . . or . . . d, c, b, a, a, b, c, d,︸ ︷︷ ︸
original

d, c, b, a . . .

The left-hand method, where the end points are not repeated at each boundary, is most
suitable when signal is to be filtered by a filter with an odd number of taps. The other
method is most suited to filters with an even number of taps.



7

In Matlab a matrix with symmetrically extended rows may be generated by extending just
the indexing of its columns as in:

ind = [3 2 [1:n] n-1 n-2];
Xe = X(:,ind);

The rows of Xe are the rows of X extended by 2 samples at each end using the left-hand
method above. The M-file convse.m make use of this to filter the rows of matrix X using
the appropriate form of symmetric extension. The filtering is performed by accumulating
shifted versions of X in Xe, each weighted by the appropriate element of h. Check that
you understand how this function works.

Use convse to filter the rows of your image with the 15-tap half-cosine filter, noting the
absence of edge effects.

Now use convse to filter the columns of the row-filtered image by use of the Matlab trans-
pose operator ’. Note that the function conv2se has also been provided, as a symmetrical-
extension replacement for conv2.

Does it make any difference whether the rows or columns are filtered first? (You should
test this accurately by measuring the maximum absolute pixel difference between the
row-column and column-row filtered images. Beware of scientific notation, used by Mat-
lab for very small numbers!)

This process of separate row and column filtering is known as separable 2-D filtering, and
is much more efficient than the more general non-separable 2-D filtering.

It is possible to construct a 2-D high-pass filter by subtracting the 2-D low-pass result from
the original. Note that your 2-D lowpass filter h must have a DC gain (sum of all filter
coefficients) of unity for this to correctly produce a highpass filter. The highpass image Y
now contains negative, as well as positive pels, so it is sensible to display the result using
draw(Y) which automatically compensates for this.

Try generating both low-pass and high-pass versions of X using a range of different
odd-length half-cosine filters. Comment on the relative effects of these filters.

One way to assess sets of filtered images like these is to contrast the energy content. In this
context, the energy E of an image X is given by the sum of the squares of the individual
pixel values:

E = sum(X(:).^2);

X(:) converts X into a vector, and .^2 squares individual components.

What do you observe about the energy of the highpass images, compared with that of
the lowpass images?



8

2

2

h

2 h

-+

2

2

h

2 h

-+

X X1 X2

Y0 Y1

Figure 2: A typical laplacian pyramid with 2 levels: forward (analysis) part only

6 The Laplacian Pyramid

6.1 The basic concept

The Laplacian pyramid is an energy compaction technique, based on the observation:

For most real-world images, the high-frequency energy is much less than the
low-frequency energy.

Since the lowpass image is much lower bandwidth than the original image, it can be sub-
sampled (decimated) 2:1 in both horizontal and vertical directions, without significant
loss of information to give a quarter-size lowpass image. We have provided a row fil-
ter/decimation function, rowdec.m, to filter and decimate the rows of a matrix by 2:1.
Use this twice (on the image and its transpose) to generate a quarter-size lowpass image
X1 of Lighthouse. For simplicity use a 3-tap filter h with coeffs.: 1

4
[1 2 1].

The image X1 can be interpolated 2:1 in each direction to generate a lowpass image
of the original size, which can then be subtracted from the original to yield a full-size
highpass image. We have also provided a row interpolation/filter function, rowint.m,
which doubles the length of each row of the image, by inserting zeros between alternate
samples and then lowpass filtering the result with the filter 2h. This is the same filter
except for the DC gain of 2 which is needed to overcome the process of decimation. Apply
this twice (as before) to generate a full-size lowpass image, and subtract this from X to
give a highpass image Y0. Display X1 and Y0 to see these effects.

The highpass images will always have approximately zero mean (since any dc component
is removed). Hence for the remainder of this project, we recommend that you also make all
lowpass images be approximately zero mean by subtracting 128 from them before you start
any processing. This makes the 8-bit pixel values cover the range −127 to 127, instead of
0 to 255. The advantages of having a zero-mean input image are not very obvious here,



9

but they will become clearer as the project progresses. If you use draw the images will
still be displayed correctly.

Examine the files rowdec.m and rowint.m and check that you understand how they
work. Decimation is achieved by selecting every second element of a vector using y =
x[1:2:N];, and filtering is performed with symmetric extension as in convse.m, except
that we do not bother to calculate the filter outputs that are to be discarded by the
decimation process. Interpolation is achieved by loading every second element of a double-
size vector using x = zeros(N,1); x[1:2:N] = y; . The intermediate samples of the
interpolated vector x must be zero before the vector is passed through the interpolation
lowpass filter.

If the small lowpass image X1 and the full-size highpass image Y0 are transmitted to a
distant decoder, then the decoder can exactly reconstruct the original image by interpolat-
ing X1 up to full size and adding in Y0 (which represents the error between the original
and the interpolated X1). We have achieved image compression if X1 and Y0 can be
transmitted with fewer bits than X. Usually this will be the case because Y0 contains so
much less energy than X, and X1 is only one quarter of the size of X. However we do start
at a disadvantage because there are 25% more samples to code. Many of the Y0 samples
may be represented by zero, and we shall show later that runs of zeros may be coded with
relatively few bits.

The quarter-size lowpass image X1 may be further subsampled, using the same process
as was applied to X, so that it may be transmitted as a one-sixteenth-size lowpass image
X2 and a quarter-size highpass image Y1. This usually achieves further data compression
and may be repeated as many times as is desired (until, for typical images, no further
compression is achieved). This leads to a pyramid of highpass images and a final tiny
lowpass image. Usually three or four layers of the pyramid are sufficient to give maximum
compression.

Write an M-file py4enc.m to generate a 4-layer pyramid, so that X is split into four
highpass images, Y0 Y1 Y2 Y3, each a quarter of the size of its predecessor, plus a tiny
lowpass image X4, which is a quarter of the size of Y3. These images may be displayed
side-by-side using a function we have written, beside.m:

draw(beside(Y0,beside(Y1,beside(Y2,beside(Y3,X4)))))

Get a demonstrator to check that your images look correct, and then write another M-file
py4dec.m to decode X4 and Y3 Y2 Y1 Y0 into a set of lowpass images Z3 Z2 Z1 Z0.
(Z3 is obtained by interpolating X4 and adding Y3, and then Z2 is obtained from Z3
and Y2, and so on.) If all is correct, Z0 should be identical to X. You can check that this
is the case by using max(abs(X(:) - Z0(:))). Display your pyramid of decoded images,
Z3 to Z0.

For further information on the Laplacian Pyramid see Burt and Adelson [IEEE Trans. on
Communications, 1983, vol 31, no 4, pp 532-540, ”The Laplacian Pyramid as a compact
image code”].



