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Abstract

This report presents uncertainty decoding as a method for robust automatic speech

recognition for the Noise Robust Automatic Speech Recognition project funded by

Toshiba Research Europe Limited. The effects of noise on speech recognition are

reviewed and a general framework for noise robust speech recognition introduced.

Common and related noise robustness techniques are described in the context of this

framework. Uncertainty decoding is also presented in this framework with the goal of

providing fast noise compensation through the propagation of uncertainty to the de-

coder. Two forms are discussed, the Joint and SPLICE methods, and evaluated on the

medium vocabulary Resource Management corpus at a range of artificially produced

noise levels. It was found that the uncertainty decoding algorithms did not meet the

performance of a matched system, but were more accurate than the baseline SPLICE

enhancement technique and low numbers of CMLLR transforms.



Glossary

BW Baum-Welch
CDCN Codeword Dependent Cepstral Normalisation
CMLLR Constrained MLLR
CMN Cepstral Mean Normalisation
CVN Cepstral Variance Normalisation
DCT Discrete Cosine Transform
DPMC Data-Driven PMC
EM Expectation Maximisation
GMM Gaussian Mixture Model
HMM Hidden Markov Model
HTK HMM Toolkit
IDCT Inverse DCT
IPMC Iterative PMC
LVCSR Large Vocabulary Continuous Speech Recognion
MAP Maximum A Posteriori
MFCC Mel-Frequency Cepstral Coefficients
MLLR Maximum Likelihood Linear Regression
MMSE Minimum Mean Squared Error
PLP Perceptual Linear Prediction
PMC Parallel Model Combination
POF Probabilistic Optimal Filtering
RASTA Relative Spectra
SDCN SNR Dependent Cepstral Normalisation
SNR Signal-to-Noise Ratio
SPLICE Stereo Piece-wise Linear Compensation for Environments
VAD Voice Activity Detector
VQ Vector Quantisation
VTS Vector Taylor Series
WER Word Error Rate



Notation

A matrix of arbitrary dimensions

AT transpose of matrix A

|A| determinant of matrix A

A-1 inverse of matrix A

I identity matrix
x scalar quantity
x̂ estimate of the true value of x

x vector of arbitrary dimensions
T number of frames in a sequence of observations
M number of GMM components in the acoustic model
N number of GMM components in the front-end model
šn GMM front-end component n

čn mixture weight associated with front-end component šn

x(n) parameter x is associated with front-end component šn

sm GMM acoustic model component m

cm mixture weight associated with acoustic model component sm

x(m) parameter x is associated with acoustic model component sm

x(rm) parameter x is associated with regression class rm

M set of clean speech acoustic model parameters

M̂ set of estimated corrupted speech acoustic model parameters
M̌ set of front-end model parameters

M̃ set of noise model parameters
E{f(x)} the expected value of f(x), where x is a random variable
N (µ,Σ) multivariate Gaussian distribution with mean vector µ and covariance matrix Σ

N (x; µ,Σ) likelihood of vector x given a multivariate Gaussian distribution
X sequence of clean speech observations {x1, . . . , xT }
Y sequence of corrupted speech observations {y1, . . . , yT }
θ sequence of discrete clean speech states {θ1, . . . , θT }
θn sequence of discrete noise speech states {θn

1 , . . . , θn
T }

Rd d-dimensional Euclidean space
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Chapter 1

Introduction

Speech recognition has improved markedly over the years such that it has gained adoption in

consumer goods, call center applications and desktop personal computer software. The bench-

marks for speech recognition continue to become more difficult with origins in yes/no and digit

recognition tasks, to the thousand word Resource Management database, and now towards tele-

phone conversation and broadcast news transcriptions. The standard HTK release [60] without

language modeling yields a word error rate of 5.2% on the 1000 word ARPA Resource Manage-

ment database. This approaches the human 2.0% error rate on nonsense sentences found in [54].

However once a nominal amount of background noise is added, the machine error rate rises to an

unusable 65.5% – an order of magnitude greater. This noise at 20 dB SNR is hardly a distraction

for the human ear1. This susceptibility to environmental noise is primarily due to the mismatch

between the original conditions of the data used to train the recogniser and the actual data used

to test it.

This was recognised early on, thus most noise robustness methods can be classified under several

standard approaches, namely using inherently robust front-ends, front-end compensation and model

compensation. The first seeks parameterisations that are fundamentally immune to noise. While

effective in some circumstances with low-levels of noise, a generic inherently robust front-end has

yet to be developed that can handle higher and varied noise levels. Hence, research has turned

to feature enhancement or cleaning whereby noise is removed from the observed speech, yielding

an estimate of the clean speech for decoding. Alternatively, the models can be compensated by

incorporating the effects of the noise into the acoustic models. This is a far more powerful technique

in that the model variances can be adapted to account for the noise, however the improved results

come with a significant computational cost that is usually impractical for commercial LVCSR

systems.

Recently, research has been directed at incorporating the uncertainty in speech recognition

that noise causes. The uncertain observation method [6] formulates a method of incorporating

1In the author’s opinion.
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1.1 Report Organisation 2

the uncertainty in decoding when the SNR decreases. This is different than the dynamic Bayesian

network inference approaches found in the soft-information paradigm [39] and uncertainty decod-

ing [15]. All these approaches seek to incorporate the frame-level uncertainty caused by noise

into the decoding process to achieve accuracy comparable to model-based techniques at a speed

similar to enhancement style schemes. This amounts to finding tractable forms of representing

the uncertainty such that the model variances updates are fast to compute, yet effective.

1.1 Report Organisation

Following this introduction, a model of the environment is presented along with the effects that

noise has on ASR, and a general statistical framework for reviewing past and current work in this

field. In Chapter 3, classic and current noise robustness approaches are reviewed. Uncertainty

decoding is formally presented in Chapter 4 and Chapter 5 discusses practical, implementation

issues. In Chapter 6, initial experimental results from related robustness techniques and a novel

Joint distribution uncertainty decoding method are presented and discussed. Finally, conclusions

and future work directions are presented in Chapter 7.



Chapter 2

Speech Recognition in Noise

Research in increasing the robustness of automatic speech recognition systems to noise has been

on-going for many decades. It is important to understand the particular difficulties noise presents

to current algorithms in order to begin to address the problem. In this section, a general model

of how environment noise affects the features used in LVCSR systems is described. The empirical

effects are simulated, presented and discussed. Finally, a general framework for noise robust speech

recognition is introduced.

2.1 Model of the Environment

It is impossible to name and describe all the possible noises that a speech recogniser could en-

counter. Fortunately, general sources and types can be categorised and their influence grouped

into a general model of the environment. Acoustic degradation of the speech signal is typically

understood as a complex process that initially suffers from changes to speaker articulation due

to task stress, emotion or the Lombard effect [45]. This signal can then be coloured by addi-

tive background noise, channel distortions either due to the microphone or network with channel

noise added, and finally possible noise at the near end of the speech recognition system. This is

summarised in a model from [29]

y(m) =
[({

[

x(m)
∣

∣

∣

Lombard

stress

]

+ n1(m)
}

∗ hmike(m) + n2(m)
)

∗ hchannel(m)
]

+ n3(m)

The main sources of concern are usually additive environmental noise, n1(m), present when

the user is speaking and spectral tilt due to microphone mismatches. This yields the standard

model of the noisy acoustic environment in the time domain, used by Acero [1], Gales [20] and

later Moreno [48]

y[m] = x[m] ∗ h[m] + n[m] (2.1)

3



2.2 The Effect of Noise on Speech Distributions 4

where y[m] is the corrupted speech, x[m] the “clean” speech, h[m] the linear channel filter, and

n[m] the additive noise.

After applying the DFT the spectrum can be sampled using Mel-spaced filterbanks

Y (fk) = X(fk)H(fk) + N(fk) (2.2)

where k = {1, . . . , K} denoting the filterbank bin. To compress the dynamic range, the natural

logarithm is often applied

log(Y (fk)) = log(X(fk)) + log(H(fk)) + log
(

1 + exp
(

log(N(fk))−log(X(fk))−log(H(fk))
))

(2.3)

yielding a complex non-linear model of the acoustic environment in the log spectral domain.

Cepstral parameters are the most popular features used in speech recognisers, thus it is of interest

to examine the effect of noise in the cepstrum. First, the following cepstral vectors are defined1

y(c) = C
[

log(Y (f0)) log(Y (f1)) . . . log(Y (fM ))
]T

x(c) = C
[

log(X(f0)) log(X(f1)) . . . log(X(fM ))
]T

(2.4)

h(c) = C
[

log(H(f0)) log(H(f1)) . . . log(H(fM ))
]T

n(c) = C
[

log(N(f0)) log(N(f1)) . . . log(N(fM ))
]T

and if we define a function g(a) of the form

g(a) = C log
(

1 + exp
(

C-1a
))

(2.5)

where C and C-1 are the discrete cosine transform matrix and it’s inverse. Liftering equation 2.3

into the cepstral domain yields

y(c) = x(c) + h(c) + g(n(c) − x(c) − h(c)) (2.6)

This is the model of the corrupted speech environment for the commonly used MFCC parame-

terisation [11]. Though this, along with dynamic coefficients, is the most common form of feature

vector, the optimality has been questioned[32]. Equation 2.6 clearly shows that the corrupted

speech is a complex non-linear function of the channel, noise and normally Gaussian distributed

clean speech.

2.2 The Effect of Noise on Speech Distributions

To more clearly understand the effects of noise, a simulation of it’s influence on a Gaussian

distribution can be conducted through the model of the environment. Figure 2.1 shows how a

1The use of the (c) is used for clarity here. In the following chapters, it should be assumed, unless otherwise

noted, that vectors are cepstral.
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single Gaussian representing the clean speech in the log spectrum, is affected by additive noise

at different levels. If noise and clean speech are considered to be Gaussian distributed in the

log-spectral domain, but noise additive in the spectral the following equation can be used to draw

random vectors to plot a histogram of the corrupted speech

yt = f(xt, yt) = log(exp(xt) + exp(nt)) (2.7)

where the noise is a randomly generated Gaussian variable all with mean 1, and the clean speech

is also a randomly generated Gaussian variable with mean 10 and variance 5. At first there is a

distinct bimodal distribution, but as the noise energy increases, the separability is lost and the

distribution is once again unimodal with a strong skew. Also, there is a shift in the mean and a

sharp decrease in variance. The same trend can be seen with actual data as shown in figure 2.2.

This is a plot of the distribution of the 0th cepstral coefficient from a sample from the Resource

Management corpus contaminated with various levels of artificially added noise. Models that are

trained on the clean speech are highly tuned to the broad space across the range of the plot, but

clearly with the addition of noise, the distributions share less and less area. Also, the silence

models would be estimated on the peak on the left in clean models. However, these models would

be ill-adapted for recognition in noise, since with added noise, the entire probability of the 0th

cepstral coefficient falls outside of the clean silence model area. This is one example of mismatch

due to noise.

2.3 A Framework for Noise Robust ASR

With these effects in mind, it is clear a general framework for robust speech recognition that explic-

itly accounts for the presence of noise is needed. To begin, the overall aim is to robustly determine

what a speaker has said from a sequence of corrupted speech observations Y = {y1, . . . , yT }. A

corrupted speech observation can be thought of as the sum of hidden noise and clean speech vari-

ables where it is assumed that observations are conditionally independent given the clean speech

xt and the corrupting noise nt at that time instance. Thus the clean speech X and noise sequence

N can be considered independent, each generated by a hidden first-order Markov processes. The

likelihood of the observation sequence is then expressed as

p(Y |M,M̃) =

∫

2RdT

p(Y |X, N ,M,M̃)p(X|M)p(N |M̃)dXdN (2.8)

≈
∑

θ,θn∈Θ

P (θ|M)P (θn|M̃)
T
∏

t=1

∫

2Rd

p(yt|xt, nt)p(xt|M, θt)p(nt|M̃, θn
t )dxtdnt

(2.9)

where Θ is the set of all possible sequences of length T through the state space, M the speech

model and M̃ the noise model. This is compactly described in the Dynamic Bayesian network
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Monte Carlo
Normal

Figure 2.1: Corrupted speech distribution with clean speech of mean 10, variance 5, and ML
estimate of Gaussian distribution.

shown in Figure 2.3. The circles indicate continuous variables and squares discrete with the arrows

marking dependencies.

