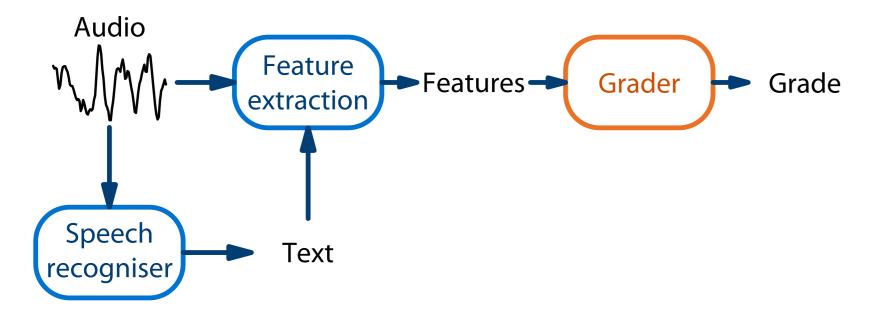
Deep Density Networks with Uncertainty for spontaneous spoken language assessment

Andrey Malinin, Yu Wang, Kate Knill and Mark Gales {am969,yw396,kate.knill,mjfg}@eng.cam.ac.uk

ALTA Institute / Department of Engineering, University of Cambridge

Introduction

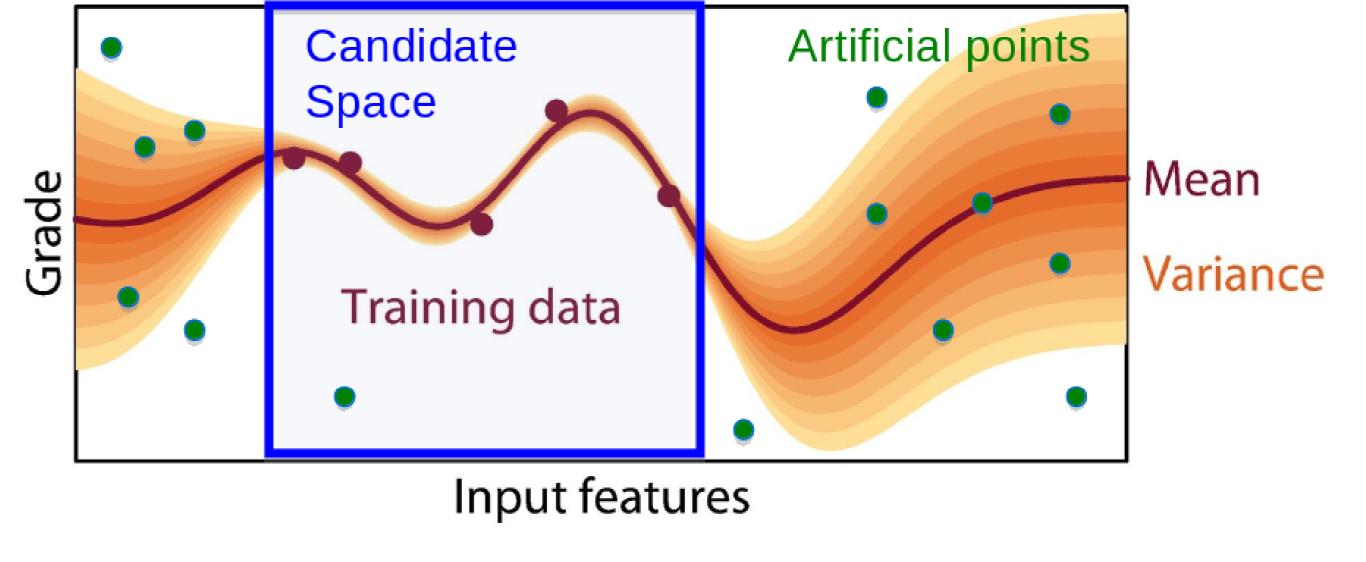
Many people are learning English → want official qualifications
 To help meet this demand: Automatic assessment of spoken English



- ► An automatic grader:
 - is more consistent than human graders

Deep Density Network with Noise

- Need variance to depend on distance of x from training data
 - Low/High variance near/far from training data
- Solution: Specify variance explicitly
 - ► Define a low variance empirical distribution P_D over real data
 - ► Define a high-variance artificial data distribution P_N (Factor Analysis)
 - Train DDN to model both distributions



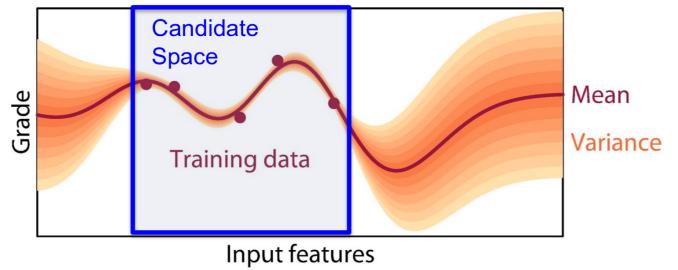
- has significantly higher throughput
- How to deal with difficult to grade speakers?
- \blacktriangleright Estimate uncertainty in prediction \rightarrow
 - Reject speakers with greatest uncertainty to human graders