10

6.2 Quantisation and Coding Efficiency

To see whether data compression is possible using the above pyramid decomposition, we
must calculate the approximate number of bits required to code the image pyramid. This
may be done using the entropy of the quantised image data.

The entropy of a single data sample, which may randomly take one of Q possible quantised
values such that each value q(i) has a probability p(i) of being in state i for i = 1 to Q, is
given by:

Entropy (bits/sample) =
Q∑
i=1

p(i) log2(1/p(i)) = −
Q∑
i=1

p(i) log2(p(i))

The entropy represents the minimum average number of bits per sample needed to code
samples with the given probability distribution p(i), assuming that an ideal variable-length
entropy code is used, and that the samples are uncorrelated with each other. Arithmetic
codes can get arbitrarily close to this bit rate, and simpler Huffman codes can also get very
close with many typical signals (you will be using Huffman codes later on). It is possible
to code signals at bit rates less than the entropy, if the samples are correlated, but for
simplicity we shall ignore this here.

To demonstrate the validity of the above formula, first consider a signal with 8 quantised
values of equal probability p(i) = 1

8
for all i. The entropy is then 8× 1

8
× log2(8) = 3 bits

per sample, as expected.

Now consider a signal with only 3 values, with probabilities p(1) = 1
2
and p(2) = p(3) = 1

4
.

The entropy is then 1
2
log2(2)+2× 1

4
log2(4) = 1.5 bits per sample. This is consistent with

using a single bit ’0’ to represent state 1, and two bits, ’10’ and ’11’, to represent states 2
and 3.

The M-function bpp(X) has been written to calculate the entropy in bits per pixel of an
image matrix X. First the function computes a histogram of X to determine the proba-
bilities p(i) and then it calculates the entropy, using the above formula.

In the Laplacian Pyramid, the total number of bits is obtained by multiplying each of the
sub-image entropies by the number of pixels in each corresponding sub-image. However,
in order to compress the data, we also need to quantise the images. We have also provided
a function quantise(X,step) which will quantise X in steps centred on integer multiples
of step. Hence bpp(quantise(X,step)) will return the entropy of image X quantised in
steps of step.

Calculate the entropies of images X X1 Y0 and hence the total numbers of bits to
encode X, or X1 and Y0, when quantised to a step size of 17 (which gives 15 distinct
grey levels if applied to a lowpass image with intensities from−127 to 127). Find the data
compression for this simple one-stage pyramid, and then investigate the improvements
from using more layers.

Since compressing an image will generally result in a reduction in quality, we also need a
way to measure this quality reduction. It is actually quite hard to find a quality measure
which matches individual perceptions of how an image has been changed due to com-
pression, and for that reason it is important to always judge and comment on an image
visually. However we also need a quantitative measure, and the most obvious is the rms



11

error (standard deviation) between the input and compressed image (i.e. using std(X(:)
- Z(:))), where Z is the compressed image.

Quantise the Laplacian Pyramid with a step size of 17, and reconstruct the output
image from the decoding pyramid. Look at the visual features, and calculate the rms
error (standard deviation) between the input image and the decoding pyramid output
image. Repeat this for schemes with more layers in the pyramid.

Note that we call this error the rms error, but in fact we calculate the standard deviation,
which only equals the true rms error if the mean error is zero. However the eye is very
insensitive to small errors in the mean level of images, so the standard deviation (which
ignores the mean) is a better measure of image quality.

Quantise the original image with the same step size (17) and note the visual features
and rms error. Compare these to the results from the pyramid scheme above. Why are
the rms errors larger in the pyramid scheme?

Comparisons of the number of bits with different coding strategies are only valid if they
result in approximately the same image quantisation error. Write a function which will
optimise the step size (resulting in a non-integer value) in the Laplacian scheme until the
rms error is the same as for direct quantisation; you will find this optimisation useful for
later investigations too.

Investigate what step size of the quantisers for the pyramid scheme you need, in order
to get approximately the same error as for direct quantisation at a step size of 17.

In many of your results from now on you will need to express the performance of your
algorithms in terms of compression ratio, which is normally defined as:

Compression Ratio =
Total bits for reference scheme

Total bits for compressed scheme

Usually the reference scheme is the direct pixel quantisation method with its quantiser
adjusted to give the same rms error as the scheme being evaluated (the compressed scheme).
For good schemes we try to make the compression ratio as large as possible.

We now investigate the effect of using different step sizes for the different levels of the
pyramid. There are many schemes for varying the step sizes between different levels: in
this project we shall look at the equal MSE criterion. In the equal MSE scheme, step sizes
are chosen such that quantisers in each layer contribute equally to the Mean Squared Error
of the reconstructed image. In general the step sizes will depend on the image signal being
coded. However this can be achieved approximately by choosing a separate step size for
each layer such that:

• A single impulse of that step size will give a filtered pulse in the reconstructed image
which has the same energy, whichever layer of the decoder the impulse excites.

Impulse Response Measurement: Investigate the effect of a single impulse in a par-
ticular layer (eg. Y0,Y1 etc.) as it appears in the reconstructed image Z0. This can be
done by first generating a test pyramid image, which is zero everywhere. Then place an
impulse (e.g. of amplitude 100) in the centre of one layer, reconstruct the entire pyramid
to give Z0, then measure the total energy of Z0. If this is repeated for each layer, you



12

will have measured how much energy a fixed size impulse at each layer contributes to the
decoded image.

We actually want to arrange for the impulse sizes to vary and the energy to stay the same.
Therefore the impulse sizes (and hence chosen quantisation steps) we require in each level
will be inversely proportional to the square root of the energies measured above. The
important result is the ratio of the step sizes between layers. If this ratio is maintained
for any overall quantiser scaling, we will get an (approximately) equal MSE scheme.

Find new values for the data compression achievable when all schemes (i.e. constant step
size or equal MSE, both with varying layer depth) produce the same rms error between
the decoded image and the original image. Comment on the differences in compression,
visual quality and rms error, and the optimum choice of layer depth in each case.

6.3 Changing the decimation / interpolation filter

It is also worth investigating whether a more complicated decimation / interpolation filter
h can improve the compression. The z-transfer function of the filter used so far is:

h(z) =

(
1 + z−1

2

)m

where m = 2. If m is increased to 4 (so the number of taps remains odd), the vector
representation of h is 1

16
[1 4 6 4 1]. This filter has a lower cut-off frequency than when

m = 2, so you should find that each interpolated lowpass image in the pyramid is a little
more blurred, and there is a little more energy left in each highpass image.

Optimise the step sizes for the pyramid with this new filter and determine the new
compression performance and visual features.