This framework is an extension of the typical application of hidden Markov models (HMMs) in

speech recognition. Since HMMs have shown to be the best means of representing the time varying

characteristics of speech, it makes sense to continue to leverage this representation. However,

some of the assumptions in using HMMs that are tolerable with clean speech, may result in

increased fragility to noise, such as the conditional independence of observations and the lack of

explicit duration modeling in state transitions. Hermansky contends that the frailty of current

ASR in realistic situations is due to broad across frequency processing, excessive attention to

spectral structure, and poor modeling of the temporal structure of speech signals [31]. A frequent

comparison is made to the robustness of human perception to speech that has the features of

limited spectral resolution, broad temporal memory of larger acoustic segments, and the ability

to mask unreliable features in the signal. The assumption that the clean speech is independent
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Figure 2.2: Corrupted speech distribution as SNR decreases.

t+1xtx

tn nt+1

t t+1

y t y t+1

θ t θt+1

θ θn n

Figure 2.3: Dynamic Bayesian network for robust speech recognition. Emitting states are shaded,
non-emitting hidden variables are unshaded.
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of the noise is not true as demonstrated by the Lombard effect; however, it is assumed because

of the lack of an accurate and efficient means to model this effect. Speech signal production has

strong constraints that could be exploited for more robust recognition that are not exploited by

the 1st order Markov assumption. For example recent work has looked into using a switching

linear dynamic model to take advantage of the smooth time varying qualities of speech [14] for

speech enhancement.



Chapter 3

Techniques for Noise Robust ASR

There are many approaches to robustly recognising noise corrupted speech. Ideally, a robust noise

immune parameterisation could be found such that the recogniser would inherently be unaffected

by noise. So far this has not been possible, hence techniques focus on reducing the mismatch

between the training and usage conditions. These can be grouped into two distinct paradigms as

shown in figure 3.1. The front-end in speech recognition systems is responsible for capturing and

process the speech signal into a lower-dimensional feature vector for recognition. The acoustic

models represent the speech itself and is used by the decoding to make a hypothesis of what is

said. Front-end compensation seeks to correct the corrupted observation into an estimate that

more closely resembles clean speech. These estimates can then be decoded using the clean acoustic

models. Acoustic model compensation aims to adapt or transform the clean acoustic models to a

corrupted set that better matches the noise corrupted observations. These are further discussed

in detail.

Clean Speech

Feature 
Compensation

Corrupted 
Speech

Clean Acoustic 
Models

Noisy Acoustic 
Models

Feature Space Model Space

Model 
Compensation

Training 
Conditions

Test 
Conditions

Figure 3.1: Methods of reducing the acoustic mismatch.

3.1 Inherently Robust Front-Ends

A straightforward response to the problem of environmental noise is to build a system that is not

susceptible to it. The move from using log-spectral features to MFCCs could be considered one

9
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of moving towards a more robust parameterisation. Still, widely used MFCC[11] and PLP[30]

parameters on their own are not immune to the affects of noise. In this framework for noise

robust speech recognition, this would be the equivalent of completely ignoring the noise process

and following the standard approach for HMM decoding using the corrupted observations directly

p(Y |M) =
∑

θ∈Θ

P (θ|M)

T
∏

t=1

p(yt|M, θt) (3.1)

3.1.1 RASTA-PLP and J-RASTA-PLP

Perceptual linear predictor co-efficients have been studied for the use speech recognition and then

extended with relative spectral (RASTA) processing to yield RASTA-PLP coefficients that are

perceptually motivated [33, 37]. The bandpass filtering in RASTA is motivated by the fact that

modulations in the spectrum below 1 Hz and above 12 Hz are usually noise and best removed.

The integration over several frames of speech yielding smoothing over 150-170 ms simulates the

human feature of incorporating information over time. The net effect is enhancement of dynamic

features and the suppression of static or slowly changing ones. The addition of a parameterised

log-J function gives rise to J-RASTA that can handle both additive and convolutional noise.

It has been shown how RASTA processing effectively mitigates convolutional noise and the

handles additive noise with the use of J-RASTA [37]. However the J parameter effectively is a

compromising value between the degree of convolutional and additive noise removal. Even with

the variance of this parameter on different noise conditions, the compromise results in degradation

of clean speech recognition with convolution noise to incorporate the ability to handle additive

noise. Still, it is a promising development, and other groups such as [53] have used RASTA-PLP

parameterisations with neural network observation modeling to achieve phone accuracy similar

to levels using MFCC and Gaussian mixture models with the assumed (but unmeasured) benefit

of improved robustness. Also, PLP brings recognition accuracy of child speech closer to that of

adults as example of its robustness [31].

3.1.2 Cepstral Normalisation

An extremely effective method to address channel mismatch is cepstral mean normalisation (CMN);

the removal of the cepstral bias that results from slowly changing convolutional noise sources. One

issue with this is the estimation of the bias. Using the entire utterance yields significant improve-

ments; but for real-time use, there is an issue of initial estimate of the bias, and limiting the

estimation to a certain time window so that the delay introduced is tolerable. The merit of this al-

gorithm is demonstrated in its widespread application in the majority of papers surveyed. Reports

[43, 59] clearly show the gains from incorporating CMN to handle channel mismatch noise.
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A natural extension is cepstral variance normalisation (CVN). Along with CMN, this represents

linear shifts in the mean and variance to address the effects of noise. However, the effects of

additive noise are non-linear and so these techniques are not entirely successful. Another step is

to warp the feature vector in a non-linear fashion to “Gaussianise it” or histogram equalisation[58]

or normalisation[47]. The warping of the feature space is through a transform based on the

cumulative histograms of the noisy and clean speech. The reduction in error rate in using histogram

equalisation over CMN and CVN is similar to the gains CMN and CVN provide over baseline clean

results.

3.2 Feature Compensation

From figure 3.1, one approach is to process the incoming observations Y to better resemble the

features the original clean speech acoustic model was trained on

X̂ = F(Y ,M,M̃) (3.2)

where X̂ = {x̂1, . . . , x̂T } and represents the set of estimated clean speech observations computed

from the noise corrupted observations Y and the clean and noise models. For enhancement, it is

often the case that the corrupted speech is mapped deterministically to a clean speech estimate,

given some estimate of the noise

∫

RdT

p(yt|xt, nt) p
(

nt|M̃, θn
t

)

dnt = p
(

yt|xt,M̌
)

= αtδ(x̂t − xt) (3.3)

Here the marginalisation over the unknown noise state using noise models M̃ is replaced by a

probabilistic distribution conditioned on parameters M̌ assuming a certain noise condition; for

deterministic enhancement algorithms this probability distribution is a Dirac delta function. This

substituted into equation 2.9 yields the front-end compensation framework where the estimate of

the clean speech is directly used for decoding

p(Y |M,M̃) =
∑

θ∈Θ

P (θ|M)
T
∏

t=1

αtp(x̂t|M, θt) (3.4)

There are various methods to compute x̂; these can be broadly classified into those that enhance

the spectral domain, and those that compensate the cepstral parameters. Figure 3.2 outlines the

standard feature compensation process.

3.2.1 Spectral Subtraction

This technique [8] is often quoted as a baseline algorithm for comparisons and is widely used to

successfully mitigate additive noise. The noise power spectrum can be estimated from frames that
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Figure 3.2: The standard feature compensation process

are classified as not having speech. This estimate of the noise can then be subtracted from the

corrupted signal to yield an enhanced feature vector

X̂(fk) =
√

|Y (fk)|2 − |N(fk)|2 (3.5)

This assumes the noise is additive in the time domain, is uncorrelated with the speech, and

varies slowly in time. Practically, this technique has shown good results even with these simple

assumptions on the noise and the need for a VAD to provide a background estimate. Later

algorithmic improvements [57] can remove the need for VAD by using estimated background noise

through histograms of the energy of the observed signal in several frequency bands; the distribution

will tend to be bimodal, and the noise spectrum can be estimated by using the appropriate quantile

over time.

3.2.2 State-Based Speech Enhancement

The original spectral subtraction technique assumes stationary noise. Promising results can be

attained by aligning a simple front-end HMM to the corrupted speech and using the state statistics

to more informatively enhance the speech using Weiner filters. The corrupted speech models of

the front-end HMM can be recursively estimated from a combination of the clean and noise

models using an EM algorithm as suggested in [18]. Since the corrupted state sequence should

map to the clean in a one-to-one fashion, the clean speech state sequence can be obtained. This

allows for better estimates of the clean and noise speech statistics which can be used in the

enhancement process. Enhancement with auto-regressive, hidden Markov models of speech are

studied in [17, 40, 44] and cepstral domain HMMs in [55].

3.2.3 Codeword Dependent Cepstral Normalisation

CDCN attempts to learn a mapping from the corrupted speech domain to the clean speech [1].

The estimate of the clean speech is a weighted sum of the bias vectors for each VQ region in the

code-book

x̂t = yt − ĥ −
I
∑

i=1

f(i)b(i) (3.6)
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where ĥ is an estimate of the constant channel noise, f(i) is interpreted as the a posteriori

probability of region i given the observed corrupted speech and the environmental parameters and

b(i) the correction vector for the associated region. CDCN depends on the online estimation of

the channel and additive noise through an iterative EM approach. Since this can be somewhat

intensive to compute, an environment specific form was introduced called SNR-dependent cepstral

normalisation or SCDN [3, 4]. Here, the correction is dependent on the SNR and trained using

stereo data

x̂t = yt − f(SNR) (3.7)

These forms can be considered as a more sophisticated cepstral normalisation, where the cepstral

bias is based on regions of space or the SNR. These appear to be the first instances of algorithms

to partition the acoustic space and apply different MMSE correction factors to separate regions.

3.2.4 Probabilistic Optimal Filtering

Probabilistic optimal filtering (POF) can be considered a generic piece-wise minimum squared

error approach to enhancement [49]. It is similar to CDCN in that it specifies linear transforms

learnt in a MMSE fashion for regions of the acoustic space. Each VQ region is partitioned by a

Gaussian mixture model where each component has a corresponding transform. Succinctly, the

estimate of the clean speech vector from [49] is

x̂n =

I
∑

i=1

{

W T

i P (gi|zn)
}

Y n (3.8)

W T

i =
[

Ai,−p . . . Ai,−1 Ai,0 Ai,1 . . . Ai,p bi

]

(3.9)

Y T

n =
[

yT

n−p . . . yT

n−1 yT

n yT

n+1 . . . yT

n+p 1
]

(3.10)

where i is the VQ region index, n the frame, p the filter delay, and zn the conditioning vector. The

conditioning vector, which selects the appropriate transform to apply, can span multiple frames,

contain extra parameters such as local SNR, and thus is not necessarily the feature vector.

3.2.5 SPLICE

SPLICE [12], descendant from FCDCN[4], has shown extremely good results in AURORA testing

and can be considered as a special case of POF. SPLICE uses a probabilistic approach where the

corrupted observations and the clean speech given the noisy are both modeled by Gaussian mixture

models. With a GMM partitioning the acoustic into N regions, each region has an associated linear

compensation bias to map the observed corrupted speech vector to an estimated clean. Thus, the

corrupted space is modeled by a GMM

p
(

yt|M̌
)

=

N
∑

n=1

čnN
(

yt; µ
(n)
y ,Σ(n)

y

)

(3.11)
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The a posteriori probability of the clean speech, for a component šn, is given by

p(xt|yt, šn) = N
(

xt; yt + µ̌(n), Σ̌
(n))

(3.12)

The correction vectors are estimated using stereo data in the following manner

µ̌(n) = E {xt − yt|šn} (3.13)

Σ̌
(n)

= E
{

(xt − yt)(xt − yt)
T|šn

}

− µ̌(n)µ̌(n)T (3.14)

The term Σ̌
(n)

can be interpreted as the expected square error of the estimation. Thus, the MMSE

estimate of the clean speech is

x̂t =

∫

Rd

xtp(xt|yt, šn) dxt =

N
∑

n=1

P
(

šn|yt,M̌
)

(

yt + µ̌(n)
)

(3.15)

where the posterior of component šn is given by

P
(

šn|yt,M̌
)

=
čnp(yt|šn)

∑N
i=1 čip(yt|ši)

(3.16)

This involves computing a weighted clean speech estimate for each region and then summing

them for the the final estimate which is referred to soft SPLICE enhancement. Alternatively, the

most probable component š∗n can be used in place of the soft weighted estimate

šn∗ = argmax
šn

[

čnP
(

yt|šn,M̌
)

]

(3.17)

This hard estimate yields a more efficient version of SPLICE enhancement

x̂t = yt + µ̌(n)∗ (3.18)

Similar in form to POF, SPLICE is an efficient front-end noise robustness scheme where the cor-

rupted speech vector is compensated by a linear bias µ̌(n) varying on the region of the acoustic

space the observation resides in. Figure 3.3 depicts this operation for a four component front-end

GMM.

