

Applying Deep Learning in Non-native Spoken English Assessment

Kate Knill

APSIPA 21 November 2019

Automated Language Teaching & Assessment Institute

Virtual Institute for

cutting-edge research on non-native English assessment

- Machine Learning and Natural Language Processing
- Develop technology to enhance assessment and learning
- Look to benefit learners and teachers worldwide

Spoken Language Assessment & Learning

Spoken Language Assessment & Learning

Spoken Language Assessment & Learning

- Automate (English) spoken language assessment & learning
 - without simplifying/limiting form of test: "free speaking"
 - possibility for richer, interactive, tests
 - desire to assess communication skills

CEFR - Levels of Foreign Language (L2) Learning

- Internationally agreed standard for assessing level
 - Common European Framework of Reference (CEFR)
- Basic User
 - A1 breakthrough or beginner
 - A2 way-stage or elementary
- Independent User
 - **B1** threshold or intermediate
 - B2 vantage or upper intermediate
- Proficient User
 - C1 effective operational proficiency or advanced
 - C2 mastery or proficiency

Spoken BULATS (Linguaskill Business)

- Business Language Testing Service (BULATS) test
 - includes: Reading and Listening, Speaking and Writing tests
 - low-stakes test Spoken test recorded and assessed off-line
- Example of a test of communication skills:
 - A Introductory Questions: your name, where you are from
 - **B** Read Aloud: read specific sentences

Cambridge ALTA

C Topic Discussion: discuss a company that you admire

D Interpret and Discuss Chart/Slide: example above

- Assessment: spoken language assessment framework
 - non-native speech recognition
 - features for assessment
 - form of classifier and uncertainty
- Feedback to candidate: integrate assessment and learning
 - spoken "grammatical error" detection/correction
- Malpractice: detecting attempts to "game" the system
 - off-topic response detection

Assessment

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

8/45

Assessment Framework [18]

Assessment Framework [18]

Key Challenges:

Input speech variability

- Speakers: large range of L1s, non-native speech, wide ability
- Recordings: varying background noises, channel corruptions

Assessment Framework [18]

Key Challenges:

Input speech variability

Cambridge ALTA

- Speakers: large range of L1s, non-native speech, wide ability
- Recordings: varying background noises, channel corruptions ⇒ High word error rate (WER): propagates through system

Automatic Speech Recognition [17, 2]

- Baseline Automatic Speech Recognition (ASR) yields:
 - time aligned word/disfluencies/partial-word sequence
 - time aligned phone/grapheme sequence
 - word level confidence scores

Cambridge ALTA

MBRIDGE

Deep-learning based ASR systems used:

- Kaldi-based lattice-free MMI acoustic models
- ensemble combination uses sequence teacher-student training
- rescoring with RNNLM and su-RNNLM based language models

12/45

- Baseline features mainly fluency based, including:
- Audio Features: statistics about
 - fundamental frequency (F0)
 - speech energy and duration
- Aligned Text Features: statistics about
 - silence durations
 - number of disfluencies (um, uh etc)
 - speaking rate
- Text identity features
 - number of repeated words (per word)
 - number of unique word identities

Baseline Features: Correlation with Grades

Examine distribution of extracted features with grade

Cambridge ALTA

example box-plots for speaking rate and percentage disfluencies

14/45

Derived Features: Phone-Distances [13]

- Pronunciation is an important predictor of proficiency
 - but no reference native speech for free speaking tasks
- Phone distance features are one approach

- each phone characterised relative to others
- independent of speaker attributes

Cambridge ALTA

characterise speaker's pronunciation of each phone

Model-based Pronunciation Features [6]

ASR phone alignment

Cambridge ALTA

• Train Gaussian model for each phone $\mathbf{x}^{(i)}$ and speaker s:

$$p(\mathbf{x}^{(i)}|\omega_{\phi}) = \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{\phi}^{(s)}, \boldsymbol{\Sigma}_{\phi}^{(s)})$$

Compute relative entropy between each phone-pair $\mathcal{D}_{\phi,\psi}{}^{(s)}$

Model-based Pronunciation Features

- Pair-wise entropies used as features in grader
 - yields small gains in assessment performance
 - pattern is first language (L1) dependent

Model-based Pronunciation Features

- Pair-wise entropies used as features in grader
 - yields small gains in assessment performance
 - pattern is first language (L1) dependent

Cambridge ALTA

General approach ⇒ tunable approach based on deep learning

• Siamese networks map features to a meaningful distance space

• Train distances for classification

$$y = \mathcal{F}(||\boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{\theta}) - \boldsymbol{f}(\boldsymbol{x}_j; \boldsymbol{\theta})||)$$