6.4 First Interim Report

Discuss and explain your results, gathered so far, in your first interim report. Try to answer
the questions posed in the above text. Be brief where things are straightforward, but pay
more attention to detail in areas where you think something interesting is happening.



13

C

C

0,n

1,n

N
X

N

C
N-1,n

N

Y0

Y1

Y N-1

Figure 3: A DCT can be treated as an N channel filter bank where the coefficients of the
filters are the basis functions.

7 The Discrete Cosine Transform (DCT)

The DCT is a method of performing energy compaction that is rather different from the
pyramid method. It operates on non-overlapping blocks of pixels (typically 8× 8 pixels in
size) by a reversable linear transform process, such that each block of pixels is replaced by
a block of the same number of transform coefficients. If all the transform coefficients for a
given block are transmitted unaltered to the decoder, then the original block of pixels can
be exactly recovered by the inverse transform process.

In practise the transform coefficients are quantised before transmission, and if energy
compaction has occurred, then fewer bits will be needed to send the coefficients than the
original pixels. A key advantage of transform-based methods is that there is no expansion
of the number of samples (the transformed block is the same size as the original block of
pixels), whereas the previous pyramid method expands the data by 1+ 1

4
+ 1

16
+ . . . ≈ 1.33

times, which is not very desirable for data compression.

7.1 Definition of the DCT

The one-dimensional form of the DCT is closely related to the Discrete Fourier Transform
(DFT). The 1-D N -point DCT2 is defined as follows:

y(k) =
N−1∑
n=0

Ckn x(n) for 0 ≤ k ≤ N − 1

where C0n =
√

1
N

and Ckn =
√

2
N

cos
k(n+ 1

2
)π

N
for 1 ≤ k ≤ N − 1

The equivalent inverse DCT is:

x(n) =
N−1∑
k=0

Ckn y(k) for 0 ≤ n ≤ N − 1

where Ckn is defined as above.

2This is actually the Type-II DCT, and the inverse is the Type-III DCT - other types have slightly
different relative phases



14

We see that the forward transform is equivalent to multiplication of the N -point column
vector [x(0) . . . x(N − 1)]′ by an N ×N matrix, containing Ckn at each location (k, n), to
produce the N -point column vector [y(0) . . . y(N − 1)]′. Similarly the inverse transform is
equivalent to multiplication of the y vector by the transpose of the C matrix to give the
x vector. In Matlab notation these become:

y = C ∗ x and x = C′ ∗ y

Note that C is an orthonormal matrix since its inverse is just its transpose (its rows are
othogonal to each other and have unit energy).

The two-dimensional version of the DCT (as used for image compression) is a simple
extension of the above 1-D DCT. For an N ×N block of pixels, the N -point 1-D DCT is
first applied to each column of the block to give N columns of coefficients. Then the same
1-D DCT is applied to the rows of these coefficients to give the 2-D transform coefficients.

In Matlab notation, if the input block of pixels is matrix X, the output block of 2-D
transformed coefficients Y is given by:

Y = (C ∗ (C ∗X)′)′ or more simply Y = C ∗X ∗C′

where C is the 1-D transform matrix as above. Note that in the 2-D transform, it does
not matter whether the rows or the columns are transformed first (because the transform
is linear and separable).

7.2 Applying the DCT to images

Conceptually the 2-D DCT is applied to all non-overlapping N × N blocks of pixels in
an image (we assume that the image dimensions are exact multiples of N). However in
Matlab, it is simplest and most efficient to perform 1-D N -point DCTs on all the columns
of the image first, and then repeat the operation on the transpose of the result to transform
the rows.

First generate an 8-point 1-D Type-II DCT matrix C8 using: C8 = dct ii(8);

Take a look at the function dct ii and list C8 to check that it agrees with the definitions
for Ckn given above. Plot the rows of C8 using plot(C8’). When we calculate the 1-D
transform of an 8-point block of data, each transform coefficient represents the component
of the data that is correlated with the corresponding row of C8. Hence the first coefficient
represents the dc component, the second one represents the approximate average slope,
and so on. The later coefficients represent progressively higher frequency components in
the data.

The function colxfm(X,C8) will perform a 1-D transform on the columns of image X
using C8. (Remember to subtract 128 from X, so it has approximately zero mean, before
continuing with this section of the project.) We can therefore perform a 2-D transform on
X by using colxfm twice, once with transpose operators, as follows:

Y = colxfm(colxfm(X,C8)’,C8)’;

In Y, each 8 × 8 block of pixels has been replaced by an equivalent block of transform
coefficients. The coefficient in the top left corner of each block represents the dc value of



15

the block of pixels; coefficients along the top row represent increasing horizontal frequency
components, and along the left column represent increasing vertical frequency components.
Other coefficients represent various combinations of horizontal and vertical frequencies, in
proportion to their horizontal and vertical distances from the top left corner.

If we try to display Y directly as an image, it is rather confusing because the different
frequency components of each block are all present adjacent to each other. A much more
meaningful image is created if we group all the coefficients of a given type together into
a small sub-image, and display the result as an 8 × 8 block of sub-images, one for each
coefficient type. The function regroup(Y,N) achieves this regrouping, where N is the
size of the original transform blocks. You need to ensure that you have subtracted 128
from X initially, otherwise the dc coefficient will be purely positive, whereas the others are
symmetrically distributed about zero. Also, an N ×N 2-D DCT introduces a gain factor
of N in order to preserve constant total energy between the pixel and transform domains:
we need to divide by N when displaying to get back to the expected range.

Hence we can display Y meaningfully using:

N = 8; draw(regroup(Y,N)/N)

In this image, you should see a small replica of the original in the top left corner (the dc
coefficients), and other sub-images showing various edges from the original, representing
progressively higher frequencies as you move towards the lower right corner.

What do you observe about the energies of the sub-images as frequencies increase?

Now check that you can recover the original image from Y by carrying out the inverse
transform using:

Z = colxfm(colxfm(Y’,C8’)’,C8’);

Measure the maximum absolute error between X and Z to confirm this.

The DCT analyses each 8 × 8 block of image pixels into a linear combination of sixty-
four 8 × 8 basis functions. The following will generate an image comprising these basis
functions (the zeros separate the sub-images, and the (:) operator converts from a matrix
to a vector):

bases = [zeros(1,8); C8’; zeros(1,8)];
draw(255*bases(:)*bases(:)’);

Display this image and explain what it signifies.

7.3 Quantisation and Coding Efficiency

We are now going to look at the effects of quantising the DCT coefficients fairly coarsely
and determine the entropies of the coefficient sub-images. At this stage we shall quantise
all sub-images with the same step-size, since they all are the same size and have unit
energy gain from the quantiser to the output image (due to the orthonormal transform
matrices).