3.2.6 Feature Domain Vector Taylor Series

The environmental model, presented in section 2.1, can be used to compensate the corrupted

cepstral feature vectors by providing an estimate of the unobserved clean speech vector [48] in the

log spectral domain. Later a cepstral form of the environment was derived [35]. This can also be

used to form a cepstral domain MMSE estimate of the clean speech.

Based on the 0th-order VTS approximation of the corrupted speech, as in equation 2.6

xt = yt − g(nt − xt − ht) (3.19)
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Figure 3.3: SPLICE feature enhancement

a MMSE estimate of the clean speech can be derived

x̂t =

∫

Rd

xtp(xt|yt)dxt (3.20)

= yt −
∫

Rd

g(nt − xt − ht)p(xt|yt)dxt (3.21)

If a front-end GMM is used to partition the acoustic the space such that a set of compensa-

tion parameters is estimated for each partition, a constant channel noise µh determined, and a

deterministic mapping between yt and xt is used then

x̂t = yt −
∫

Rd

N
∑

n=1

g(nt − µ(n)
x − µh)p(xt|sn, yt)dxt (3.22)

= yt −
N
∑

n=1

P (sn|yt)g(nt − µ(n)
x − µh) (3.23)

The statistics of the varying additive noise and constant channel noise are often estimated online

through an iterative EM framework.

3.2.7 Uncertain Observations

Arrowood in [6] discusses an intuitive method of decoding with uncertain observations due to noise.

A probability density function is produced by the front-end instead of just a point observation

to the decoding process as shown in figure 4.2 and in contrast to figure 3.2. This is to reflect

the uncertainty in the removal of noise from the feature vector. The bias and variance of the

observation distribution are third-order polynomial functions of the estimated SNR based on the
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filterbank parameters

µ̂t(fk) = a0(fk) + a1(fk)wt(fk) + a2(fk)wt(fk)2 + a3(fk)wt(fk)3 (3.24)

σ̂t(fk) = b0(fk) + b1(fk)wt(fk) + b2(fk)wt(fk)2 + b3(fk)wt(fk)3 (3.25)

and

wt(fk) = yt(fk) − x̂t(fk) (3.26)

at frame t. This observation uncertainty, interpreted as a single multivariate, clean speech posterior

Gaussian distribution, can then be propagated to the decoder as biases to the corrupted speech

and the acoustic model variance. For cepstral coefficients, these filterbank parameters can be

liftered. Results comparable to PMC using the log-add approximation are reported in [7] in white

Gaussian additive and channel varying noise.

Hypothesis
Uncertain 

Observations Decode
Corrupted 
Speech

Noise 
Model

Clean 
Acoustic Model

Figure 3.4: Feature compensation with uncertain observations

3.2.8 Missing Feature Theory

Another approach, inspired from vision[5], has been to treat certain elements of the feature vector

as unreliable or missing[10]. It has been noted that listeners naturally handle missing data in

everyday communications. Detecting unreliable areas of speech is done at a spectral level using

local SNR as a measure. Once parameters have been partitioned into reliable and unreliable,

unreliable ones can be marginalised over[10, 16] or restored[51, 42]. Marginalisation requires

changes to the recogniser whereas restoration, or data imputation, can be used as a general front-

end enhancement system.

3.3 Model Compensation

As figure 3.1 also indicates, the acoustic models can be updated for the noise condition such that

they better match the incoming corrupted speech observations

p(Y |M̂) =
∑

θ∈Θ

P (θ|M̂)

T
∏

t=1

p(yt|M̂, θt) (3.27)
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where M̂ are the compensated noisy acoustic models. The noisy acoustic models can be derived

from the observed corrupted speech, the clean acoustic models, and perhaps noise models

M̂ = G(Y ,M,M̃) (3.28)

There are two general approaches to compensating acoustic models: adaptive, where sufficient

corrupted data is available to update the acoustic models directly to match the noisy speech

observations; and predictive, where a noise model is combined with the clean speech models to

provide a corrupted speech acoustic model. Retraining of the models, MAP, and MLLR-style

transforms can be considered adaptive forms, whilst PMC and VTS are predictive techniques.

3.3.1 Training on Corrupted Speech

The most obvious approach to handling mismatched training and test conditions is to retrain the

acoustic models in the new environment. While this usually yields the best results in a variety of

papers surveyed [28, 23, 59], it is not very practical, as collecting large quantities of speech data

at varying noise conditions is time-consuming. Artificial methods of corrupting the training data

have been explored which also yield good results. Samples, such as those from NOISEX-92 can be

added to the clean training data utterances to provide corrupted training data. This provides good

results for levels of noise down to 6-10dB, but with varying SNR or increased levels, the mismatch

problem arises and degradation occurs [28]. Adding a variety of noise samples to clean training

data is known as multi-style training [52, 12] and is generally assumed to be the theoretical upper

limit for speech recognisers, although humans tend to still do better than this [34].

The artificial addition of noise does not account for changes in speech production that occur

in such conditions. Training on speech transformed to artificially add stress improves isolated

word recognition rates[9]. Such a technique in concert with artificially added background noise or

spectral subtraction could achieve even better results than independently, however the end result

is still a system highly tuned towards a certain noise characteristic.

3.3.2 Single Pass Retraining

Re-training acoustic models directly on the corrupted speech data typically trains state-level align-

ments from the noisy speech. This reduces the performance of the system since the state posteriors

become more unreliable as noise increases. Thus model estimation using well-trained clean state

posteriors such as with Single Pass Retraining (SPR)[20] represents an ideal model-based com-

pensation scheme. With SPR though, the corrupted speech distributions are still badly modeled.

The corrupted output distributions can be retrained by further BW iterations, with the state level

posteriors fixed to the clean using two-model re-estimation[60]. This assumes the state posteriors

in clean and corrupted speech are constant, which is accurate for artificially corrupted data, but
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not for natural situations as it well known speech production changes in high noise – the Lombard

effect. As well, each Gaussian component is updated to fit the corrupted speech. From table 2.1,

it is clear that the dashed maximum likelihood estimate fails to accurately represent the corrupted

distribution. This is a general problem for most model compensation techniques that use the clean

speech posteriors and update on a component by component basis.

Moreover, SPR and two-model estimation are offline compensation techniques not suitable

for varying acoustic environments. There are other methods of dynamically updated the state

distributions of the recogniser in an online system. Typically speech recognition use GMMs to

model output distributions. The non-linear combination of x,h, and n makes it difficult to derive a

closed form solution for modeling the distribution of the corrupted speech vector y in equation 2.6.

Moreno [48] solves this in the log-spectral domain by using a vector Taylor series approximation

of the non-linearity. Alternatively with PMC [24], Gales applies various approximations in the

log-spectral domain to combine models of clean speech and noise to yield transformed to the

cepstral domain to yield corrupted models of speech. These techniques still do not ideally model

the corrupted speech distribution since each Gaussian component in the original clean speech

model is still represented with only one Gaussian component in the corrupt model, when it has

been shown that with the introduction of noise, the distribution because distinctly bi-modal and

non-Gaussian [23].

3.3.3 Adaptation of Acoustic Models

So far, there has been little discussion on dealing with previously described speech production

changes in the presence of noise known as the Lombard effect. One method to mitigate such

effects is to adapt the durational parameters of the phone models on observed Lombard speech

data[56]. Results showed this could improve recognition accuracy, however this fails to address the

environmental noise in the signal, and large amounts of data are required to approach the MLE

of the corrupted speech.

Adaptation techniques like MAP and MLLR can be used to fully adapt acoustic models to

both speech production changes due to the Lombard effect and stress, and to stationary additive

or convolutional noise. These approaches can bring performance close to the matched condition.

However the amount of data MAP requires to adapt makes it impractical for online adaptation;

the need for transcription versus unsupervised adaptation a concern in noise; and the storage and

propagation of adapted models in real-world server-based telephony applications a problem. The

adapted models also suffer from being specific to the new adaptation data, and any change in

noise will require further adaptation.

The use of linear model-space transformations has been explored in depth [41, 22] although

mostly in the context of speaker adaptation. In noise robustness, MLLR transforms have been
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successfully applied to adapt models to noise within a session on the AURORA 2.0 digits corpus

[43], but in general many transforms are necessary to model the non-linear affects of noise [34].

These transforms can be classified as either unconstrained, where the compensated mean and

variance are given by

µ̂(m) = Aµ(m) + b (3.29)

Σ̂
(m)

= HΣ(m)HT (3.30)

or constrained

µ̂
(m) = Aµ(m) + b (3.31)

Σ̂
(m)

= AΣ(m)AT (3.32)

where the transformation matrix of the mean and variance parameters is the same. Often, the

mean vector update is written as

µ̂(m) = Wξ(m) (3.33)

where ξ(m) is the extended mean vector
[

1 µ̂(m)T
]T

and W the extended transform
[

bT AT

]T

.

A benefit of the constrained transform, or CMLLR, is that with some matrix algebra, the

transformation can be efficiently applied in feature space

x̂t = A′xt + b′ (3.34)

where A′ = A-1 and b′ = A-1b. A normalisation term of log(|A′|) is required during the likelihood

calculation [22]. The form of the transformation has also been studied where it has been reported

that a block transform of the mean vector is more effective than the diagonal [22], but for the

variance transform the diagonal form just as effective as the block [25] with less computational

cost.

Linear transforms mapping the output distributions of the clean speech models to the corrupted

environment can be robustly estimated on less data than MAP and similar models can be grouped

together into classes using a regression tree, sharing the transform and adaptation data [21].

Regression class trees group models either by decision trees using phonetic knowledge, or by

comparing how close models are in the acoustic space. Each leaf of the tree has a transform

trained for it unless there is insufficient data for a robust estimation. In this case, it can regress

to the parent node’s transform estimated from aggregating the data of it’s leaves. This gives an

elegant means to scale the number of transforms to the available adaptation data.
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3.3.4 Parallel Model Combination

PMC combines separate noise and speech models to form a corrupted speech model directly for

use in the recognition process [26]. The composition of the noise and speech is done through

a mismatch function describing how the noise and speech are combined to form the corrupted

signal. Specific additive, convolutional, additive and convolutional, and bandwidth limited channel

mismatch functions can be found in [23]. The log-normal approximation is a popular and efficient

choice that assumes the sum of two log-normal distributions is approximately log-normal, however

cannot be applied with delta and delta-delta parameters due to the resulting complexity of the

forms [27]. PMC can restore performance in a 10 dB SNR environment to a level comparable to

training models with actual noisy speech [24].

The transform of the parameters of each Gaussian component in the clean model to reflect

the noise does not model the overall corrupted speech distribution well as seen in figure 2.1.

Iterative PMC (IPMC) and data-driven PMC (DPMC) aim to resolve this problem [20]. Iterative

PMC (IPMC) addresses this issue by representing each component with multiple components,

iteratively re-estimating the GMM modeling the corrupted speech, still based on alignments from

the clean speech posteriors. This increases the number of components in the overall system.

Alternatively, data-driven PMC directly estimates the corrupted speech distribution by drawing

sample corrupted speech vectors from combinations of the clean and noise models to re-estimate

the GMM on a per state basis. The efficient log-add approximation can be used to combine the

model and the overall number of components can remain unchanged, however anywhere from 25-

1000 observations need to be generated per Gaussian in the system [23]. These approaches should

match a SPR with two-model re-estimation system discussed earlier and represent ideal forms of

model-based compensation. However, they came at a high cost, with the iterative re-estimation

of each state distribution extremely computationally expensive.

