An avatar-based system for identifying individuals likely to develop dementia

Bahman Mirheidari¹, Daniel Blackburn³, Kirsty Harkness⁴, Traci Walker⁵, Annalena Venneri^{3,7}, Markus Reuber⁶, and Heidi Christensen^{1,2}

¹Department of Computer Science, ²Centre for Assistive Technology and Connected Healthcare (CATCH), ³Sheffield Institute for Translational Neuroscience (SITraN), ⁴Department of Neurology, ⁵Department of Human Communication Science, ⁶Academic Neurology Unit, University of

Sheffield, Sheffield, UK; ⁷IRCCS Fondazione Ospedale San Camillo, Venice, Italy

Introduction

Dementia

- General term for a broad category of *decline in mental ability*
- Starts with subtle *word finding difficulties*, a decline in thinking or memorising; aggravates over time and ultimately leads to *loss of communication*.

Experiment

Data

- A) Neurologist-patient conversations: Audio files and transcriptions of interviews of 15 FMD and 15 ND participant-doctor consultations
- B) Avatar-patient conversations: Audio files and

C.Classification and feature selection

Table 3: Classification accuracy; <u>man</u>':using gold-standard transcript instead of ASR-produced transcripts; CA': CA-style features; AC':acoustic features; LX':lexical features; T10':top 10 informative features.

Train/Test	CA	AC	LX	ALL	T10
A	96.7%	83.3%	66.7%	76.7%	100%
В	76.7%	60.0%	50.0%	76.7%	90.0%
С	58.3%	66.7%	83.3%	66.7%	75.0%
D	72.7%	63.6%	63.6%	81.8%	72.7%
E	63.6%	54.5%	63.6%	90.9%	72.7%

- Challenging to diagnose due to the lack of *reliable bio-markers*, *overlapping symptoms* with normal ageing and *low accuracy* of existing cognitive (*"pen-and-paper"*) screening tools
- Effect on language ([1, 2]) includes: *loss of vocabulary*, impoverished and *simplified syntax/semantics*, and overuse of semantically
 empty words
- Conversation analysis (CA) [3] (an approach to study social interaction/communication ability) has been used for people with dementia (e.g. [4, 5]), but it requires audio/video recording, transcribing, and a qualitative analysis (carried out by an *expert*); time-consuming and relatively expensive and not applicable for large scale use

transcriptions of conversations of 6 FMD and 6 ND participant with the Avatar.

Features

- Conversation Analysis inspired[3]: 20 features, e.g. patient answered me for who's most concerned question, average number of empty words (CA is an approach to study social interaction/ communication ability of people which has been used recently for people with dementia (e.g. [4, 5])
- Acoustic: 12 features, e.g. silence, intonation, pitch, H1-H2
- Lexical (Part of Speech): 12 features, e.g. number of verbs, nouns adverbs, etc

Avatar system

- Avatar head animation: Botlibre (https://www.botlibre.com).
- Avatar voice: Pre-recorded human voice

and the second
A. C.
1 2

A: HUM_man/HUM_man B:HUM/HUM C:AVA_man+HUM_man/AVA_man D:AVA_man+HUM_man/AVA E:AVA+HUM_man/AVA

D.Differences between the two conversations

Figure 3: Histogram of the average turn length.

Research questions

- Is it *feasible* to develop an *automatic tool* to help doctors in diagnosing dementia? What kind of *speech, text and ML technologies* and tools can be used for designing such a system?
- Task is to classify between two types of memory diseases with very similar symptoms:
 neudegenerative dementia (ND) and *functional memory disorder (FMD)*
- To what extent it is *feasible* to use *an avatar* front-end to elicit conversational diagnostic features?

Dementia detection system

- Diarisation (*who talks when*) (SHoUT toolkit)
- Automatic speech recognition (ASR) (Kaldi toolkit)

Timer 00:14

Figure 2: Prototype avatar

Recording ...

Question 10/12

Repeat Next

Results

A.Speech recognition

Table 1:Speech recognition results.

System	Train	Test	WER
Baseline_HUM	HUM	HUM	55.7%
Baseline_AVA	AVA	AVA	77.0%
Cross domain	HUM	AVA	65.0%
MAP adaptation	Map on HUM	AVA	58.7%
Combining data	HUM+AVA	AVA	46.2%

Conclusions and further work

Challenges

- Spontaneous speech resulting in ASR with high WER
- Background noise, mic far from patient
- Challenging *diarisation task*, high DER
- Large number of *overlapping segments*
- Lack of *feedback from the Avatar*, resulted in long turn responses

Conclusions

- We have proposed a fully *automatic* system for detecting dementia
- *Feasible* of replacing the neurologists with the Avatar
- Low cost of the potential tool to stratify patients with memory complaints

- Feature extraction (NLTK python + Praat toolkit)
- Machine learning classifier (SVM from Scikit-learn python)

Figure 1: Block diagram of dementia detection system

B.Diarisation

DER: Diarisation Error Rate, a common metric to measure the performance of a diarisation tool , including the missing speaker error: E_{MISS} , false alarm: E_{FA} , and speaker error: E_{SPKR} . W-DER: Word diarisation error, extending the diarisation error to the words recognised by the ASR.

Table 2: DER and W-DER

Data	E _{MISS}	$\mathbf{E}_{\mathbf{FA}}$	E _{SPKR}	DER	W - DER
HUM_di	a 2.7%	14.9%	12.8%	30.4%	5.7%
AVA_di	a 11.6%	6.9%	11.1%	29.6%	16.8%

Future work

- Expanding to include more feature set
- *Improving* the ASR, diarisation and feature extraction
- Improving the Avatar to make it more responsive

References

- [1] Bayles, K.A. Kaszniak, A.W.(1987).Communication and cognition in normal aging and dementia. Taylor Francis Ltd London.
- [2] Tang-Wai, D.F. Graham, N.L.(2008). Assessment of Language Function in Dementia.Geriatrics and Aging,11, 103-110.
- B] Lerner, G.H. (2004). Conversation Analysis: studies from the first generation. Amsterdam John Benjamins Pub.
- 4] Kindell, J., Sage, K., Keady, J. Wilkinson, R.(2013). Adapting to conversation with semantic dementia: Using enactment as a compensatory strategy in everyday social interaction. International Journal of Language and Communication Disorders, 48, 497-507.
- [5] Elsey, C., Drew, P., Jones, D., Blackburn, D., Wakefield, S., Harkness, K., Venneri, A. Reuber, M.(2015). Towards diagnostic conversational proles of patients presenting with dementia or functional memory disorders to memory clinics.Patient Education and Counseling,98, 1071-1077.