First quantise the transformed image Y using a step size of 17 to give Yq. Then regroup
Yq to form sub-images of each coefficient type as before, to give Yr. These sub-images
have different probability distributions and we can take advantage of this later in coding



16

them efficiently. Hence we get a better estimate of the number of bits required to code
Yq by looking at the entropies of each of the re-grouped sub-images separately.

Write a function dctbpp(Yr, N) to calculate the total number of bits from a re-grouped
image Yr, by using bpp(Ys) on each sub-image Ys of Yr, then multiplying each result
by the number of pixels in the sub-image, and summing to give the total number of bits.

Visualise Yr and comment on the distributions in each of the sub-images. Use the
function dctbpp(Yr, N) that you have written to calculate the total number of bits,
and compare it with just using bpp(Yr), explaining your results.

Now reconstruct the output image Z from Yq and measure the rms error (standard
deviation) between X and Z. Compare this with the error produced by quantising X
with a step-size of 17 to give Xq.

As with the Laplacian Pyramid, we really need to contrast compression ratios and visual
results on compressed images with the same rms error. Re-use your step optimisation
code to calculate the (non-integer) step size required in this case for the same rms error
as quantising X with a step-size of 17.

Calculate the compression ratio for this scheme compared to direct quantisation. Use
dctbpp to calculate the number of bits needed. Contrast the visual appearance of the
DCT-compressed image, the directly quantised image, and the original image.

7.4 Alternative transform sizes

So far, we have concentrated on 8× 8 DCTs using C8 as the 1-D transform matrix. Now
generate 4-point and 16-point transform matrices, C4 and C16 using dct ii.

Repeat the main measurements from the previous section, so as to obtain estimates of
the number of bits and compression ratios for 4 × 4 and 16 × 16 DCTs when the rms
errors are equivalent to those in your previous tests. Also assess the relative subjective
quality of the reconstructed images.

This analysis is in fact slightly biased because with larger transform sizes the function
dctbpp(Yr, N) will use a greater number of smaller sub-images on which to calculate
probability distributions. It may be better to use the same N in this function even when
the actual transform changes; however whether this is more predictive of actual coding
performance depends on what scanning method is used in the coding scheme.

What happens in the limit if you use dctbpp(Yr, 256) (i.e. the entropy is calculated
independently for each pixel)? Why is this the case, and why isn’t this a realistic result?

Can you draw any conclusions about the best choice of transform size for the Lighthouse
image? Try to postulate what features in other images might make your conclusions
different, and suggest why.



17

(a) Lapped Bi-orthogonal Transform (b) Photo Overlap Transform and a DCT

Figure 4: (a) An LBT transforms overlapping sections of X to create Y. (b) In some cases
this can be interpreted as pre-filtering with a POT, followed by a DCT.

8 The Lapped Bi-orthogonal Transform (LBT)

One of the difficulties with the DCT is that it processes each block separately and hence
does not take advantage of any correlation between blocks. A possible solution to this is
to use a Lapped Bi-orthogonal Transform (LBT). These transform overlapping blocks in X
to generate smaller non-overlapping blocks in Y. In the left-hand figure above, 16 values
in X are used to generate each set of 8 values in Y.

LBTs are quite complicated to derive and analyse: however one of the most popular forms3

can also be represented as a pre-filtering operation before performing the DCT described
in the previous section. In this case the pre-filtering (or post-filtering for the reverse
operation) is sometimes known as a Photo Overlap Transform or POT. A POT followed
by a DCT is then equivalent to a particular type of LBT.

The right-hand figure above demonstrates this. The POT is first performed on a section
of data X, shifted by N/2, so that it runs across the block boundaries of the subsequent
DCT. Ignoring this block shift for a moment, the forward operation for a 2D image X is:

Y = C ∗Pf ∗X ∗Pf ′ ∗C′ or in reverse X = Pr′ ∗C′ ∗Y ∗C ∗Pr

8.1 Applying the LBT to images

The pre-filtering Pf ∗X ∗Pf ′ (with the correct block shift) is straightforward in Matlab:

t = [(1+N/2):(I-N/2)]; % N is the DCT size, I is the image size
Xp = X; % copy the non-transformed edges directly from X

3The type-II fast lapped (bi-)orthogonal transform, or LOT-II



18

Xp(t,:) = colxfm(Xp(t,:), Pf);
Xp(:,t) = colxfm(Xp(:,t)’, Pf)’;

This is followed by the DCT C as before. In the reverse operation, the inverse DCT C’ is
performed first, followed by Pr’:

Zp = Z; % copy the non-transformed edges directly from Z
Zp(:,t) = colxfm(Zp(:,t)’, Pr’)’;
Zp(t,:) = colxfm(Zp(t,:), Pr’);

We have provided a function pot ii(N, s) which will generate a forward (pre-filtering,
Pf) and reverse (post-filtering, Pr) matrix of size N with scaling factor s. Edit your code
for performing DCT analysis so that it can pre-filter X with Pf before the forward DCT,
then post-filter Z with Pr after the inverse DCT. Confirm that, without quantisation, this
correctly recreates the original image, i.e. Zp = X. Use [Pf Pr] = pot ii(N) with the
default scaling value s.

8.2 Quantisation and coding efficiency

The scaling factor s determines the degree of bi-orthogonality. If s = 1 then Pf is the same
as Pr, otherwise 1 < s < 2 weights the relative contributions of Pf and Pr un-equally.

For an 8 × 8 DCT, try implementing an LBT with POT scaling factors varying from 1
to 2 (

√
2 is often a good choice). In each case find the quantisation step which makes

the rms error match the directly quantised image. Note the compression ratios and find
the scaling factor which maximises these. Also note the visual features in these images.

The POT can often improve both compression and block smoothing, since the pre-filter
acts to reduce correlations between each DCT sub-block, whilst the inverse post-filter
acts to remove the discontinuities between sub-blocks. This is rather different from the
operation of the DCT. Investigate this by looking at the basis functions, as you did with
the DCT:

bases = [zeros(1,8); Pf’; zeros(1,8)];
draw(255*bases(:)*bases(:)’);

Look at both these bases and the pre-filtered image Xp, using different scaling factors
s, and comment on the visual effect of varying these scaling factors. You may need to
multiply Xp by up to 0.5 to display it better.

With this type of POT / DCT combination it is common to use smaller DCT block sizes
but to code several blocks together. Hence a more accurate estimate of the number of bits
is found by always using 16 × 16 blocks, i.e. regroup Yq with the correct size N to give
Yr, but then always use dctbpp(Yr, 16).