As in the use of PMC for speech enhancement, these model-based schemes depend on the

quality of the noise models used [23] and the model accuracy of the interaction of the noisy envi-

ronment with speech. Single state noise models are fast and efficient, but can only handle slowly

changing noise statistics. The assumption of independence between noise and speech production

is not a good one as speech changes with volume of noise. To handle rapidly changing noise,

more states are required in the noise model, significantly increasing computational complexity in

the decoding to find the optimal combination of speech and noise. Also the training of the noise

models is not trivial. For additive noises a variety of sources are available like the NOISEX-92

database, but convolutional noise samples are more difficult to obtain. The performance of PMC

depends on having appropriate noise models, but as Bishnu Atal is purported to have said, ”We
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call it noise because we know nothing about it!” - unknown sources of noise arise. Despite these

drawbacks, PMC has shown to work fairly well.

3.3.5 Model Domain Vector Taylor Series

Typically speech recognition uses GMMs to model the output distributions. However the non-

linear combination of x, h, and n make it intractable to calculate a closed form solution for

modeling the distribution of the corrupted speech vector y in equation 2.6. Moreno [48] solves

this by using a vector Taylor series approximation of the non-linearity in the log spectral domain.

This has also been applied in the cepstral domain [2, 36] with results close to the matched system.

To do so, a first-order approximation of the environment is made, assuming independence of x, h

and n, evaluated about µ = µn − µx − µh

y = µx + µh + g(µ) + A(x − µx) + A(h − µh) + (I − A)(n − µn) (3.35)

with

A = CFC-1 (3.36)

and F a diagonal matrix with the following elements from vector f(µ)

f(µ) =
1

1 + eC-1µ
(3.37)

giving the following estimates of the mean and variance of the corrupted speech

µy ≈ µx + µh + g(µn − µx − µh) (3.38)

Σy ≈ AΣxAT + AΣhAT + (I − A)Σn(I − A)T

assuming diagonal covariance matrices.

The results in equation 3.38 show how the mean is shifted non-linearly by the noise. The matrix

A varies proportionally with the level of noise [48], increasing in magnitude towards identity with

greater noise. When the noise is dominant, the variances of the model take on the variance of

the noise. A 0th-order VTS approximation is sufficient to represent the affect of the environment

on the mean, but a 1st order VTS approximation is needed to reflect the reduced variance. It

has been observed in Monto Carlo simulations in the log-spectrum that 1st-order VTS provides

a better approximation to the mean and variance of the corrupted distribution than log-normal

PMC [2].

3.3.6 Algonquin

Uncertainty decoding, as described in [38], attempts to directly compute state conditional like-

lihoods using variational methods. Gaussian mixture models are used to model both the clean

speech, noise and channel distributions. The posterior of the joint distribution of the clean speech,
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noise, channel and state variables are approximated by a simpler parameterised distribution, which

is also a GMM. The variational parameters of this simpler distribution are optimised per frame in

an iterative EM fashion. While the results are promising, Algonquin requires the update of every

component of every state in the acoustic model using computationally expensive forms, iteratively

obtaining linear Gaussian approximations of the posterior. This makes it as computationally ex-

pensive as other model compensation schemes. A different from of Algonquin has also been derived

as a MMSE feature enhancement scheme.

3.4 Summary

There has been much research to solve the problem of ASR in noise. Front-end techniques tend

to be computationally efficient, and responsive to changing conditions, but fail after moderate

amounts of noise. Model compensation is more powerful, but requires numerous mean and variance

parameter updates in the acoustic models at a significant computational cost. Many techniques

require a priori knowledge of noise such as stereo-databases, MMSE techniques, and forms of PMC.

For general noise robustness, such assumptions seem counter-intuitive since noise is inherently

unknown. For unseen conditions, these schemes are not applicable and degrade.

Thus techniques that can either adequately adapt or predict and compensate for noise condi-

tions or systems that are inherently immune to noise, such as robust parameterisations or models

are of great interest. While some inherently robust front-ends have shown promise, they typically

degrade under medium levels of noise. Unsupervised techniques to precisely estimate the noise

and associated schemes to accurately compensate for it show promise in viably operating ASR in

unknown, adverse environments.



Chapter 4

Uncertainty Decoding

The term “uncertainty” has been loosely applied in a variety of contexts to various robustness

techniques for ASR. In this work, the concept of uncertainty decoding is distinct from the soft-

information paradigm presented in the Algonquin framework [38, 39], uncertain observation de-

coding [6, 7] and the notion of uncertainty in missing feature theory [5, 10].

The goal of uncertainty decoding is to achieve a fast compensation scheme under the assumption

that estimates of clean speech are not exact in noise. Intuitively, the presence of noise in the

environment results in uncertainty of the true value of the clean speech, thus the variance of the

model increases with the noise. This implies model compensation, however ways of decoupling the

front-end processing from the acoustic model to increase efficiency are explored. In this chapter,

uncertainty decoding is presented in a rigorous framework with key approximations noted and

contrasted with previous work. Once the theoretical basis has been presented, various modeling

aspects are discussed and two forms of uncertainty decoding advanced.

4.1 Theoretical Framework

Formally, uncertainty decoding begins from the Bayesian inference of the optimal state sequence

given the graph in figure 2.3. This requires marginalising out the latent hidden clean speech and

noise variables. Recall equation 2.9 where the likelihood of the corrupted observation sequence is

dependent on models of the clean speech and noise

p(Y |M,M̃) ≈
∑

θ,θn∈Θ

P (θ|M)P (θn|M̃)

T
∏

t=1

∫

2Rd

p(yt|xt, nt)p(xt|M, θt)p(nt|M̃, θn
t )dxtdnt

The double integration can be simplified by assuming a certain noise condition captured in a

front-end model M̌. That is

∫

Rd

p(yt|xt, nt) p(nt|M̃, θn
t )dnt ≈ p

(

yt|xt,M̌
)

(4.1)

23
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This allows the likelihood calculation of this conditional to depend on a simple front-end noise

model, which may also be made independent of the acoustic model complexity. Since the con-

ditional is computed in the front-end, this minimises the computational load the compensation

process has on search. Contrast this with computationally three-dimensional decoding using mod-

els of different noises M̃ and clean speech. Given this, the final decoding likelihood is approximated

by

p
(

Y |M,M̌
)

≈
∑

θ∈Θ

P (θ|M)

T
∏

t=1

∫

Rd

p
(

yt|xt,M̌
)

p(xt|M, θt) dxt (4.2)

The solution to the integral is of course highly dependent on the form of the two parts of the

integrand. If the corrupted speech conditional, which is dependent on the noise, is deterministic,

then the integral resolves to the clean speech model prior. However, if the conditional takes a

Gaussian distributed form, then the integral is also a Gaussian distribution with a variance that

is the sum of the variances of the two parts of the integrand. Algonquin approximates the integral

for each component of each model using expensive iterative variational estimation. Scaling this

approach to LVCSR is not straightforward. In contrast, the focus of this work is to find practical

forms of p(yt|xt,M̌) such that tractable solutions are available. In this framework, uncertainty

decoding can be interpreted as passing the corrupted condition density function to the decoder as

shown in figure 4.1. The form of the conditional distribution should be efficient to compute like

feature enhancement schemes, yet minimise the cost of updating the acoustic model parameters.

Hypothesis
Uncertainty 
Decoding Decode

Corrupted 
Speech

Noise 
Model

Clean 
Acoustic Model

Figure 4.1: Feature compensation with uncertainty decoding

4.2 The Conditional Corrupted Speech Distribution

Given that the clean speech prior in equation 4.2 is usually a GMM in most recognisers, the

focus of uncertainty decoding is to find an efficient and accurate representation of the conditional

corrupted speech distribution. The main difficulty is that p(yt|xt,M̌) is highly complex as seen

through a numerical simulation of the joint clean and corrupted speech distribution in figure 4.2

using the same equation from section 2.2

y = log(exp(n) + exp(x))
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but now with x as a point input variable and the noise again generated from a Gaussian distribution

with a mean 1 on the left, and 4 on the right and the variance constant at 1. The joint distribution

is highly non-linear and difficult to characterise parametrically.

Figure 4.2: Joint clean and corrupted speech distribution with a noise source of mean 1 (left) and
mean 4 (right), both with a variance of 1

It is useful to examine how the conditional distribution shifts and skews as a function of

the clean speech through the same simulation. Normalised histograms in figure 4.3 show the

distribution varying from a relatively Gaussian distribution, matching the noise source, when

the noise mean is comparable to the clean speech mean, to a strongly deterministic one, as the

difference between the speech and noise means increases.

Observe that at a high SNR, where the corrupted speech is approximately equal to the clean,

the conditional distribution of the corrupted speech is relatively deterministic, whereas for a low

SNR it is roughly Gaussian approaching the distribution of the noise. Thus the effective local

form of the conditional corrupted speech varies significantly depending on the clean speech prior.

From figures 4.2 and 4.3 it is clear that approximating the conditional with a constant density

function independent of the clean speech would be poor.

4.3 Gaussian Mixture Model Approximations

A standard approach to modeling complex distributions is to use a mixture model

p
(

yt|xt,M̌
)

=

N
∑

n=1

P
(

šn|xt,M̌
)

p
(

yt|xt,M̌, šn

)

(4.3)

The final decoding likelihood, equation 4.2, involves a marginalisation of two distributions –

the conditional corrupted speech and the clean speech model. As the clean speech model is typi-

cally a Gaussian mixture model, if the conditional corrupted speech distribution is also Gaussian

then deriving an analytical form is trivial since the integration becomes the convolution of two

Gaussians. Therefore represent the conditional as a Gaussian distribution

p
(

yt|xt,M̌, šn

)

= N (yt; fµ(xt, šn), fΣ(xt, šn)) (4.4)
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Figure 4.3: Conditional corrupted speech distribution with a noise source of mean 4, variance 1

With this form of the conditional distribution of the corrupted speech there are several issues:

• the component posterior P (šn|xt,M̌) is conditional on the clean speech;

• the number of component in the front-end affects the total number of effective components

evaluated;

• and determining the form of the component conditional distribution p(yt|xt,M̌, šn).

The component posterior is conditional on the hidden “clean speech” variable which depends

entirely on the state of the clean speech model. Ideally the front-end compensation should be as

independent of the acoustic models as possible. Directly using a GMM requires the marginalisation

of each Gaussian in the front-end with each in the acoustic model. Effectively, this multiplies

the number of components in the system by the number in the GMM which greatly increases

the computational cost. These issues can be overcome by some approximations as discussed in

the sub-sections where two different forms of the conditional corrupted speech distribution are

presented.
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4.3.1 SPLICE Form

The conditional corrupted speech distribution can be transformed to the clean speech posterior,

through the application of Bayes’ rule as suggested in [38]. This yields the following form of the

conditional corrupted speech posterior

p
(

yt|xt,M̌
)

=

∑N
n=1 p

(

xt|yt, šn,M̌
)

p
(

yt|šn,M̌
)

čn

p
(

xt|M̌
) (4.5)

where the clean speech posterior and corrupted speech model are Gaussian mixture models of

n components, and weighted by čn. Many different forms of the clean speech posterior using a

GMM have been investigated such as CDCN, POF, and VTS. Here, the SPLICE MMSE estimate

is examined [15] as reviewed in section 3.2.5.