Uncertainty in Gaussian Processes and DNNs

Principled way of deriving model uncertainty:

$$p(g|oldsymbol{x},\mathcal{D}) = \int p(g|oldsymbol{x},\mathcal{M}) p(\mathcal{M}|\mathcal{D}) \mathrm{d}\mathcal{M}$$

 \blacktriangleright For Gaussian Process can solve integral \rightarrow



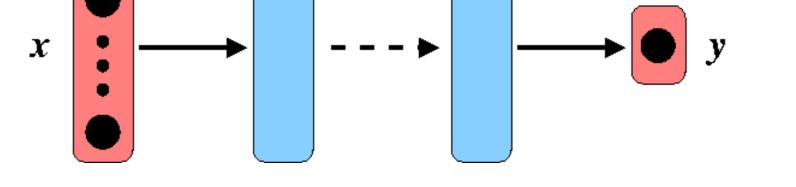
- ▶ Non-parametric Bayesian model: $f_{GP}(\mathbf{x}; \mathcal{D}) \rightarrow \mu_g(\mathbf{x}), \sigma_g^2(\mathbf{x})$
- Uncertainty depends on proximity of test data to training data
- Limitations $O(n^2)$ memory, $O(n^3)$ compute \rightarrow use DNNs

- Two stage training process:
 - 1. Train standard DDN on real data
 - 2. Continue training DDN in multi-task fashion \rightarrow
 - Minimize KL divergence of p(g|x; M) to p_D and p_N

 $\mathcal{L} = \mathrm{E}_{\hat{\mathbf{x}}}[\mathrm{KL}(\mathrm{p}_{\mathrm{D}} || \mathrm{p}(\mathrm{g} | \hat{\mathbf{x}}; \mathcal{M})] + \alpha \cdot \mathrm{E}_{\tilde{\mathbf{x}}}[\mathrm{KL}(\mathrm{p}_{\mathrm{N}} || \mathrm{p}(\mathrm{g} | \hat{\mathbf{x}}; \mathcal{M})]$

Evaluation Metrics, Data and Experiments

- ► Grader Performance Assessment:
 - Pearson Correlation Coefficient (PCC)
 - Mean Squared Error (MSE)
- Useful to have a single value to represent rejection performance
 - ► Assess using Area Under Curve Rejection Ratio AUC_{RR}

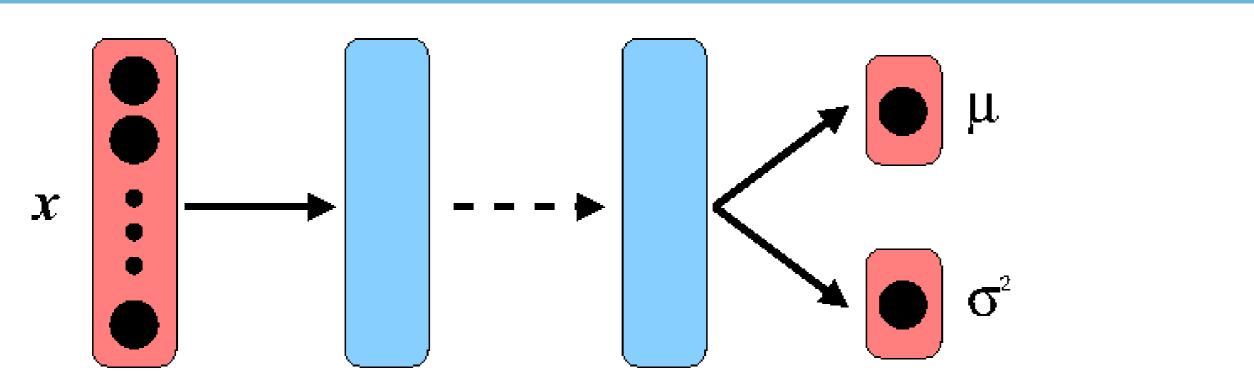


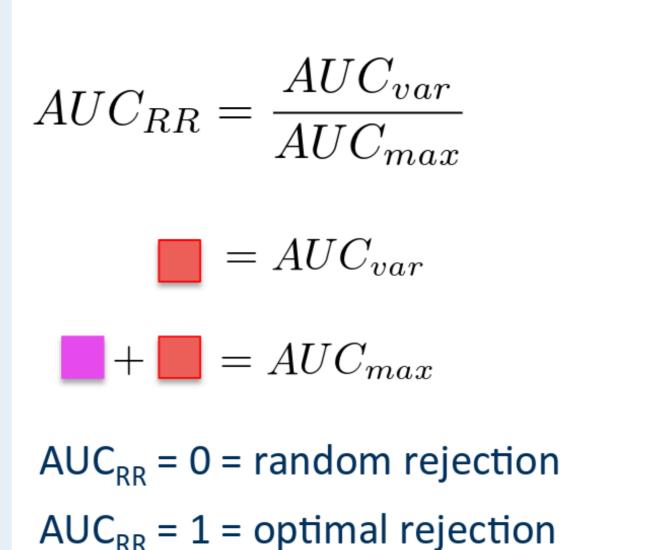
- ▶ Parametric model: $f_{DNN}(\mathbf{x}; \mathcal{M}) \rightarrow \mu_g(\mathbf{x})$
 - Advantages scalable and flexible architecture
 - \blacktriangleright Limitation No natural uncertainty measure \rightarrow
 - approximate via Monte-Carlo Dropout:

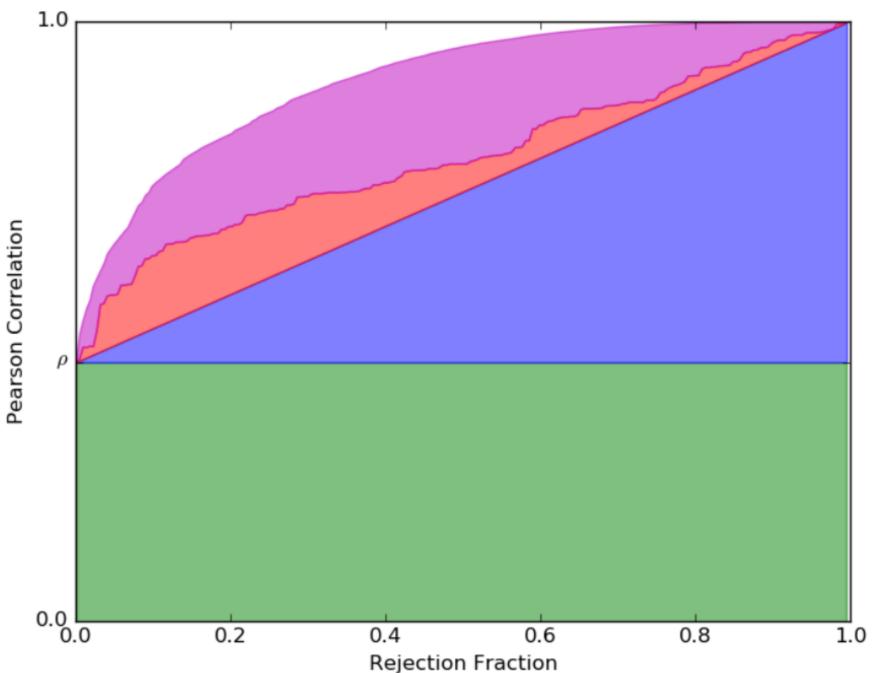
$$egin{aligned} \hat{\mu}_g(oldsymbol{x}) &= rac{1}{N} \sum_{i=1}^N f(oldsymbol{x}; \mathcal{M}^{(i)}) \ \hat{\sigma}_g^2(oldsymbol{x}) &= rac{1}{N} \sum_{i=1}^N \left(f(oldsymbol{x}; \mathcal{M}^{(i)})
ight)^2 - \hat{\mu}_g^2(oldsymbol{x}) \end{aligned}$$

Prediction uncertainty depends on uncertainty in weights
 Uncertainty measures for both models are implicit

Deep Density Network







Acoustic and ASR-derived features from spontaneous responses

- ► 4300 training and 230 evaluation speakers
- Training on standard grades
- Evaluation on expert grades

Grader	PCC	10% Rej. PCC	AUC	AUC _{RR}
GP	0.876	0.897	0.942	0.233
$MCD_{\mathtt{relu}}$	0.879	0.892	0.937	0.040
$MCD_{\mathtt{tanh}}$	0.865	0.886	0.938	0.226
DDN	0.871	0.887	0.941	0.230
+MT	0.871	0.902	0.947	0.364

▶ DDN parametrises a normal distribution p(g|x; M) over grades.

$$egin{aligned} &f_{\mu}(\mathbf{x};\mathcal{M})=\mu_{g}(\mathbf{x})\ &f_{\sigma^{2}}(\mathbf{x};\mathcal{M})=\sigma_{g}^{2}(\mathbf{x})\ &p(\mathbf{g}|\mathbf{x};\mathcal{M})=\mathcal{N}(g|\mu_{g}(\mathbf{x}),\sigma_{g}^{2}(\mathbf{x})) \end{aligned}$$

Train by maximizing likelihood

DDN variance represents the spread in grade given input $x \rightarrow$

- \blacktriangleright Natural noise associated with the data \rightarrow implicit uncertainty
- Want uncertainty based on similarity to training data
 - Assign uncertainty explicitly!

Table: Grading and rejection performance

Conclusions

- Novel method for explicitly training DDNs to yield uncertainty estimates
 Has comparable grading performance as GP and DNN
 Provides a better uncertainty measure for rejection.
 - Combines essence of GP uncertainty with scalability of DNN
- \blacktriangleright Future Work \rightarrow consider advanced methods of generating artificial data