- maps features \boldsymbol{x}_i and \boldsymbol{x}_j to new space
- parameters of mapping network the same heta
- Easy to define training targets
 - y = 1 if x_i and x_j different classes
 - y = 0 if x_i and x_j same class
- For phone-distance system
 - can use KL-divergence targets

Deep Learning Pronunciation Features [7]

イロト イ部ト イヨト イヨト 二日

UNIVERSITY OF CAMBRIDGE

19/45

Grader

• Supervision data assessment is a score (0-6)

Cambridge ALTA

• assessment run as a regression task: $p(y|\mathbf{x}^*; \boldsymbol{\theta})$

(日)

- Gaussian process
 - non-parametric model based on joint-Gaussian assumption

• GP mean is used as the score prediction

Cambridge ALTA

- GP variance is a standard aspect of the model
 - gives measure of confidence in assessment

• • • • • • • • • • • •

Deep Learning: Deep Density Networks [1, 9]

Deep Density Networks predict parameters of a distribution

$$p(y|\mathbf{x}^{\star};\boldsymbol{\theta}) = \mathcal{N}(y; f_{\mu}(\mathbf{x}^{\star};\boldsymbol{\theta}), f_{\sigma}(\mathbf{x}^{\star};\boldsymbol{\theta}))$$

flexible framework for any form of distribution

Cambridge ALTA

distribution variance gives measure of confidence in assessment

< □ > < □ > < □ > < □ >

Grader Uncertainty: Ensembles of DDNs [10]

Generate distribution over distributions

- Ensemble diversity yields more reliable uncertainty estimates
- Sources of uncertainty can be split ⇒ better decision making

Assessment System Performance

- Accurately annotated corpus for system development
 - 220 speakers over 6 L1 languages (3 Asian, 3 European)
 - accurate manual transcriptions, ASR evaluation (WER%)
 - expert (CA) CEFR grading, grader evaluation

Assessment System Performance

- Accurately annotated corpus for system development
 - 220 speakers over 6 L1 languages (3 Asian, 3 European)
 - accurate manual transcriptions, ASR evaluation (WER%)
 - expert (CA) CEFR grading, grader evaluation
- Non-Native ASR: real-time decoding (non-RNNLM)

	A1	A2	B1	B2	С	Avg
Baseline ASR	33.8	27.7	21.2	19.9	16.5	21.3
+RNNLM	31.8	25.4	19.6	18.0	14.7	19.5

"basic users" (A1/A2) highly challenging data

Assessment System Performance

- Accurately annotated corpus for system development
 - 220 speakers over 6 L1 languages (3 Asian, 3 European)
 - accurate manual transcriptions, ASR evaluation (WER%)
 - expert (CA) CEFR grading, grader evaluation
- Non-Native ASR: real-time decoding (non-RNNLM)

	A1	A2	B1	B2	С	Avg
Baseline ASR	33.8	27.7	21.2	19.9	16.5	21.3
+RNNLM	31.8	25.4	19.6	18.0	14.7	19.5

- "basic users" (A1/A2) highly challenging data
- Assessment: using complete test

Cambridge ALTA

PCC	MSE	%≤ 0.5	%≤ 1.0
0.888	0.31	68.2	94.2

• ≤ 1.0 indicates within one CEFR grade-level

Performance Analysis

58

25/45

Incorporating Assessment Uncertainty

- Use uncertainty measures to detect "high" error predcitions
 - these can be tagged for manual checking

Cambridge ALTA

MBRH

Speak and Improve: https:speakandimprove.com

Current beta of free speaking web-application

Cambridge ALTA

MBRIDGE

 collaboration between ALTA, Cambridge Assessment and Industrial partners

Feedback: Spoken Learner 'Grammatical' Errors

- Feedback to the candidate is important for language learning
 - many aspects of spoken language contribute to overall grade
 - performance on each aspect varies between candidates
- Message Realisation (Fluency):
 - is the pronunciation correct?
 - is the correct intonation pattern used?
 - is the speech delivered in a coherent fashion?
- Message Construction:
 - is the response relevant to the prompt?
 - is the message grammatically correct (in speech context)?
 - is the message using the appropriate vocabulary?