Modeling the denominator with a GMM would make marginalisation complex, thus a simple,

single Gaussian approximation can be used instead. This is a rather crude assumption as a single

Gaussian does not represent the clean speech distribution well, hence the common use of multiple

Gaussian distributions in current speech recognisers. Nevertheless, a single clean speech Gaussian

is used

p
(

xt|M̌
)

≈ N (xt; µx,Σx) (4.6)

where the parameters are estimated from the corrupted speech GMM, compensated using the

SPLICE parameters, and the individual components combined

µx =

N
∑

n=1

čn

(

µ(n)
y + µ̌(n)

)

(4.7)

Σx =

N
∑

n=1

čn

(

µ(n)
y µ(n)T

y + µ̌(n)µ̌(n)T + Σ(n)
y + Σ̌

(n)
)

− µxµT

x (4.8)

Given the SPLICE form of the clean speech posterior, a front-end GMM modeling the corrupted

speech and the simplified denominator, and diagonal covariance matrices as in [15], the conditional

takes the form

p
(

yt|xt,M̌
)

=

∑N
n=1 p

(

xt|yt, šn,M̌
)

p
(

yt|šn,M̌
)

čn

p
(

xt|M̌
) (4.9)

≈
∑N

n=1 N
(

xt; yt + µ̌(n), Σ̌
(n)
)

p
(

yt|šn,M̌
)

čn

N (xt; µx,Σx)
(4.10)

=

N
∑

n=1

p
(

yt|šn,M̌
)

čnα(n)N
(

A(n)yt + b(n); xt, Σ̂
(n)

x

)

(4.11)

The following are the elements of the diagonal matrix A(n) and vector b(n) and the associated
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uncertainty variance Σ̂
(n)

x

a
(n)
ii =

σ2
xi

σ2
xi − σ̌

(n)2
i

b
(n)
i =a

(n)
ii

(

µ̌
(n)
i − σ̌

(n)2
i

σ
(n)2
xi

µxi

)

(4.12)

Σ̂
(n)

x =A(n)Σ̌
(n)

and µ̌
(n)
i and σ̌

(n)2
i the compensation parameters from standard SPLICE enhancement. See ap-

pendix A for a more detailed derivation and definition of α(n). The denominator of the a
(n)
ii term

in equation 4.12 should be forced to remain positive. As in [15], this can be done by constraining

the simplified clean speech variance to be greater than the uncertainty of the estimation by some

factor

σ2
xi ≥ σ̌

(n)2
i + ε (4.13)

The system was found to be fairly insensitive to the value of ε however a value of ten percent

of the global clean speech variance was used. In the limit, when ε is very large, the uncertainty

aspect is ignored, returning processing to the standard SPLICE enhancement scheme.

With this form of the conditional, the integral from equation 4.2 becomes

p
(

yt|M,M̌, θt

)

=

∫

Rd

p
(

yt|xt,M̌
)

p(xt|M, θt) dxt (4.14)

≈
∫

Rd

N
∑

n=1

čnp
(

yt|šn,M̌
)

α(n)N
(

A(n)yt + b(n); xt, Σ̂
(n)

x

)

×
∑

m∈θt

cmN
(

xt; µ
(m),Σ(m)

)

dxt (4.15)

=

N
∑

n=1

∑

m∈θt

čncmp
(

yt|šn,M̌
)

α(n)×
∫

Rd

N
(

A(n)yt + b(n); xt, Σ̂
(n)

x

)

N
(

xt; µ
(m),Σ(m)

)

dxt (4.16)

=

N
∑

n=1

∑

m∈θt

čncmp
(

yt|šn,M̌
)

α(n)N
(

A(n)yt+b(n); µ(m),Σ(m)+Σ̂
(n)

x

)

(4.17)

With the two parts of the integrand being Gaussian distributions, the integral simplifies into

a single Gaussian distribution1. It is clear from this form, that the number of components in the

front-end GMM directly multiplies the number of effective components in the acoustic model. As

suggested in [15] and with standard SPLICE enhancement, this can be avoided by using the hard

approximation in using only the most probable component šn∗ ’s compensation parameters

šn∗ = arg max
šn

[

čnp
(

yt|šn,M̌
)

]

1See appendix B for derivation.



4.3 Gaussian Mixture Model Approximations 29

where n∗ is the index of the most probable component. This allows the effective number of com-

ponents per state in the acoustic model to remain unchanged, resulting in a more computationally

efficient form

p
(

yt|M,M̌, θt

)

≈
∑

m∈θt

cmN
(

µ̂(n∗)
x ; µ(m),Σ(m) + Σ̂

(n∗)

x

)

(4.18)

As a result, the complexity of the front-end processing is independent of the model; the number of

Gaussian evaluations in the decoder is not affected by the number of components in the front-end

GMM. The terms čn, p
(

yt|šn,M̌
)

and α(n) do not actually need to be included in the Gaussian

evaluations during decoding since these are the same for every model and evaluation during a

frame.

4.3.2 Joint Distribution Form

Another approach to modeling the corrupted speech component conditional distribution is to use

a joint distribution of the clean and corrupted speech to derive the conditional for each region of

the acoustic space. To resolve the issue of the component posterior, it can be approximated by

making it conditional upon the corrupted speech

P
(

šn|xt,M̌
)

≈ P
(

šn|yt,M̌
)

(4.19)

This has a very coarse effect of passing the same component, and thus conditional distribution,

to the decoder, regardless of the state in the clean model. As seen from 4.3, the conditional should

have a smaller variance for some models, and larger variance for others more confusable by the

noise.

Like POF and SPLICE , the acoustic space is partitioned by the front-end GMM as in equa-

tion 3.11, and a conditional distribution estimated for each component. Next the form of equa-

tion 4.4 can be derived using the joint distribution of the clean and corrupted speech, which can

be readily estimated using stereo data

[

yt

xt

]

∼ N
([

µ
(n)
y

µ
(n)
x

]

,

[

Σ(n)
y Σ(n)

yx

Σ(n)
xy Σ(n)

x

])

(4.20)

the conditional distribution can be derived from the joint1

p
(

yt|xt,M̌, šn

)

≈N
(

yt; µ
(n)
y + Σ(n)

yx Σ(n)-1
x

(

xt − µ(n)
x

)

,Σ(n)
y −Σ(n)

yx Σ(n)-1
x Σ(n)

xy

)

(4.21)

=α(n)N
(

Σ(n)
x Σ(n)-1

yx

(

yt−µ(n)
y

)

+µ(n)
x ; xt,Σ

(n)
x Σ(n)-1

yx Σ(n)
y Σ(n)

x Σ(n)-1
yx −Σ(n)

x

)

(4.22)

=α(n)N
(

A(n)yt + b(n); xt, Σ̂
(n)

x

)

(4.23)

1See appendix C for more details.
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where α(n) =
∣

∣

∣
A(n)

∣

∣

∣
. Thus the transform of feature vector and the uncertainty are

A(n) =Σ(n)
x Σ(n)-1

yx

b(n) =µ(n)
x − A(n)µ(n)

y (4.24)

Σ̂
(n)

x =A(n)Σ(n)
y A(n)T −Σ(n)

x

These can be compared to the forms of equation 4.12 where explicit flooring of the variances

is required and diagonalised covariance matrices necessary.

With the approximations for the component posterior and Gaussian form of the component

conditional corrupted speech distribution, the decoding likelihood from equation 4.2 becomes

p
(

yt|M,M̌, θt

)

=

∫

Rd

p
(

yt|xt,M̌
)

p(xt|M, θt) dxt (4.25)

≈
∫

Rd

N
∑

n=1

P
(

šn|yt,M̌
)

α(n)N
(

A(n)yt + b(n); xt, Σ̂
(n)

x

)

×
∑

m∈θt

cmN
(

xt; µ
(m),Σ(m)

)

dxt (4.26)

=
N
∑

n=1

∑

m∈θt

cmP
(

šn|yt,M̌
)

α(n)N
(

A(n)yt+b(n); µ(m),Σ(m) + Σ̂
(n)

x

)

(4.27)

Again, the marginalisation of two Gaussian distributions yields a single distribution1. Note the

similarity to the SPLICE with uncertainty decoding equation 4.17. Using a similar approximation

in the SPLICE formulation, a most probable component can be used in place of the weighted sum

šn∗ = argmax
šn

[

P
(

šn|yt,M̌
)

]

(4.28)

The component posterior can be computed as in equation 3.16. This yields the same form of

likelihood calculation as derived in the SPLICE form that is equation 4.18, but with forms of the

transforms in equation 4.24. Figure 4.4 demonstrates the operation of the SPLICE and Joint

forms of uncertainty decoding. It shows how the compensation parameters are computed in the

front-end and how they are used during decoding.

4.4 Model-Space Uncertainty Transforms

One crude approximation made was to use the corrupted speech component posterior rather than

the clean as stated in equation 4.19. A way to explore the impact of this is to contrast this with a

model-based approach where the form of the component conditional corrupted speech distribution

is dependent on the clean speech model component, instead of the observed corrupted speech.

One method of doing so, is to cluster the model components with a GMM. Instead of passing a

single Gaussian chosen by the front-end, a GMM is embedded in the acoustic model which groups

1See appendix B for derivation.
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Figure 4.4: Uncertainty decoding processing

the model components. For each region a conditional distribution is estimated based on the joint

distribution of clean and corrupted speech and the approximation in equation 4.19 is not required.

Specifically, represent the clean acoustic space by a GMM

p
(

xt|M̌
)

≈
N
∑

n=1

P
(

šn|xt,M̌
)

N
(

xt; µ
(n)
x ,Σ(n)

x

)

(4.29)

where the conditional corrupted speech distribution is still based on the joint distribution of

the clean and corrupted speech, again possibly trained on stereo data, but with the clean speech

posterior partitioning the acoustic space. The observation likelihood of a given state with a “hard”

approximation is then

p
(

yt|M,M̌, θt

)

=
∑

m∈θt

cmP
(

šn∗ |µ(m),M̌
)

α(n∗)N
(

A(n∗)yt+b(n∗); µ(m),Σ(m) + Σ̂
(n∗)

x

)

(4.30)

During decoding, p(yt|xt,M̌, šn∗) and therefore parameters α(n∗), A(n∗), b(n∗) and Σ̂
(n∗)

x vary by

the model component mean µ(m) and are chosen in the following manner

šn∗ = argmax
šn

[

P
(

šn|µ(m),M̌
)]

(4.31)

Partitioning the model-space with a GMM requires N evaluations of the posterior per component

in the acoustic model. This is a form of model-compensation since n∗ is not a function of the

acoustic signal. The conditional distribution does not change for a component in the acoustic

model with time; it varies only with the noise model M̌ and each component in the model is

individually compensated. This gives an upper bound on the performance obtainable by using a

GMM approximation to the conditional corrupted speech distribution.

An alternate way of examining this is to group the components using a regression tree as applied

with MLLR transforms and described in section 3.3.3. Model components are grouped into classes

according to acoustic similarity. For each class, a joint distribution of the clean and corrupted
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speech can be estimated, and thus a conditional corrupted speech distribution determined. In this

form, the marginalisation of the conditional corrupted speech with the clean speech prior could

be considered a transform. For example, with the Joint form applied to different model classes

p
(

yt|θt,M̌
)

=
∑

m∈θt

cm

∣

∣

∣
A(rm)

∣

∣

∣
N
(

A(rm)yt + b(rm); µ(m),Σ(m) + Σ(rm)
x

)

(4.32)

where M̌ =
{

A(1),b(1),Σ(1)
x , . . . ,A(R),b(R),Σ(R)

x

}

, rm denotes the model class, and R the total

number of classes. Contrast this with constrained MLLR

p
(

yt|θt,M̌
)

=
∑

m∈θt

cm

∣

∣

∣
A(rm)

∣

∣

∣
N
(

A(rm)yt + b(rm); µ(m),Σ(m)
)

(4.33)

CMLLR is an efficient form of model adaptation. The Joint form is similar, but with a

uncertainty offset to the model variances. Typically, the transforms in CMLLR are based on

adaptation data, which can be limited. The noise models in the Joint form have been described

as being estimated from a large amount of stereo data but need not be as discussed in the following

chapter. Figure 4.5 shows the general method for estimating the compensation parameters for a

regression class. With a model of the clean speech per class, a joint distribution can be estimated

per class with only an estimate of the noise statistics and not actual corrupted speech data.

Since the models are grouped according to acoustic similarity according to the mean, this also

provides a method to see if making the conditional corrupted speech distribution dependent on

the state in acoustic model would improve performance. Running parallel front-ends to compute

the compensated feature vector and the associated uncertainty per model is far more efficient than

grouping the model components using a GMM. However, the form in equation 4.30 is theoretically

better as the Gaussian evaluation is weighted by the component posterior. This allows different

acoustic regions or classes of models to be weighted as well as factoring in the likelihood of how

well an acoustic model fits in the region partitioned by the GMM.

Estimate Joint 
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Clean Single
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Noise Data

( ), ( (

; ,
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Figure 4.5: Model Joint uncertainty decoding

4.5 Non-Gaussian Distributions

As demonstrated in figures 4.2 and 4.3, when the speech energy is strong, the conditional corrupted

speech distribution is deterministic, and when the energy is low relative to the noise, it is Gaussian.
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Thus it may be questionable to use a mixture of Gaussians, as in equations 4.3 and 4.4, to represent

the conditional corrupted speech distribution where a mixture of another form of distribution

would be more appropriate. Alternate forms such as the Weibull or Gamma distribution are more

representative than the normal distribution assumed as shown in figure 4.6; the mode is closer

and the skewing eliminates the left tail of the distribution.
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Figure 4.6: Conditional corrupted speech distribution with noise of mean 4, variance 1. Various
distributions are fitted to the corrupted speech data.

The formula for the gamma distribution is

p(y|x) =

(

y−x
b

)(a−1)

e

(

-

y−x

b

)

bΓ(a)
(4.34)

where

Γ(a) =

∫ ∞

0

t(a−1)e-tdt (4.35)

and a and b are parameters of the distribution.

The formula for the Weibull distribution is

p(y|x) = ab(y − x)(b−1)e(-a(y−x)b) (4.36)
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where a and b are parameters of the distribution. Maximum likelihood estimates of the parameters

of these skewed distributions can be obtained and mixtures of skewed distributions may be a

more accurate representation of the conditional corrupted speech distribution. However analytic

solutions of the integral in equation 4.2 are difficult to derive if the conditional takes these forms.

This marginalisation is similar to what is required in Bayesian parameter estimation, where a

variable has a distribution to be parameterised, and the parameter to be estimated also has a prior

distribution. There are natural forms for these distributions that provide manageable solutions,

together called conjugate distributions or pairs such as the Gaussian-Gaussian, or the gamma and

exponential.

Using numerical integration on simulated data, as shown in figure 4.7 shows that even by

using a Weibull distribution instead of a Gaussian, the end resulting distribution varies little. The

histogram plots are of the corrupted speech distribution

p(y|θ) =

∫

R
p(y|x)p(x|θ)dx (4.37)

with p(y|x) as either a constant Weibull distribution or a Gaussian distribution, with optimal

parameters given Gaussian distributed noise of mean 4 and variance 1 and Gaussian distributed

clean speech p(x|θ) with mean 5 and variance 1 , as shown in graph c of figure 4.6. The mode

is only very slightly shifted with the better fitting Weibull distribution. With the clean speech

prior being of a Gaussian form in practically all LVCSR systems, and the minimal observable

difference when using a skewed distribution, it makes sense to use a Gaussian representation of

the conditional corrupted speech for tractable solutions. The use of a mixture of non-Gaussian

distributions does not mitigate the larger problems of the conditional varying on the clean speech,

and component selection with mixture models.
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Figure 4.7: Resulting corrupt speech distribution using Weibull form of p(y|x)
in dashed red, Gaussian form in solid blue.



4.6 Summary 35

4.6 Summary

In this section, uncertainty decoding is formally introduced in the context of the noise robust

ASR framework described in section 2.3. Given that the form of the speech prior in recognition

systems is typically Gaussian, the research focus of uncertainty decoding is to find tractable and

accurate forms of the conditional corrupted speech distribution. While this posterior can be highly

skewed, modeled it with a Gaussian form provides a Gaussian result when used with the Gaussian

speech prior. Two forms of the conditional distribution of the corrupted speech are presented:

SPLICE , a derivative of prior work, and a novel Joint distribution form. The various assumptions

implicit in these two forms are discussed. The uncertainty decoding framework as described has

the attributes of decoupling the front-end processing from the acoustic model complexity, yet

provides a model variance offset — the uncertainty. This should allow fast feature compensation,

with better performance boosted by a simple model variance update.



Chapter 5

Implementation Issues

The investigative work described so far relies on front-end models trained offline using stereo data

and SPR for specific conditions. However, a truly robust system flexibly responds to a changing

acoustic environment in the same way CMN gracefully handles different channel mismatches.

Standard model based techniques can be used to estimate the distributions required in a predictive

fashion by combining a model of the noise with a well trained model of the clean speech. Two

dominant approaches to do so are Parallel Model Combination (PMC) [24] and Vector Taylor

Series (VTS) [48] as described in section 3.3. The effects of using these approximations to the

compensation parameters should be investigated and compared to the performance of the ideal

SPR baseline.

5.1 Environment Estimation

The first step for an online, adaptive system is to characterise the acoustic environment. Specifi-

cally this entails estimating the noise statistics. This is typically done in an iterative fashion using

an EM framework as first proposed for this purpose in [48]. The general process is as follows:

1. Initialise estimates of µn, Σn and h

2. Expand the 1st order VTS model of the environment in equation 3.35 around initial estimates

3. Perform single step of EM to re-estimate µn, Σn and h

4. If the likelihood of the observation has not converged, iterate by going to step 2

5. Estimate the clean speech feature vector

Here µn and Σn are the statistics of the additive noise and h the mean of the channel noise

which assumed to be deterministic without variance. For the alignment stage of the EM step, a

GMM could be used to model the clean speech [36]. This allows fast compensation and alignment

in the EM step. The re-estimation can take place over a very small number of initial frames [36]

36
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or over one or more utterances [46]. Kim et al. achieved very good performance using such little

data to estimate the noise statistics. This would indicate that using VTS to continually provide

updated noise statistics even within an utterance is viable. Thus research has focused in this area

recently with Algonquin using VTS to supply statistics for the variational estimation of the model

distributions [19] and a noise-normalised version of SPLICE using VTS for the noise normalisation

mean [13].

5.2 Parameter Estimation

In the model-based enhancement frameworks, discussed earlier, MMSE based Wiener enhance-

ment is typically used once the clean and noise statistics are determined [17, 44]. For this work,

in addition to the clean speech estimate, an uncertainty estimate is required for the front-end pro-

cessing. Two different combination methods are available: PMC and VTS. In the next sections,

estimates of the Joint parameters for uncertainty decoding are presented using these techniques.

5.2.1 The Corrupted Speech Distribution

Given an estimate of the noise models and a well trained clean speech GMM, a corrupted speech

GMM can be estimated using the 1st-order VTS approximation from equation 3.38. The mean

and variance of each component n in the corrupted speech distribution are given by

µ(n)
y ≈ µ(n)

x + g(µn − µ(n)
x ) (5.1)

Σ(n)
y ≈ AΣ(n)

x AT + (I − A)Σn(I − A)T (5.2)

This ignores the effects of the channel. The corrupted speech distribution could also be obtained

by using PMC.

5.2.2 The Cross-Moment

Currently there is no analytic method to compute the covariance of the clean and corrupted speech

given the noise statistics and a clean speech model. Thus, a data-driven approach can be take

similar to DPMC. Given a log-add approximation using static MFCC parameters, the corrupted

speech can be combined with this mismatch function

yt = f(xt, nt) = C
[

exp(C-1xt) + exp(C-1nt)
]

(5.3)

where C is the discrete cosine transform matrix. Mismatch functions to compute the dynamic

coefficients can be found in [20]. For Joint uncertainty decoding, in order to obtain the cross-

moment of the clean and corrupted speech, it is necessary to estimate Σ̌
(n)

yx which can be computed

as

E
{

ytx
T

t |šn

}

= E
{

C
[

exp(C-1xt) + exp(C-1nt)
]

xT

t |šn

}

(5.4)
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Multiple corrupted speech observation can be generated using the mismatch function above, al-

lowing statistics required for the cross covariance to accumulate for estimation in a data-driven

PMC fashion. The log-add approximation itself is very efficient to compute, since the effects of

the variances are ignored; however there is a cost in inverse liftering and applying the DCT again

since the log-add operation takes place in the spectral domain. Also, estimation of the front-end

noise model in this way would be computationally proportional to the number of components

in the front-end model since more vectors would need to be drawn to accurately compute each

component. The number of sample vectors that need to be computed to provide a good estimate

of the cross-moment should be explored especially as it relates to performance.

The incorporation of dynamic estimation of the compensation parameters into the process in

figure 4.4 is shown in figure 5.1.

Corrupted 
Speech

Uncertainty 
Processing

Estimate 
Noise

Model 
Combination

Clean Speech 
GMM

n, qVTS

VTS
PMC

Figure 5.1: Dynamic compensation parameter estimation in the front-end

5.3 Computational Load

The computational cost of any algorithm is always a concern especially in the field of speech recog-

nition with its practical applications on servers where processing power is carefully provisioned

or on hand-held devices with minimal capabilities. The aim of uncertainty decoding is to provide

robustness at a minimal cost similar to other front-end techniques, rather than examine more

extensive model compensation methods. From section 4.3 it was found that both the SPLICE and

Joint forms modified the calculation of the output probability in the decoding in this way

p(yt|θt,M,M̌) ≈
∑

m∈θt

cmN
(

µ̂(n∗)
x ; µ(m),Σ(m) + Σ̂

(n∗)

x

)

(5.5)

Typically the cost of the front-end processing to calculate µ̂(n∗)
x is negligible compared to the

Gaussian evaluations in the actual recogniser. This would be the case in the forms of uncertainty

decoding introduced here as the feature processing consists of a simple Gaussian calculation and
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some simple matrix operations. In contrast, the state-based enhancement schemes in section 3.2.2

require decoding of a simple HMM in the front-end.

Once the the feature vector is updated, this is used directly in the decoding process. Thus the

main cost in uncertainty decoding is the addition of the uncertainty to the variances in the acoustic

models. This involves a sum, division and re-computation of the GConst normalisation term in

HTK for each Gaussian evaluation. The increase in the model variance should also increase the

number of active models being evaluated since the competing acoustic are compressed; this is the

equivalent of increasing the pruning threshold. In similar work, it was found that this form of

processing increased the recognition time by about 33%.

It would be useful to explore optimisations or alternate forms that achieve the same goal of

propagating uncertainty to the recogniser, but with less impact on performance. For example,

scaling the variances instead of adding a bias would be more efficient since the GConst is then

easily computed. It may be possible to compute an optimal variance scale factor given the bias

for each front-end component. Since the models are constantly being updated, it would be useful

to permanently update the models with the most frequently added bias, and normalise the rest of

the values; this would be more effective for low numbers of components in the front-end GMM.

This section discussed techniques to actively estimate the environment and predictively update

the front-end model when parallel corpora are not available. Since the estimation is usually

iterative, this can be a substantial computational cost and depending on the number of frames

required for accurate estimate, introduce a lag for real-time systems. The cost is a function of

the form of the front-end model, particularly the number of components N and the number if

iterations required for the estimate to converge.

5.4 Summary

The previous chapter introduced uncertainty decoding, and in this chapter, methods to dynami-

cally estimate the front-end model in an unsupervised manner were presented. This is important

for practical systems since stereo data is not always readily available and increases the robustness

of uncertainty decoding in unknown environments. Environmental estimation usually requires

an iterative process to accurately provide the parameters of the noise. Once the noise model is

estimated, PMC or VTS can be used to predictively compute the front-end model. Also, the

computational cost of uncertainty decoding was discussed. The main overhead in propagating the

uncertainty to the recogniser is the variance update and recalculation of the Gaussian normalisa-

tion term.



Chapter 6

Preliminary Experimental Results

This chapter presents preliminary results from experiments designed to explore the effectiveness

of uncertainty decoding in noisy conditions. The evaluation is based on the medium vocabulary

Resource Management (RM) task with artificially added noise. Various baseline and existing noise

robustness algorithms are evaluated to provide a contrast with uncertainty decoding. Two forms

of uncertainty coding are presented: SPLICE with uncertainty and Joint distribution uncertainty

decoding. The Joint uncertainty decoding is examined as an entirely feature-based form or

operating with a different for each class of acoustic models. These can be compared to a fast state-

of-the-art feature compensation system SPLICE and an efficient and powerful model adaptation

scheme in CMLLR.