Investigate the relative visual and compression performance of LBTs with 4 × 4, 8 × 8
and 16× 16 blocks, using the scaling factor you have previously selected. As before, be
careful to match the rms error with a directly quantised image.



19

H

H

0

1

X

H

H

0

1

H

H

0

1

1st stage
2nd stage

Lth stage

2

2

2

2

2

2

Figure 5: An L level binary discrete wavelet transform.

9 The Discrete Wavelet Transform (DWT)

The final method of energy compaction that we shall investigate, is the discrete wavelet
transform. In some ways this attempts to combine the best features of the Laplacian
pyramid and the DCT:

• Like the pyramid, the DWT analyses the image at a range of different scales (levels)
and employs symmetrical filters;

• Like the DCT, the DWT avoids any expansion in the number of coefficients.

Wavelet theory was evolved by mathematicians during the 1980’s. As with the LBT, we
shall not attempt to teach this theory here, just illustrate a relatively simple form of it.

Wavelets are short waveforms which are usually the impulse responses of filters. Wavelet
transforms employ banks of bandpass filters, whose impulse responses are scaled versions
of each other, in order to get pass-bands in different parts of the frequency spectrum. If
the impulse response of a filter is scaled in time by a factor a, then the filter frequency
response is scaled by the factor 1/a. Typically a = 2 from one filter to the next, and each
bandpass filter is designed to pass a 2:1 range of frequencies (one octave). We can split an
image up using wavelets by a process known as a binary wavelet tree.

9.1 The binary wavelet tree

We start in 1-D with the simplest possible pair of filters, operating on just two input
samples, xn and xn−1. The two filter outputs, un and vn at time n are given by:

un = 1
2
(xn + xn−1) and vn = 1

2
(xn − xn−1)

The first filter averages adjacent samples, and so rejects the higher frequency components
of x, while the second filter differences these samples, and so rejects the lower frequency
components. These filters are known as the analysis filter pair, H1(z) =

1
2
(1 + z−1) and

H2(z) =
1
2
(1 − z−1). It is clear that we can recover the two input samples from the filter

outputs using:
xn = un + vn and xn−1 = un − vn



20

Next it is important to note that we need only retain the samples of un and vn at even
values of n in order to be able to recover all the original samples of x. Hence u and v may
be decimated 2:1 and still allow perfect reconstruction of x. If x is a finite length vector
(e.g. a row of image pixels), then u and v are each half as long as x, so the total number
of samples is preserved by the transformation.

A wavelet binary tree may be constructed using these filters, by using an identical pair,
H1 and H2, to filter the decimated lowpass signal u2n, to give a pair of outputs, uu2n and
uv2n, representing the lower and upper halves of the first low band. These may again be
decimated 2:1 and still permit perfect reconstruction of u. This process may be continued
as often as desired: each time splitting the lowest band in two, and decimating the sample
rate of the filter outputs by 2:1. At each stage the bandwidth of the two lowest filters is
halved, and their impulse responses are doubled in length. The total number of output
samples remains constant, however many stages are used.

For example, if fs is the input sample rate, a 3-stage binary tree will split the input signal
bandwidth of 0 to fs/2 into the following four bands:

0 → fs/16; fs/16 → fs/8; fs/8 → fs/4; fs/4 → fs/2.

The very simple filters, given above, do not generate a filter tree with good characteristics,
since the wavelets turn out to be just a pair of square pulses. These generate blocking
artefacts when used for image compression (in fact they are equivalent to the 2 point
(N = 2) DCT). A better set of filters are the LeGall 5 and 3 tap pair, given by:

un = 1
8
(−xn+2 + 2xn+1 + 6xn + 2xn−1 − xn−2) and vn+1 =

1
4
(−xn+2 + 2xn+1 − xn)

If u and v are decimated by 2 by choosing even n only, the lowband outputs un are centred
on the even samples, and the highband outputs vn+1 are centred on the odd samples. This
is very important to allow perfect reconstruction of x from u and v.

The equations for reconstruction may be obtained by solving the above to get:

xn = 1
2
(−vn+1 + 2un − vn−1) and

xn+1 = 1
2
(xn+2 + 4vn+1 + xn) =

1
4
(−vn+3 + 2un+2 + 6vn+1 + 2un − vn−1)

In general, most analysis filters will not yield such simple reconstruction solutions, and
the design of suitable filters is a non-trivial topic that we shall not cover here.

9.2 Applying the DWT to images

As with the DCT, the 2-D DWT may be obtained by applying a 1-D transform to first
the rows and then the columns of an image.

Start by loading the Lighthouse image and defining the two LeGall filters given above:

h1 = [-1 2 6 2 -1]/8;
h2 = [-1 2 -1]/4;

We can use the function rowdec from the pyramid work, to produce a decimated and
lowpass filtered version of the rows of X (remembering to subtract 128 as before) using:



21

U = rowdec(X,h1);

To get the high-pass image V, it is important to align the decimated samples with the
odd columns of X (assuming the first column is n = 0) whereas U is aligned with the even
columns. To do this we use a slightly modified version of rowdec.m, called rowdec2.m.

V = rowdec2(X,h2);

Display [U V] to see the outputs of the first filter pair and comment on their relative
energies (or standard deviations). Note that U and V are half the width of X, but that
U is otherwise similar to X.

Now filter the columns of U and V using rowdec / rowdec2 with the transpose operator:

UU = rowdec(U’,h1)’;
UV = rowdec2(U’,h2)’;
VU = rowdec(V’,h1)’;
VV = rowdec2(V’,h2)’;

Display [UU VU; UV VV], and comment on what sort of edges or features are selected
by each filter. You may need to multiply the high-pass images by a factor k > 1 to display
them clearly. Why is this?

We must now check that it is possible to recover the image from these sub-images, using
reconstruction filters, g1 and g2, and the functions, rowint.m and rowint2.m (which is
modified in a similar way to rowdec2 to allow correct alignment of the high-pass samples).
To reconstruct Ur and Vr from UU, UV, VU and VV use:

g1=[1 2 1]/2;
g2=[-1 -2 6 -2 -1]/4;
Ur = rowint(UU’,g1)’ + rowint2(UV’,g2)’;
Vr = rowint(VU’,g1)’ + rowint2(VV’,g2)’;

Note the gain of 2 in the reconstruction filters, g1 and g2 (to compensate for losing half the
samples in the decimation / interpolation processes). These filters are also not quite the
same as those that might be inferred from the equations for xn and xn+1 on the previous
page. This is because g1 defines how only the u samples contribute both to the even and
odd samples of x, while g2 defines how the v samples contribute.

Check that Ur and Vr are the same as U and V, and then reconstruct Xr from these:

Xr = rowint(Ur,g1) + rowint2(Vr,g2);

Check that Xr is the same as X.

