Deep Activation Mixture Model for Speech Recognition

C. Wu and M.J.F. Gales {cw564,mjfg}@eng.cam.ac.uk

Department of Engineering, University of Cambridge

1. Introduction

- DNNs are commonly treated as "black-box" models
 - Hard to interpret and group DNN parameters
 - Make regularisation and adaptation challenging
- Deep activation mixture models (DAMMs) are proposed to
 - Improve network regularisation and interpretation
 - Allow novel network adaptation schemes

2. Hidden Unit Reorganisation

5. Adaptation

Adaptation on Gaussian components of mixture model

$$h_{ ext{mix},i}^{(ls)} = g^{(l)} \sum_{k=1}^{K} \omega_k^{(l)} \mathcal{N}\left(\boldsymbol{s}_i; \boldsymbol{\mu}_k^{(ls)}, \boldsymbol{\Sigma}_k^{(ls)}\right)$$

- A compact set of parameters to adapt $\{ m{\mu}_k^{(ls)}, m{\Sigma}_k^{(ls)} \}_{1 \leq l \leq L}$
- Allow robust and rapid adaptation
- $\Sigma_k^{(\prime)}$ can be rewritten using unit variance and correlation coefficient

$$\boldsymbol{\Sigma}_{k}^{(\prime)} = \begin{vmatrix} \sigma_{k1}^{(\prime)2} & \rho_{k}^{(\prime)}\sigma_{k1}^{(\prime)}\sigma_{k2}^{(\prime)} \\ \rho_{k}^{(\prime)}\sigma_{k1}^{(\prime)}\sigma_{k2}^{(\prime)} & \sigma_{k2}^{(\prime)2} \end{vmatrix}$$

- Reorganise units of each hidden layer to form a grid
 - Avoid the arbitrary ordering of hidden units
 - Enable activation functions to be related in regions of the network
- Each unit *i* is represented as a point s_i in the grid space

3. Network Topology

• Parametrise $\boldsymbol{\sigma}_{k}^{(\prime)}$ and $\rho_{k}^{(\prime)}$ to satisfy the positive-definite constraint $\boldsymbol{\sigma}_{k}^{(\prime)} = \exp\left(\tilde{\boldsymbol{\sigma}}_{k}^{(\prime)}\right), \, \rho_{k}^{(\prime)} = \tanh\left(\tilde{\rho}_{k}^{(\prime)}\right)$

6. Experiment

- Data and setup
 - 144-hour English broadcast news dataset (LDC97S44, LDC98S71)
 - DNN-HMM hybrid ASR framework
 - ▶ 5 hidden layers with 1024 units for both DNN and DAMM systems
 - ► 46 Gaussian components to form DAMM mixture models
 - Unsupervised utterance-level adaptation
- Grid-output example of mixture and residual models

How to relate different activation funcitons?

 $oldsymbol{h}^{(\prime)} = oldsymbol{h}^{(\prime)}_{ ext{mix}} + oldsymbol{h}^{(\prime)}_{ ext{res}}$

Mixture model — activation function contour

 $h_{\mathrm{mix},i}^{(\prime)} = g^{(\prime)} \sum_{k=1}^{K} \omega_k^{(\prime)} \mathcal{N}\left(\boldsymbol{s}_i; \boldsymbol{\mu}_k^{(\prime)}, \boldsymbol{\Sigma}_k^{(\prime)}\right)$

- ▶ Dynamic scaling factor $g^{(\prime)}$ and mixing weights $\omega^{(\prime)}$ $g^{(\prime)}$ — sigmoid $\omega^{(\prime)}$ — softmax
- Interpret Gaussian component as phoneme or . . .
 - E.g. set $\{\mu_k^{(\prime)}\}$ as 2D projection of phoneme average features
- Perform adaptation on Gaussian mean vector and covariance matrix
- Residual model fluctuations on contour

$$m{h}_{ ext{res}}^{(\prime)} = anh\left(m{W}^{(\prime) ext{T}}m{h}^{(\prime-1)} + m{c}^{(\prime)}
ight)$$

Add small "noise" to GMM contour

4. Training

(a) Mixture

(b) Residual

(c) Mixture+residual

► CE performance comparison [WER (%)]

System	Dev	Eval
DNN(tanh)	12.8	11.0
DAMM	12.3	10.6
DNN(sigmoid)	12.4	10.8

Adaptation of mean, variance and correlation coefficient on CE DAMM

System	Adapt			Πον	Eval
	mean	variance	correlation	Dev	LVal
SI	X	X	X	12.3	10.6
SD	\checkmark	X	X	12.2	10.6
	X	\checkmark	\checkmark	12.1	10.5
	\checkmark			12.0	10.4

More effective to adapt covariance matrix than mean vector

MPE performance comparison

Highly restricted mixture model v.s. powerful residual model
How to train mixture model to the maximal extent?

 $\boldsymbol{h}^{(\prime)} \simeq \boldsymbol{h}^{(\prime)}_{ ext{mix}} \quad \Rightarrow \quad \boldsymbol{h}^{(\prime)}_{ ext{res}} \simeq \boldsymbol{0}$

Training criterion with residual-model regularisation

 $\mathcal{F}(\boldsymbol{\theta}_{\mathrm{mix}}, \boldsymbol{\theta}_{\mathrm{res}}) = \mathcal{L}(\boldsymbol{\theta}_{\mathrm{mix}}, \boldsymbol{\theta}_{\mathrm{res}}) + \eta ||\boldsymbol{\theta}_{\mathrm{res}}||_2^2$

Isolating training mode

Algorithm 1 Isolating Training Mode of DAMM.

1: for l := 1 to L do 2: initialise $\theta_{res}^{(l)} = \mathbf{0}, \theta_{mix}^{(l)}$

- 3: **update** θ_{mix}
- 4: **update** $\theta_{\rm res}$
- 5: **end for**

6: finetune $\theta_{\rm res}$

System	Adapt			Πον	Fyal
	mean	variance	correlation	Dev	LVai
DNN(sigmoid)		11.4	10.1		
DAMM	X	X	X	11.4	10.0
	\checkmark			11.1	9.8

Up to 3% rel. WER reduction by adaptation

7. Conclusions

Propose DAMM for network regularisation and adaptation
 Extend L2 regularisation to approach a dynamic surface, not zero
 Novel adaptation scheme to modify the dynamic surface