A hierarchical architecture for automatic pronunciation assessment of spontaneous non-native English speech based on phone distances

Konstantinos Kyriakopoulos, Kate K.M. Knill, Mark J.F. Gales

{kk492,kate.knill,mjfg}@eng.cam.ac.uk

ALTA Institute / Department of Engineering, University of Cambridge

Introduction

- Automatic assessment: How bad is speaker's pronunciation? >
- Feedback: How is speaker's pronunciation bad? >
 - Individual mispronunciations
 - Overall problem phones

Motivation:

Computer assisted language learning (CALL)

Process Outline

Auto-marking of oral exams

- Features should be predictive of grade and interpretable
- DNN used as grader (see process outline \rightarrow)
- Extraction and grading initially separate, then combined **Constraints**:
 - Unstructured, spontaneous speech
 - High ASR word (and phone) error rate (c. 40%)
 - No native models with identical text
 - Broad not narrow transcription
 - Variability in speaker attributes

Feature Extraction

Each phone characterised relative to others

Hierarchical System

Combines feature extraction and grading

- Bi-LSTM projects frame sequence to phone instance feature (as in Siamese ∠)
- Weight-and-sum instance features to overall phone feature
 - Weights from instance features and phone identities (i.e. attention mechanism over instances)
- Siamese networks get distance between each phone pair
- Distances projected to score via DNN
- Full system backpropagated across

Phone-to-phone distances acts as features

Baseline: Train Gaussian model for each phone and calculate K-L divergences between each pair

Siamese:

- Bi-LSTM projects frame sequence to phone instance feature
- Euclidean distance (d) between each pair of instances
- Two ways to train:
 - Classifier of instance pairs as same vs. different phone
 - > Predictor of baseline phone distance features

Attention weights identify salient phone instances:

a/10 ⁻³	0.50	0.01	<u>1.2</u>	5.6	<u>0.93</u>	1.8
	/dh/	/ax/	<mark>/ah/</mark>	<mark>/dh/</mark>	<mark>/ax/</mark>	/r/

Average instance pairs for each phone pair to get features

Assessment Performance

Evaluated as Pearson correlation between predicted and actual scores in held out evaluation set

L1 of speakers is Gujarati

	Siamese extractor => DNN grader	Hierarchical System
PCC	0.644	0.680

Hierarchical system outperforms separate systems as expected Need method to evaluate feedback