The above operations are a bit tedious to repeat if we want to apply the DWT recursively
to obtain several levels of filtering, so we have written a pair of functions, dwt.m and
idwt.m, to perform the 2-D analysis and reconstruction operations. Examine these to see
that they perform the same operations as above, except that the transformed sub-images
are stored as parts of a single matrix, the same size as X, rather than as separate matrices.
You can check their operation using:

Y = dwt(X); figure(1); draw(Y)
Xr = idwt(Y); figure(2); draw(Xr)

Y should be the same as the composite [UU VU; UV VV] image that you displayed



22

earlier, and Xr should be the same as X.

Now implement a multilevel DWT by first applying dwt to X using:

m=256; Y=dwt(X); draw(Y)

and then iteratively apply dwt to the top left sub-image of Y by repeating:

m=m/2; t=1:m; Y(t,t)=dwt(Y(t,t)); draw(Y)

We now have the image split using a binary wavelet tree (stricly a quaternary tree in 2-D).
Write similar iterative code to that given above, which can reconstruct the image from the
final set of Y sub-images after a 4-level wavelet transform. Check that your reconstructed
image is the same as X.

9.3 Quantisation and coding efficiency

First rewrite the sequences of operations required to perform n levels of DWT and inverse
DWT as two separate M-files, nlevdwt.m and nlevidwt.m. nlevdwt.m should trans-
form X into Y, and nlevidwt.m should inverse transform a quantised set of sub-images
Yq into the reconstructed image Z. Check your functions by ensuring that Z is the same
as X if Yq = Y.

Now design an M-file, quantdwt.m, which will quantise the sub-images of Y to give
Yq and calculate their entropy. The sub-images at each level i of the DWT should be
quantised according to a 3 × (n + 1) matrix step(k,i) of step-sizes, where k = {1, 2, 3}
corresponds to each of the three high-pass images at level i, and the final low-pass image
is quantised with step(1,n+1). The entropies for each sub-image should be stored in a
similar 3× (n+ 1) matrix ent(k,i).

Using these M-files, for a given number of levels n (typically between 3 and 5), you should
generate Y, quantise it to give Yq and reconstruct Z from Yq.

Investigate the performance of both an equal-step-size and an equal-MSE scheme (follow
a similar procedure as you used for the Laplacian Pyramid to find the appropriate step-
size ratios). Once again, choose quantisation steps such that you match the rms error to
that for direct quantisation with a step-size of 17.

All of our experiments thus far have been performed on only one image. At this stage it
is worth starting to experiment with the additional Bridge image, as well as Lighthouse.
Bridge contains a lot more fine detail and may not lead to the same conclusions regarding
performance.

We need to estimate how many levels of DWT are needed to obtain good compression
performance. Investigate how the number of bits vs. error performance is changed as
each new level is added and hence determine how many levels of DWT are reasonably
optimal for the Lighthouse and Bridge images. Also evaluate the subjective quality of
your reconstructed images, and comment on how this depends on n and on the way that
step-sizes are assigned to the different levels.



23

9.4 Second Interim Report

This report should include the new results from the DCT, LBT and DWT energy com-
paction methods in a format that will allow them to be compared with each other and con-
trasted to the Laplacian pyramid work in your first report. Again try to answer questions
raised in the text, and also include discussion of any topics that have led to unexpected
results or have proved particularly interesting.

10 Selection of preferred energy compaction options

The remainder of this project will concentrate on developing the rest of an image com-
pression system, based on a few of the filtering / transformation schemes studied so far.

Since the subsequent processes are non-linear, we cannot expect to be able to choose
precisely the right front-end at this stage, so we adopt the pragmatic approach of picking
about three good candidates and trust that one of these will lead to a near-optimum
solution in the end. Remember that up to this point we have only been using entropy to
give us an estimate of the number of bits required, the accuracy of which is affected by
subsequent stages.

Choose between 2 and 4 of your best schemes so far. At least one of these should be
significantly different from the others, to minimise the chance of missing a potential winner!
At this stage it is worth trying your schemes with all three test images, which will be used
in the final design competition (Lighthouse, Bridge, and Flamingo). You will find
Bridge more difficult to compress than the other two.

Write M-files to implement each of your chosen schemes, so that you do not have to
remember long sequences of commands each time you run them. You can easily edit the
M-files to introduce different options later. Using plenty of comments in these files will
help when you want to change them.



24

11 Centre-clipped linear quantisers

The quantisers that you have used so far have all been uniform quantisers (i.e. all steps
have been the same size). However the probability distributions of the intensities of the
bandpass sub-images from the energy compaction front-ends are usually highly peaked at
zero. The amount of data compression depends heavily on the proportion of data samples
which are quantised to zero; if this approaches unity then high compression is achieved.

Hence it is often found desirable to make the quantiser non-linear so that more samples
tend to be quantised to zero. A simple way to achieve this is to widen the step-size of the
‘zero’ step. In a uniform quantiser, the ‘zero’ step is normally centred on zero, with rises
to the next level at ± half of the step-size on each side of zero. quantise allows a third
argument rise1 to be specified, which is the point at which the first rise occurs on each side
of the zero step. A value of rise1 = step/2 is the default, but rise1 = {0.5, 1, 1.5}×step
are worth investigating. To show what effect these have, try:

x=[-100:100];
y=quantise(x,20,rise1); plot(x,y), grid

A wider zero step means that more samples will be coded as zero and so the entropy of
the data will be reduced. The use of a wide zero step is beneficial if it results in a better
entropy vs. error tradeoff than a uniform quantiser.

For each of your preferred front-end schemes, investigate the effects of varying the first
rise of the quantiser. To do this, you could plot how the quantising error varies as a
function of the number of bits for a few different ratios of rise1 to step-size, and hence
find the ratio which gives the best compression for a given rms error.

Most current image compression standards use quantisers with a double-width centre step
(rise1 = step). Do not spend too much time on this as the compression gains are likely
to be quite small.

Discuss whether your results indicate that rise1 = step is a reasonable compromise if
all quantisers are to be similar.

A final strategy which you can consider is to completely suppress some sub-images or
DCT coefficients. This is equivalent to increasing rise1 to a very large value for these
components. In the sub-images / coefficients which represent only the highest horizontal
and vertical frequency components combined, the effects of suppression can be almost
unnoticable and yet a useful saving in number of bits can be achieved.

Investigate any additional gains which can be achieved with suppression of some sub-
images / coefficients.



25

12 Combined run-length / Huffman coding methods

Up to this point, we have been using entropy as a measure of the number of bits for the
compressed image. Now we attempt to produce a vector of compressed image data which
accurately represents the compression that can be achieved in practise.