6.1 Resource Management Task

These results are based on the 1000 word naval ARPA Resource Management (RM) database

[50] with noise artificially added at the waveform level from the NOISEX-92 database. The clean

RM data was recorded in a sound-isolated room using a head mounted Sennheiser HMD414 noise-

canceling microphone yielding a high signal-to-noise ratio of 49 dB1. The speech was recorded with

16 bit resolution at 20 kHz and down-sampled subsequently to 16kHz. The speaker independent

training data for this task consists of 109 speakers reading 3990 sentences of prompted script. The

utterances vary in length from about 3 to 5 seconds totaling 3.8 hours of data.

The NATO NOISEX-92 database provides recording samples of various artificial, pedestrian

and military noise environments recorded at 20 kHz with 16 bit resolution. The Destroyer Op-

erations Room noise was sampled at random intervals and added to the clean speech data at

the waveform level prior to parameterisation. A range of environments were simulated from 32

dB to 8dB SNR. Figure 6.1 shows the affect of the noise on one of the RM sentences “Clear all

1The wavmd tool from the NIST Speech Quality Assurance Package v2.3 was used to determine the SNR.

40
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windows”. The noise itself has a dominant low frequency background hum, an unknown repetitive

6 Hz broadband noise of a machine, and intermittent speech.

Figure 6.1: Clean spectrum (left) compared to with Operating Room noise at 8 dB SNR (right)
“Clear all windows”

The baseline recogniser was built using the RM recipe distributed with HTK [60]. The 39

dimensional feature vector consists of 12 MFCCs appended with the log energy and delta and

delta-delta coefficients. The cross-word, state-clustered triphone system with six components

per continuous output distribution was used along with a word pair grammar. All results are

quoted as an average of three of the four available test sets, Feb’89, Oct’89 and Feb’91, unless

otherwise stated; the Sep’92 test data was not used. This gave a total of 30 test speakers and 900

utterances. All decoding experiments were run using this system as the standard RM configuration

unless otherwise stated.

The parameters of the front-end GMMs required for some forms of decoding were trained using

iterative mixture splitting on either the clean data or artificially corrupted data. At each step the

number of components was doubled and then four iterations of Baum-Welch estimation performed.

The corresponding corrupted or clean GMM was then trained using SPR with stereo data.

Modifications to the HTK front-end in HParm.c were required to support the update of the

feature vectors and compute the uncertainty values. In HModel.c, the output probability methods

were updated to support the variance offset and dynamic recalculation of the GConst normalisation

term. The BW re-estimation was updated to support the training of the various models and

transforms in HERest.c and HFB.c.

6.2 Baseline Systems Performance

A variety of baselines are presented. First the clean system is evaluated on the clean data, and

across a range of SNRs. These results along with simple cepstral normalisation represent a lower

baseline compared to the upper bound that a matched system provides.
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Test Set
SNR Feb’89 Oct’89 Feb’91 Average

Clean 2.8 3.8 3.2 3.3
32 dB 5.4 6.0 4.7 5.4
26 dB 10.9 11.3 10.2 10.8
20 dB 37.6 32.6 32.2 34.1
14 dB 77.5 79.0 75.0 77.2
8 dB 97.2 97.1 98.4 97.5

Table 6.1: Word error rates (%) of a Clean RM system as SNR decreases

6.2.1 Clean System

Table 6.1 demonstrates the performance of the clean system for a range of SNR. As expected, simi-

lar to real conditions, the performance of the baseline, uncompensated system rapidly deteriorates

as the level noise increases.

6.2.2 Cepstral Normalisation

Most recognisers will apply CMN and CVN as described in section 3.1.2 for some level of interme-

diate robustness. In table 6.2 the use of cepstral mean and normalisation variance normalisation

is shown. As expected, a simple linear offset of the cepstral mean is effective and additional

normalisation of the variance provides gains across all conditions. Also, applying normalisation

at the speaker level is more powerful than the simple global estimates; the use of speaker level

statistics over global gives a gain from 18.2% to 16.8% compared to the clean baseline of 34.1%.

The best normalisation scheme halves the overall error rate compared to the uncompensated sys-

tem. However, the recognition accuracy is still not very good, and degrades rapidly as the SNR

decreases further. A simple bias or single linear transform of the cepstral space cannot address

the non-linear influence of noise in this domain.

CMN CMN+CVN
SNR Global Speaker Global Speaker

32 dB 5.2 4.6 4.5 3.8
26 dB 9.2 8.8 7.5 6.7
20 dB 25.8 24.0 18.2 16.8
14 dB 62.4 62.8 50.0 47.1
8 dB 92.1 92.1 88.2 84.4

Table 6.2: Word error rates (%) of CMN and CVN systems with normalisation at a global and
speaker level
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6.2.3 Matched Systems

The clean uncompensated system and cepstral normalisation front-end baselines provide lower

bounds for compensation schemes. A widely accepted upper bound is a matched system. Two

forms were discussed in section 3.3: SPR and SPR with two-model re-estimation. Table 6.3

shows the results from using a matched system trained using SPR. Such a system represents

a reasonable upper limit for non-iterative model-based compensation techniques such as PMC

and model domain VTS. As expected, and seen in other research, testing and training on matched

conditions yields good performance. At 20 dB SNR, the error rate is halved again from the speaker

normalised features 16.8% to 7.1% and much better than the 34.1% with the uncompensated

system. With a further 4 iterations of two-model re-estimation using clean speech state alignments,

the recognition accuracy improves slightly from 11.8% to 11.4% averaged across the range of SNR

evaluated. Still for these matched systems at lower SNR, the accuracy is unacceptably poor at

less than 90%; for humans, an SNR of 8 dB hardly affects the intelligibility 1. Thus from these

baseline results, the 20 dB SNR environment seems the most balanced condition to investigate

with a reasonable but not overwhelming difficulty. Thus most results reported focus on this level

of noise.

Test Set
SNR Feb’89 Oct’89 Feb’91 Average

32 dB 3.2 4.6 3.7 3.8
26 dB 4.4 6.4 5.3 5.4
20 dB 6.5 8.0 6.6 7.1
14 dB 12.8 14.2 12.8 13.3
8 dB 32.6 27.2 27.8 29.2

Table 6.3: Word error rates (%) of a SNR matched RM system as SNR decreases

6.3 Standard SPLICE Performance

The SPLICE algorithm requires the a GMM of the corrupted environment and MMSE estimates

of the offsets. Two forms of the GMM were studied. The first was the standard form where

the GMM is trained directly on noisy speech – this is referred to as the noisy front-end model.

Alternatively, the front-end model can be estimated by first training on clean speech data, and then

ideally compensating it using SPR. This is a more realistic scenario as data from the corrupted

environment is not always readily available. This form will be called the clean front-end model.

Table 6.4 presents the SPLICE results. As expected, with an increase in the number components

in the front-end GMM, the error rate is reduced. It is halved when 256 components are used.

1Based on the author’s sampling of test data.



6.4 Uncertainty Decoding 44

Front-End Number of Components
System Model 1 4 16 64 256

Clean — 34.1

SPLICE
Noise

25.9
20.8 17.3 15.1 14.1

Clean 20.4 16.8 14.6 12.9

Matched — 7.1

Table 6.4: Word error rates (%) comparing SPLICE with clean and noise front-end models, varying
the number of components at 20 dB SNR

Unexpectedly, the clean front-end performs better than the noisy; it is unclear why this is the

case. The noisy front-end should better model the corrupted acoustic space than the clean. The

single component front-end is equivalent to CMN applied at a global level in that both are static

biases applied to the feature vector. The hard approximation was found to be effective; a soft

weighting improved results only slightly for low numbers of components and provided negligible

gains at higher numbers of components. Overall, SPLICE provides good robustness, significantly

better than speaker level CMN plus CVN results of 16.8% compared to 12.9%, but still far from

the matched performance of 7.1%.

6.4 Uncertainty Decoding

The results presented in section 6.3 are for the baseline SPLICE system with no uncertainty decod-

ing. This section gives results for systems using uncertainty decoding. Results are presented for

both SPLICE with uncertainty (section 4.3.1) and the feature-based Joint scheme (section 4.3.2).

Front-End Number of Components
System Model 1 4 16 64 256

Clean — 34.1

SPLICE
Noise

10.8
10.8 10.7 10.2 9.8

Clean 13.1 12.8 11.4 11.2

Feature-Based Joint
Noise

10.6
11.4 11.8 11.2 11.8

Clean 9.5 10.1 9.3 9.3

Matched — 7.1

Table 6.5: Word error rates (%) comparing uncertainty algorithm implementations at 20 dB SNR

Table 6.5 shows the performance of SPLICE with uncertainty on the 20dB SNR noise corrupted

data. As in table 6.4, both noise and clean front-end forms were examined. It clear that for

all conditions, when comparing these results with those without uncertainty that uncertainty

decoding improves recognition accuracy. It is strange that with uncertainty, for SPLICE the noise

front-end performs better than the clean, opposite to the results seen without uncertainty. It was

found excessive insertion errors results with the addition of uncertainty with the clean front-end.
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Tuning the inter-model insertion penalty improved the results, but still did not match the noise

front-end performance. Surprisingly, the systems performed quite well with few components in the

front-end. Only a small gain is had from one component at 10.8%, to 9.8% with 256 for the SPLICE

system with the noise front-end. With a single component, a constant variance is propagated to

the decoding process.

The Joint distribution uncertainty decoding algorithm performed well, generally better than

the SPLICE form. In the best configurations this was 9.8 % compared to 9.3%. These are worse

than the matched result of 7.1%. For the Joint system, the clean front-end was better than the

noise. Again, the single component version performed surprisingly well. The single component

forms of decoding with uncertainty surpassed all the cepstral normalisation and SPLICE systems

without uncertainty. Also, the results show that the variance offset improves performance from

16.5%, applying a non-homogeneous transform to the feature vector as in global CMN plus CVN,

to 10.6% with the single transform Joint form. Overall the addition of uncertainty to decoding

proves beneficial.

Lastly, the behaviour of these forms can be examined for higher SNRs. In table 6.6, it can be

seen that the Joint form is consistently slightly better than SPLICE , and uncertainty decoding

in general significantly reduces the WER compared to an uncompensated system.

Front-End SNR
System Model 32 dB 26 dB 20 dB 14 dB

Clean — 5.4 10.8 34.1 77.2

SPLICE Noise 4.1 6.0 9.8 18.6
Feature-Based Joint Clean 4.0 5.5 9.3 19.3

Matched — 3.8 5.4 7.1 13.3

Table 6.6: Word error rates (%) comparing uncertainty algorithms with 256 components

6.4.1 Qualitative Comparison of Forms

Since the forms of uncertainty decoding can be interpreted as providing a clean speech estimate

and associated uncertainty, a plot can be produced to examine the signal processing. Figure 6.2

shows the C0 plot over time for the clean, noise corrupted, estimated clean speech and another

plot of the estimate with uncertainty for the sentence “Clear all windows”. As expected, the areas

where the clean speech signal is strong, such as voiced regions, have a good estimates of speech,

with low variance. In non-speech areas or those with less speech energy, such as the plosive n

in windows around the 80th frame, the clean speech estimate is poorer with greater uncertainty.

This is consistent with the expected operation of the algorithm.

The operation of the Joint algorithm can also be examined in the same way as shown in

figure 6.3 with the same sentence. For high energy regions of speech the same behaviour is observed
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Figure 6.2: Comparing C0 for clean speech, with Operating Room noise at 20 dB SNR and the
SPLICE speech estimate above using a 256 component noisy front-end. The distribution of x̂ is
plotted below.

as for the SPLICE scheme. However, for low speech energy regions, the estimates are more erratic

with very large uncertainties. Since the variances are so large, frames with such estimates have

little discriminative power and hence do not influence the decoding. An interesting finding was

that for both the SPLICE and Joint uncertainty decoding techniques, a single component front-

end performed very well. Figure 6.4 illustrates a plot similar to figure 6.3 for the Joint scheme

with a single component clean front-end. The clean speech estimate is poorer than for the 256

component system. However the variance is better behaved; it has greater uncertainty of high

speech regions compared to the 256 system, but lacks the erratic variance spikes in the low energy

areas.

6.5 Model Adaptation

Two forms of model adaptation were examined, CMLLR and a Joint transform, with regression

classes, operating as described in section 4.4. CMLLR provides a useful baseline as a linear

transform based compensation methods. With only a global regression class, it represents a linear

transform of the feature vector trained on the noise condition. With multiple regression classes, it

functions conceptually as parallel front-ends, each with a different transform for different classes

of models. The Joint transforms derived are similar to CMLLR with diagonal matrices, but has
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Figure 6.3: Comparing C0 for clean speech, with Operating Room noise at 20 dB SNR and the
Joint speech estimate above using a 256 component clean front-end. The distribution of x̂ is
plotted below.
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Figure 6.4: Comparing C0 for clean speech, with Operating Room noise at 20 dB SNR and the
Joint speech estimate above using a single component front-end. The distribution of x̂ is plotted
below.
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an added variance offset to the models. Models are classified according to a Euclidean measure

of closeness of their means. The effect of the number of classes on accuracy is explored. Model

Joint transforms also provide an interesting contrast to the feature-based Joint scheme as it does

not have this front-end component selection problem. Table 6.7 presents the model-based Joint

scheme compared with the performance of CMLLR and feature-based Joint .

Number of Classes
Transform 1 2 4 8 16 32 64

CMLLR – Diagonal 16.5 15.5 14.9 11.6 10.4 9.6 8.9
CMLLR – Block-Diagonal 15.8 19.4 18.3 10.0 9.2 8.8 8.7
CMLLR – Full 17.0 17.0 15.0 10.0 9.2 9.0 8.4
Model-Based Joint 10.6 10.0 9.9 9.1 8.9 9.2 9.2

Number of Components
System 1 4 16 64 256

Feature-Based Joint 10.6 9.5 10.1 9.3 9.3

Table 6.7: Word error rates (%) comparing different model transforms and Feature-Based Joint,
varying the number of classes/components at 20 dB SNR

It was found that performance leveled off after 64 classes and the addition of a silence class was

only slightly better for low numbers of regression classes. The CMLLR transforms were estimated

using two iterations of BW. The 2 and 4 class block-diagonal transforms were found to have not

converged thus giving the aberrant rates of 19.4% and 18.3%. It was found that full transforms

took much longer to train than block-diagonal transforms with little to no benefits, while the

block-diagonal transform did perform better than the diagonal transform as expected, indicating

that correlations within blocks are important, whereas correlations between the static, delta and

delta-delta coefficients are less so. Generally there was a sharp improvement in accuracy at eight

regression classes; thereafter, the accuracy only improves slightly. At eight classes, CMLLR with

block-diagonal transforms performed markedly better than the best SPLICE system, halving the

word error rate from 12.9% to 10.0 relative to the matched system at 7.1%. With 64 regression

classes, the accuracy nears the matched at 8.1%, however at a high computational cost. The

diagonal transform performs well at 11.6% better than SPLICE but worse than the block transform

with eight regression classes.

It is interesting to compare the global transform cases of CMLLR with SPLICE using only a

single component in the front-end GMM. As one would expect, with both the block and diagonal

transforms, the use of both a transform and a bias is far more effective than just a bias, as SPLICE

amounts to with one component – 15.8% and 16.5% compared to 25.9%. However, CMLLR with

a single class and a diagonal transform, is similar to CMN and CVN at a global level, giving
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comparable performance(16.8%). Since both transform and offset the feature vector in the same

manner this is expected.

The model-based Joint transform is equivalent to the feature-space version with one front-

end GMM component, sharing the same unexpectedly robust performance of 10.6%. From there,

there is a small incremental improvement, but after eight classes the performance levels. For the

fewer numbers of classes, the model-based Joint transform outperforms CMLLR, however with

large numbers of transforms CMLLR does slightly better than Joint . The relative improvement

moving from 1 to 8 or more regression classes is only about 15% or a gain of about one and half

percent absolute WER% whereas for the CMLLR transforms there is a substantial relative gains

of over 40%.

The diagonal CMLLR and the model-based Joint transforms provide a good comparison since

they both apply similar non-homogeneous transforms to the feature vector, but the Joint scheme

adds a variance offset. Also the Joint transform, as implemented, only uses diagonal covariances.

Since the diagonal CMLLR converges to the Joint performance with higher numbers of regression

classes, this suggests that either for more model specific transforms, finer estimation of the means

is more important than the estimation of the uncertainty offsets. Further to this point, the block

transform exceeds the performance of the uncertainty decoding when there are more than 32

regression classes. It would be interesting to explore the performance of the Joint transform with

a block form to see if the improved estimates translate to better a WER. The variances could be

constrained to diagonal or even a single global matrix to determine the effect coarser measures of

uncertainty have on recognition.

The model-based Joint transform and the feature-based version both plateau in performance

at just over 9% WER. It is unclear whether this is due to the forms which estimate the clean

speech or uncertainty, or if it is an inherent limitation in uncertainty decoding. It would be useful

to conduct experiments using the true uncertainty and this is possible using stereo data. The

magnitude-square error between the estimated cepstral vectors from the front-end and the true

clean speech can be used as Oracle uncertainty values[15].

6.6 Computational Load

By increasing the model variances with uncertainty decoding, given a set beam width, the number

of active models will naturally rise perhaps reducing the number of search errors, but definitely

increase the computational load. Hence, it is worth investigating the sensitivity of the results

to the number of active models. Table 6.8 shows the average number of active models during

decoding at different pruning thresholds, for a variety of schemes, and the associated WER for

reference on the Feb’89 test set. The SPLICE baseline is for a 256 component system and shows
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how the refined clean speech estimate allows the recogniser to more efficiently perform model

pruning during the search. The single component Joint configuration was of interest because

of its unexpectedly robust performance. At the standard pruning threshold of 300, the Joint

uncertainty decode causes a large increase in the number of models active in the recogniser. But it

can be seen that despite a two fold reduction in the pruning threshold and a significant drop in the

number of models evaluated to below the matched condition, the WER is only slightly affected.

Thus the Joint distribution uncertainty decoding is inherently sound, and gains are found even

when the number of active models are reduced to below standard levels.

With Pruning # Active
System Uncertainty? Threshold WER Models

Clean —
300 37.6 10153
150 33.9∗ 1632

SPLICE (Baseline) No 300 14.4 4306

Feature-Based
300 11.3 19680

Joint 1 Comp.
Yes 150 11.4 4096

100 11.7 1144

Feature-Based
300 8.9 16600

Joint 256 Comp.
Yes 150 9.1 3445

100 9.6 1037

Matched —
300 6.5 5535
150 7.1 865

Table 6.8: Word error rates (%) and active models at 20 dB SNR as pruning decreases on the
Feb’89 test set only. ∗Not all sentences yielded a hypothesis.

6.7 Summary of Results

Figure 6.5 shows the performance of some of the compensation configurations over a range of

SNRs. As expected the compensation schemes examined are bounded in performance by the clean

system performance as a lower bound and the matched, SPR, system as an upper bound. On

this task with the range of SNRs considered the two uncertainty decoding schemes performed

significantly better than SPLICE without uncertainty.

The preliminary results provide uncertainty decoding figures for two different forms of the

conditional corrupted speech distribution; one modeled directly using the joint distribution, the

other based on the Bayes equivalent, with the clean posterior using the SPLICE form. Both

yielded positive results compared to the baseline and cepstral mean and variance normalisation,

across a range of SNRs. The benefit of uncertainty decoding over standard decoding was clear.

There was a definite gain in the SPLICE form with uncertainty than without. With lower numbers

of model transforms, the addition of uncertainty gave the Joint scheme a clear gain over the

CMLLR transforms.
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Chapter 7

Conclusions

The overall aim of this work was to develop a form of fast noise compensation through the prop-

agation of uncertainty to the recogniser without the associated cost of model-based approaches.

To begin, a formal framework for noise robust automatic speech recognition was presented. Past

and present robustness techniques are reviewed in this framework. This inclues recent work in

uncertainty observations and decoding and its relation to this preliminary work. A framework for

uncertainty decoding was then presented in this context. Uncertainty decoding is based on pass-

ing the uncertainty of the decoding through an approximation of the conditional corrupted speech

distribution to the decoder. Tractable and efficient forms are the research focus, and two forms of

uncertainty decoding presented. One is based on the past work with SPLICE, the other is a novel

Joint distribution uncertainty decoding. This framework characterises the noise environment in

a front-end model, decoupling the front-end processing from the acoustic model complexity, but

still propagating the uncertainty of the current frame. The front-end model of these forms are

estimated from stereo data. Methods to dynamically estimate the front-end models in an un-

supervised fashion through iterative environment and predictive front-end model estimation are

discussed.

The Cambridge University HMM Toolkit was updated to support uncertainty decoding and

the estimation of the front-end models from stereo data. The SPLICE and Joint forms were

implemented and tested on the medium vocabulary Resource Management task across a range

of SNRs using artificially added NOISEX Operating Room noise. The addition of uncertainty

to the decoding gave definite gains in performance, although did not meet the matched condi-

tion. Surprisingly, a single component front-end yielded extremely good performance, with other

more sophisticated configurations only marginally improving on it. This amounts to some feature

processing and a static variance offset. Several approximations were made in the derivation of

these forms, and are felt to contribute to some loss in performance. It would be useful to run

Oracle experiments with more ideal form of uncertainty decoding, relaxing some constraints, and

using stereo data to determine theoretical upper bounds in this form of decoding. The run-time
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computational load was also examined. The variance expansion resulted in an increased number

of active models being evaluated, but a decrease in the pruning threshold increased the speed,

without adversely affecting performance.

7.1 Future Work

The work so far has provided a sound framework for further research. First, the AURORA corpus

should be obtained to allow better comparisons with contemporary systems. Next, experimen-

tation to explore the approximations made and investigate the upper bounds with uncertainty

decoding, and modified SPLICE and Joint forms should be conducted. The Joint form can be

freed from using stereo data, by actively estimating the noise and dynamically compensating the

front-end models. Lastly, a noise adaptive framework can be developed where uncertainty trans-

forms are estimated and applied during training and testing against a canonical acoustic model

set similar to speaker adaptive training. The final system should automatically recognise speech

from unknown environments in a robust and efficient manner through uncertainty decoding.



Appendix A

SPLICE Conditional Corrupted

Speech Derivation

In section 4.3.1 the SPLICE form of uncertainty decoding is derived. With the simplified clean

speech prior the conditional corrupted speech distribution takes the form
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The division of each component normal clean speech posterior distribution by the simplified single

Gaussian clean speech prior can be further detailed. If the covariance matrices are assumed to be

diagonal, the conditional can be derived per dimension i
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The difference of squares can be expanded and the terms collected as follows
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Now it becomes clear that the mean and variance of the normal distribution that is sought are
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Thus equation A.7 can now be written as
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This can now be written in the form of a normal distribution
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Thus with the assumption of diagonal covariance matrices it can be concluded that
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where the elements of the mean vector are given in equation A.10 and the diagonal elements in

the covariance matrix in equation A.11. With further manipulation, it can be shown that
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Appendix B

Convolution of Two Gaussian

Distributions

In the marginalisation across the clean speech variable xt this integral appears
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This integration can also be considered the convolution of the two normal distributions or the

sum of two independent random vectors w ∼ N
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yt|M,M̌, šn, sm, θt

)

= α(n)N
(

A(n)yt + b(n); µ(m),Σ(m) + Σ̂
(n)

x

)

(B.3)

A similar result can be found in [16].
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The Conditional Multivariate

Gaussian

Let x and y be multivariate Gaussian pdfs of dimensions p and q, mean vectors of µx and µx,

and covariance matrices of Σx and Σy respectively. The joint distribution of these two random

vectors can be considered Gaussian distributed

p(x, y) ∼ N (µ,Σ) (C.1)

where the mean and variance are given by

µ =
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and Σxy and Σyx are the cross covariances between x and y, and Σxy = ΣT

yx.

Bayes’ rule dictates that

p(x|y) =
p(x, y)

p(y)
(C.3)

Since both p(x, y) and p(y) are Gaussian distributed, the conditional pdf of x given y is also

Gaussian distributed
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Σx|y = Σx −ΣxyΣ
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A similar form can also be derived for p(y|x). Σx|y is also referred to as the Schur decompo-

sition of Σ with respect to Σy and may be written as Σ|Σy
.
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