Feedback Framework

- Key Challenges:
 - speaker and speech variability
 - wide range of abilities, L1-specific errors
 - requires high precision but WER is high
 - don't want to give feedback on system errors
 - lack of annotated data

Learner	she	say	me	what	i	should	do	it	
GED	с	i	С	i	С	с	С	с	
GEC	she	told	me	how	i	should	do	it	

- Grammatical Error Detection (GED)
 - standard sequence labelling problem
- Grammatical Error Correction (GEC)

- standard sequence-to-sequence translation problem
- no unique solution

(日)

Learner	she	say	me	what	i	should	do	it	
GED	с	i	С	i	С	с	С	с	
GEC	she	told	me	how	i	should	do	it	

- Grammatical Error Detection (GED)
 - standard sequence labelling problem
- Grammatical Error Correction (GEC)

- standard sequence-to-sequence translation problem
- no unique solution
- Lots of data for training GED/GEC systems for writing
 - \Rightarrow fine-tune writing models to speech data

Grammatical Error Detection (GED)

- Predict whether word is correct (c) or incorrect (i)
 - initial word embedding followed by classifier $\langle \cdot \cdot \rangle$

Cambridge ALTA

MBRH

Handling Rare/Missing Words [15]

Cambridge ALTA

크

Problem for speech: no agreed grammar

- native speakers use non-grammatical constructs
- native speakers hesitate, repeat, false start etc
- Redefine task as
 - \Rightarrow "feedback that is useful for spoken message construction"

Problem for speech: no agreed grammar

Cambridge ALTA

- native speakers use non-grammatical constructs
- native speakers hesitate, repeat, false start etc
- Redefine task as

 \Rightarrow "feedback that is useful for spoken message construction"

Some overlap with written GEC and GED, but not the same

Modified Spoken GED Criterion [5, 8]

Have to take impact of ASR into account

Learner	she	say	me	what	i	should	do	it	
ASR	she	may	me	what	i	should	do	it	
GED	с	i	с	i	с	с	с	с	
$\texttt{GED}_{\texttt{f}}$	с	С	с	i	с	С	с	с	

Modified GED criterion (GED_f) - more challenging

BULATS GED Performance [8]

- Significant drop from manual (MAN) to ASR transcriptions
 - even after fine-tuning to limited spoken language data
- Can use ASR confidence to select high precision GED:

Cambridge ALTA

useful information for feedback eg > 90% missed determiners

Malpractice: Off-Topic Response Detection

Cambridge ALTA

< /i>
</i>
▲ I

Relevance Detection

- Off-topic response (relevance) takes:
 - *w^p*: prompt (question) from script

 $\boldsymbol{w}^{p} = \{ \text{Discuss a company that you admire} \}$

w^r: response from candidate derived from speech recognition
w^r={Cambridge Assessment is wonderful, it ...}

and derives probability of relevance

 $P(rel|\boldsymbol{w}^r, \boldsymbol{w}^p)$

- Two standard options for model:
 - Generative Model of Responses

Cambridge ALTA

Discriminative Model of Relevance

Generative Model of Responses

- Prompt topic-adapted RNN Language Model
- Probability of relevance derived from:

$$P(rel|\boldsymbol{w}^{r}, \boldsymbol{w}^{p}) \approx P(\boldsymbol{w}^{p}|\boldsymbol{w}^{r}) \approx P(\mathbf{t}_{p}|\boldsymbol{w}^{r}) = \frac{P(\boldsymbol{w}^{r}|\mathbf{t}_{p})P(\mathbf{t}_{p})}{\sum_{i}P(\boldsymbol{w}^{r}|\mathbf{t}_{i})P(\mathbf{t}_{i})}$$

Directly model the probability of relevance

$$P(rel|\boldsymbol{w}^r, \boldsymbol{w}^p)$$

Split the process into sequence of steps:

- 1. $w^{\rho} \rightarrow \tilde{h}^{\rho}$: prompt embedding 2. $w^{r} | \tilde{h}^{\rho} \rightarrow c^{r}$: response encoding (given prompt encoding) 2. $\rho(z) = c^{r} + c^{r}$: response encoding (given prompt encoding)
- **3.** $P(rel|\boldsymbol{w}^r, \boldsymbol{w}^p) = P(rel|\boldsymbol{c}^r) = f(\boldsymbol{c}^r)$: probability of relevance

Attention-Based Model

The prompt embedding can be applied to any prompt

Cambridge ALTA

naturally handles unseen (in training data) prompts

Results: Seen & Unseen Prompts ROC Curves

- ROC curve for performance with Seen and Unseen prompts
 - against balanced set of seen/unseen prompt responses

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

43/45

- Spoken language learning and assessment important
 - increasing need for automated (and validated) systems
- Deep learning is central to current state-of-the-art systems
 - all assessment and feedback stages make use of approaches
- The lack of annotated data is a big challenge

• very hard to annotate (and agree) spoken learner data

- Thanks to Cambridge Assessment, University of Cambridge, for supporting this research
- Thanks to the CUED ALTA Speech Team for their contributions: Prof. Mark Gales, Rogier van Dalen, Kostas Kyriakopoulos, Yiting Lu, Andrey Malinin, Potsawee Manakul, Anton Ragni, Linlin Wang, Yu Wang
- http://mi.eng.cam.ac.uk/~mjfg/ALTA/index.html