Huffman codes are relatively efficient at coding data with non-uniform probability distri-
butions, provided that the probability of any single event does not exceed 50%. However,
when an image is transformed by any of the energy compaction methods considered so far,
a high proportion of the quantised coefficients are zero, so this event usually does have a
probability much greater than 50%. In fact it is only when this is a high probability event
that high compression can be achieved! Therefore new ways of using Huffman codes have
been developed to deal with this situation as efficiently as possible.

12.1 Baseline JPEG coding techniques

The standard Huffman coding solution, used by the baseline JPEG specification and most
other image compression standards, is to code each non-zero coefficient combined with the
number of zero coefficients which preceed it as a single event.

For example the sequence of coefficients:

3, 0, 0,−2, 0, 0, 0, 1, 0,−3,−1, 0, 0, 0, 0, 1, . . .

would be coded as the following 6 events:

0 zeros, 3
2 zeros, -2
3 zeros, 1
1 zero, -3
0 zeros, -1
4 zeros, 1

Each event has a certain probability (usually well below 50%) and can be coded efficiently
with a standard Huffman code. As formulated above, the number of combinations of
amplitude and run-length can be very large, leading to a highly complex code. JPEG
limits this complexity to only 162 combinations by restricting the maximum run-length to
15 zeros and by coding only the base-2 logarithm of the amplitude in the Huffman code,
rounded up to integers from 1 to 10. The sign bit and the remaining amplitude bits are
then appended to the Huffman code word. 16 run lengths (0 to 15) and 10 log amplitudes
(1 to 10) give 160 of the code words. The other two codewords are the end-of-block word
(EOB), signifying no more non-zero coefficients in the current block, and the run-of-16
word (ZRL), which may be used repetitively ahead of another codeword for runs of 16 or
more zeros.

JPEG is based on 8 × 8 DCT transformations of the image, and the data from each
8 × 8 block of DCT coefficients is coded as a block of Huffman codewords. First the dc
coefficient (top left corner) is coded. There is little penalty in using a fixed-length binary
code for this, although JPEG uses differential and Huffman coding for slightly improved
performance. Then the remaining 63 ac coefficients are arranged into a linear vector, by



26

scanning the 8 × 8 block in a zig-zag manner corresponding to progressively increasing
frequencies (see the JPEG standard, section 3, fig 5). This places the larger low-frequency
coefficients close together near the start of the vector (with short run lengths) and the
smaller high-frequency coefficients spread out towards the end of the vector (with long run
lengths). The end-of-block word efficiently terminates the coding of each block after the
last non-zero coefficient.

For further details of the JPEG techniques, referred to above, see the JPEG standard,
sections 3.3 and 3.6 and appendices A.3, C, F.1.1, F.1.2, F.2.1, F.2.2, K.1, K.2, and K.3.
Note that for this project we ignore the higher layers of the JPEG specification, and do not
align code segments with byte boundaries or use two-byte marker codes to identify different
data segments. JPEG also permits arithmetic codes to be used instead of Huffman codes,
but these are more complicated so we recommend that you should use the latter.

12.2 Matlab implementation of Huffman coding

Performing bit manipulations, such as required for Huffman coding, is not very easy with
Matlab. We have provided a number of M-files and M-functions to do this and suggest
you use these where possible to save time. The files are fully commented and you should
feel free to modify them (and if so, rename them) if you wish.

jpegenc.m Function to perform simplified JPEG encoding of an image X into a matrix
of variable length codewords vlc.

jpegdec.m Function to perform simplified JPEG decoding of a codeword matrix vlc into
an image Z.

quant1.m Function to quantise a matrix into integers representing the quantiser step
numbers, which is the form necessary to allow Huffman coding.

quant2.m Function to reconstruct a matrix from integers. Together with quant1.m this
is equivalent to quantise.m.

runampl.m Function to convert a vector of coefficients a into a matrix of run-length,
log-amplitude and signed-remainder values rsa.

huffenc.m Function to convert a run/amplitude matrix rsa into a matrix of variable-
length codewords vlc.

huffdflt.m Function to generate the specification lists, bits and huffval, for the default
JPEG Huffman code tables for AC luminance or AC chrominance coefficients (JPEG
specification, appendix K.3.3.2).

huffdes.m Function to design the specification lists, bits and huffval, for optimised
JPEG Huffman code tables using a histogram of codeword usage huffhist.

huffgen.m Function to generate the Huffman code tables, huffcode and ehuf, from bits
and huffval.



27

In order to allow relatively fast decoding in Matlab, we have cheated a little in the format
of the coded data. Each variable-length codeword is stored as an integer element of the
required word length in the first column of a 2-column matrix vlc and the length of the
codeword in bits is stored next to it in the second column. We do not bother to pack this
data into a serial bit stream since it is awkward and time consuming to unpack in Matlab.
The length of the bit-stream if it were packed can easily be obtained from sum(vlc(:,2)).

To perform the simplified JPEG encoding, based on the 8× 8 DCT, load the image in X
and type: vlc = jpegenc(X-128, qstep)

This produces variable-length coded data in vlc, using quantisation step sizes of qstep.
To decode vlc, type: Z = jpegdec(vlc, qstep)

These M-files are given to you as examples of how to achieve a complete compression
system. They have other options and outputs, and in general you will need to modify
them and rename them to perform your own algorithms.

In jpegenc, there are two ways to specify the Huffman tables: either the default JPEG AC
luminance or chrominance tables may be used; or custom tables may be designed, based
on statistics in the histogram vector huffhist. To generate a valid histogram for huffdes,
coding must be performed at least once using huffdflt instead, so jpegenc is written such
that the default tables are used first and then, if required, the code is redesigned using
custom tables. Note that if it is planned to use huffdes to generate an optimised Huffman
code for each new image to be coded, then the specification tables bits and huffval must
be sent with the compressed image, which costs (16 + 162) bytes = 1424 bits. You should
consider whether or not this is a sensible strategy.

12.3 Going beyond JPEG and the DCT

If you have chosen the DCT as one of your energy compaction methods then it is fairly
straightforward to follow the JPEG guidelines for coding the coefficients. However if you
have chosen one of the other methods then a modified scanning strategy is required.

It has already been mentioned that the LBT (which is at the heart of the JPEG-XR
standard) is often coded several sub-blocks at a time. We can make a smaller LBT (4× 4
is the default) look like a 16 × 16 DCT by using the regroup(Yq, 4) function within
each 16×16 block of Yq. The functions jpegenc and jpegdec have already been written
to do this if the M argument (which specifies the coding block size) is larger than the N
argument (which specifies the DCT block size).

The DWT (which is the basis of the JPEG2000 standard) can also be re-arranged to make
it look similar to a DCT. For instance, a 3-level DWT could be re-arranged into an 8× 8
block B using coefficients from the same square spatial area:

4 values from level 3: B3 = [UU3 V U3; UV3, V V3]
3 surrounding 2× 2 blocks from level 2: B2 = [B3 V U2; UV2 V V2]
3 surrounding 4× 4 blocks from level 1: B = [B2 V U1; UV1 V V1]

It is not possible to achieve this sort of grouping using the simple regroup function, so
we have provided a more complicated function dwtgroup(X,n) which converts an n-level
DWT sub-image set into blocks of size N × N (where N = 2n) with the above type of
grouping. Try this function on some small regular matrices (e.g. cumsum(ones(16,16)))



28

to see how it works. Note that dwtgroup(X,-n) reverses this grouping.

With these modified scanning strategies, the JPEG run-length / log amplitude coding can
then be used for each vector in the same way as for the DCT coefficients. However, these
scanning strategies are not optimal, and do not represent those outlined in the JPEG2000
and JPEG-XR standards.

You should write versions of jpegenc and jpegdec for your chosen compression strategies
and check the following:

1. The rms error (standard deviation) between the decoded and original images should
be the same as for the equivalent quantisation strategies that were tested in the previ-
ous section on centre-clipped linear quantisers. No extra errors should be introduced
by the scanning or Huffman encode / decode operations.

2. The number of bits required to code an image should be comparable with the value
predicted from the entropy of the quantised coefficients (i.e. within about 20%). Note
that it is possible to code with fewer bits than predicted by the entropy because the
run-length coding can take advantage of clustering of non-zero coefficients, which is
not taken account of in the first-order entropy calculations.



29

13 Optimisation and test of the final design solution

At this point you should test your complete candidate coding strategies on the set of three
test images which are provided (Lighthouse, Bridge, and Flamingo) and any other
similar images if you wish. The aim of the tests is to get the best possible decoded image
quality using no more than 40,960 bits (5 kB) per image. A combination of rms error and
subjective quality will be used to assess the decoded image quality. If in doubt, you should
select schemes with the best subjective quality.

Some suggestions for possible improvements to these schemes which may be worth inves-
tigating (other than the coding suggestions already mentioned) follow:

• Improve the scanning strategy, or use different sized blocks, before Huffman coding.

• Use of frequency-dependent quantisation - either the standard JPEG quantisation
tables for the DCT or LBT or use of a quantisation of step×kn where n relates to
the DWT frequency band and k is just less than 1.

• Use of a hierarchical DCT or LBT with 2 or 3 levels (i.e. repeating a DCT or LBT
on all the dc coefficients from the previous level), as in the JPEG-XR standard.
Note that to make use of any additional compression, you will have to code in larger
groups than the DCT size, or code the additional levels separately.

• Finding an error measure which is more directly connected to visual appearance than
the rms error.

• Developing a super-scheme which uses one of a possible set of sub-schemes depending
on some property of each image.

• Improving the coding of dc coefficients.

You are not expected to pursue all of these suggestions, nor limited to only looking at
these ideas. Pick one or two that you think are interesting and may be fruitful. One of
the features of good design is to develop an idea of what is likely to be of benefit before
spending too much time pursuing it.

Once you have a solution you are happy with, you should ensure that you have an M-file to
run it as simply as possible. It should print out the number of bits to code each image and
the rms error between the coded image and the original, and display the original and the
coded image side by side. You will probably need iteratively to adjust a single quantiser
scaling parameter in order to achieve a bit rate less than than 40,960 bits for each image
in turn. When you are satisfied that you have achieved an optimal design (within the
constraints of this project), enter your design in the Design Competition, the rules of
which are given overleaf.

Make sure that you have tested your code on the DPO computers well be-
fore the competition is due to start, especially if you have been using other
computers during its development.



30

14 Final Report

Your final report should be written to be read in conjunction with the two interim reports
produced earlier. It should briefly describe the design processes which took place during
the investigation of centre-clipped quantisers and Huffman coding; and then it should
include a reasonably full description of the tests and reasoning which led to the final
design selection, and of the final assessment tests. As before, you should emphasise any
unexpected or subtle aspects of the project and not dwell on more obvious aspects.

The final report should include a brief discussion of how the development of the final
design was shared within your group, and what aspects of this process each individual
contributed to.

To complete the reports, include an overall summary and a final conclusions section, to
bind the three reports into a coherent piece of work.

Graham Treece
March 2014



31

Image Processing Competition Rules

Aims:

To compress the 2 images in bridge.mat and flamingo.mat, and one new image, to less
than 40,960 bits each (5 kB), including any header information, and to obtain reconstructed
images with the best subjective quality. In the event that a decision between 2 or more
groups cannot be reached based on subjective quality, the images with the minimum mean
squared error (using std(X(:)-Z(:))) will be selected as the winners. The winning and
runner-up groups will be given appropriate credit when the final reports are marked.

Procedure:

The competition will start at 11:00 on Monday 2nd June in the DPO, at which point the
additional image will be provided. Judging will begin at 12:00, by which point all decoded
images should be displayed.

Each group should prepare separate encoder and decoder M-files for their chosen compres-
sion system. The encoder program should take an image that has been loaded into matrix
X and generate a compressed VLC matrix vlc (format as described in section 12.2 of
the project handout) and any other integer parameters which are needed by the decoder.
These parameters and vlc should be stored in a .MAT file called ?????cmp.mat where
????? are the first 5 characters of the image name.

The workspace should then be cleared, before ?????cmp.mat is reloaded and the decoder
program is then run to reconstruct the output image in matrix Z and display it. The image
should be saved as ?????dec.mat.

The decoder program should automatically check the number of bits needed by the vlc
matrix (by summing column 2 — vlctest.m is a routine that can do this) and should add
an estimate of the number of bits needed for any header information and print these two
quantities out for any image it is decoding. It should also calculate the rms error between
the original and reconstructed images and print that.

Finally all three decoded images should be displayed in figure windows using draw.m for
evaluation.

Measures to prevent cheating:

Since it would be quite easy to cheat on this competition, the following measures will be
taken to strongly discourage this:

1. The best two candidate systems will be tested in order to check for cheating after the
main competition has been held. One or more additional images may be used to check
that the systems are not unduly image specific.

2. The vlc matrix and any additional parameters will be examined using vlctest.m before
they are used by the decoder to check that the bit budget has been calculated correctly
(each entry in the first column of vlc will be limited so that it cannot lie outside the range
0 to 2n − 1, where n is the entry in the 2nd column).

3. Any group found deliberately cheating will have 5 marks deducted from their totals
(out of 80) for the project.

Graham Treece, March 2014