- [1] C. M. Bishop, Pattern Recognition and Machine Learning. Springer Verlag, 2006.
- [2] X. Chen, X. Liu, Y. Wang, A. Ragni, J. H. M. Wong, and M. J. F. Gales, "Exploiting future word contexts in neural network language models for speech recognition," *IEEE/ACM Trans. Audio, Speech & Language Processing*, vol. 27, no. 9, pp. 1444–1454, 2019. [Online]. Available: https://doi.org/10.1109/TASLP.2019.2922048
- [3] S. Chopra, R. Hadsell, and Y. LeCun, "Learning a similarity metric discriminatively, with application to face verification," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, June 2005, pp. 539–546 vol. 1.
- T. Ge, F. Wei, and M. Zhou, "Reaching human-level performance in automatic grammatical error correction: An empirical study," CoRR, vol. abs/1807.01270, 2018.
- [5] K. Knill, M. Gales, P. Manakul, and A. Caines, "Automatic grammatical error detection of non-native spoken learner English," in *Proc. ICASSP*, 2019.
- [6] K. Kyriakopoulos, M. Gales, and K. Knill, "Automatic characterisation of the pronunciation of non-native English speakers using phone distance features," in *Proceedings of Workshop on Speech and Language Technology for Education (SLaTE)*, 2017.
- [7] K. Kyriakopoulos, K. Knill, and M. J. F. Gales, "A deep learning approach to assessing non-native pronunciation of english using phone distances," in *Interspeech 2018*, 19th Annual Conference of the International Speech Communication Association, Hyderabad, India, 2-6 September 2018, 2018, pp. 1626–1630. [Online]. Available: https://doi.org/10.21437/Interspeech.2018-1087
- [8] Y. Lu, K. Knill, M. J. F. Gales, P. Manakul, LinlinWang, and Y. Wang, "Impact of asr performance on spoken grammatical error detection," in *Interspeech 2019, 20th Annual Conference of the International* Speech Communication Association., 2019.
- [9] A. Malinin, A. Ragni, M. Gales, and K. Knill, "Incorporating uncertainty into deep learning for spoken language assessment," in Proc. 55th Annual Meeting of the Association for Computational Linguistics (ACL), 2017.
- [10] A. Malinin and M. J. F. Gales, "Predictive uncertainty estimation via prior networks," in Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems

(NeurIPS), 2018, pp. 7047–7058. [Online]. Available: http://papers.nips.cc/paper/7936-predictive-uncertainty-estimation-via-prior-networks

- [11] A. Malinin, K. Knill, and M. J. F. Gales, "A hierarchical attention based model for off-topic spontaneous spoken response detection," in 2017 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2017, Okinawa, Japan, December 16-20, 2017, 2017, pp. 397–403. [Online]. Available: https://doi.org/10.1109/ASRU.2017.8268963
- [12] A. Malinin, R. C. van Dalen, K. Knill, Y. Wang, and M. J. F. Gales, "Off-topic response detection for spontaneous spoken english assessment," in ACL, 2016.
- [13] N. Minematsu, S. Asakawa, and K. Hirose, "Structural representation of the pronunciation and its use for call," in 2006 IEEE Spoken Language Technology Workshop, Dec 2006, pp. 126–129.
- [14] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, Massachusetts: MITPress, 2006.
- [15] M. Rei, G. Crichton, and S. Pyysalo, "Attending to characters in neural sequence labeling models," in Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. The COLING 2016 Organizing Committee, 2016, pp. 309–318.
- [16] R. van Dalen, K. Knill, and M. Gales, "Automatically grading learners' English using a Gaussian Process," in Proc. ISCA Workshop on Speech and Language Technology for Education (SLaTE), 2015.
- [17] Y. Wang, J. H. M. Wong, M. J. F. Gales, K. M. Knill, and A. Ragni, "Sequence teacher-student training of acoustic models for automatic free speaking language assessment," in 2018 IEEE Spoken Language Technology Workshop, SLT 2018, Athens, Greece, December 18-21, 2018, 2018, pp. 994–1000. [Online]. Available: https://doi.org/10.1109/SLT.2018.8639557
- [18] Y. Wang, M. J. F. Gales, K. M. Knill, K. Kyriakopoulos, A. Malinin, R. C. van Dalen, and M. Rashid, "Towards automatic assessment of spontaneous spoken english," *Speech Communication*, vol. 104, pp. 47–56, 2018.

Cambridge ALTA

[19] Z. Yuan and T. Briscoe, "Grammatical error correction using neural machine translation," in *HLT-NAACL*, 2016.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <