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ABSTRACT

Teacher-student learning can be applied in automatic speech recog-
nition for model compression and domain adaptation. This trains
a student model to emulate the behaviour of a teacher model, and
only the student is used to perform recognition. Depending on the
application, the teacher and student may differ in their model types,
complexities, input contexts, and input features. In previous works,
it is often shown that learning from a strong teacher allows the stu-
dent to perform better than an equivalent model trained with only the
reference transcriptions. However, there has not been much investi-
gation into whether a particular form of teacher is appropriate for
the student to learn from. This paper aims to study how effectively
the student is able to learn from the teacher, when differences exist
between their designs. The AMI meeting transcription and MGB-3
television broadcast audio tasks are used in this analysis. Exper-
imental results suggest that a student can effectively learn from a
more complex teacher, but may struggle when it lacks input infor-
mation. It is therefore important to carefully consider the design of
the student for each application.

Index Terms— Teacher-student, acoustic model, feature vector,
automatic speech recognition, Gaussian mixture model

1. INTRODUCTION

Teacher-student learning [1] has been applied in Automatic Speech
Recognition (ASR), for both model compression [2] and domain
adaptation [3]. In model compression, a compact student model is
trained to emulate a larger teacher [2] or ensemble of multiple teach-
ers [4]. Only this single student needs to be used to perform recogni-
tion, thereby reducing the computational cost. In domain adaptation,
a student that uses input features from one domain is trained to em-
ulate a teacher that uses input features from another time aligned
domain. The features used for the student are often easier to ob-
tain when performing recognition than those used by the teachers,
but may result in degraded performance if used with standard train-
ing methods. Teacher-student learning can allow a student that uses
these different features to behave similarly to the teacher.

It is often the case that the teacher and student are designed to
be different. Work in [2] trains a feed-forward Deep Neural Net-
work (DNN) student with narrow hidden layers to emulate a DNN
teacher with wider hidden layers. Work in [5] trains a DNN stu-
dent to emulate a Recurrent Neural Network (RNN) teacher. Work
in [3] trains a student that takes far-field input features to emulate
a teacher that uses input features from a close-talking microphone.
In these studies, the performance of the student is often compared to
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the performance of an equivalent model that is trained using standard
cross-entropy or sequence training methods. However, a comparison
is seldom made with a student that is trained toward a teacher with
the same topology and features, to assess the impact of the differ-
ences between the teacher and student.

This paper aims to study how the differences between the teacher
and student models affect the ability of the student to learn from the
teacher. It is interesting to question how different the student can
be made from the teacher, while still being able to learn effectively.
Work in [6] performs teacher-student learning between models with
different decision trees, and shows that the student requires a suffi-
ciently large decision tree to effectively learn from an ensemble of
teachers. This suggests that careful consideration may be prudent
when designing the student. This paper assesses the ability to effec-
tively propagate information between the teacher and student, when
the models and features differ.

2. MODEL DIFFERENCES

There are many ways in which the teacher and student can differ,
such as by using different decision trees [6]. This paper considers
four separate differences that can exist between the teacher and stu-
dent.

2.1. Model complexity

Teacher-student learning can be used to compress a large teacher into
a smaller student [2], to reduce the computational cost of performing
recognition. This smaller student is designed to have fewer param-
eters than the teacher. This can be achieved by, for example, hav-
ing fewer or narrower hidden layers. The resulting student requires
less memory to store and is faster to use for recognition. However,
the trade-off is that reducing the number of parameters may dimin-
ish the model’s ability to capture complex behaviours. The greater
flexibility of a larger model often yields an improved performance
when sufficient training data is available. It is therefore interesting
to access how well a smaller model can learn to emulate the more
complex behaviour of a larger model.

2.2. Model type

Many different model types can be used for ASR. These include
Hidden Markov Model (HMM) [7], encoder-decoder [8], RNN
transducer [9], and connectionist temporal classification [10] mod-
els. The study in this paper is restricted to HMM-based models, and
extending teacher-student learning to propagate information across
different model types may be an interesting future research direc-
tion. Even when using HMMs, several different types of acoustic
models can be used to compute the observation likelihoods. Two



such examples are the Gaussian Mixture Model (GMM) [11] and
Neural Network (NN) [7].

GMM acoustic models used to be the state-of-the-art, until re-
cently when NNs came into fashion. Using a NN as the acoustic
model for an HMM is commonly referred to as a hybrid model. NNs
have several advantages over GMMs. NNs share many parameters
across all output states, and can therefore make more efficient use of
the training data. GMMs often use diagonal covariance matrices to
limit the number of parameters, and therefore assume that the input
features are decorrelated across the input dimensions. It has often
been observed that NN acoustic models outperform GMM acoustic
models [12]. Considering the differences between these two model
types, it is interesting to ask whether it is possible for them to learn
from each other.

2.3. Input context

The HMM makes the assumption that the current observation is con-
ditionally independent of all other states and observations, when
given the current state. This assumption allows for efficient train-
ing and decoding, using methods such as the Viterbi algorithm [13].
However, this assumption places limitations on what the model can
capture. To alleviate the impact of this assumption, hybrid models
often use a context window of features as its input. NN architectures
such as the Time Delay Neural Network (TDNN) [14] and Long
Short-Term Memory (LSTM) [15] can utilise larger input context
windows, while limiting the increase in the number of model pa-
rameters. However, these can be more computationally expensive to
use for recognition. The forward computation through an LSTM is
difficult to parallelise, due to the recurrent nature of the model, and
must therefore process the inputs sequentially. Work in [5] trains a
feed-forward DNN student to emulate a recurrent teacher, to allow
for faster recognition. However, the DNN student has a narrower
input context, and therefore has less information about the input to
leverage upon. It is interesting to consider how the reduced input
context of the student may affect its ability to learn from the teacher.

2.4. Feature representation

When teacher-student learning is used for domain adaptation, the
teacher and student are often trained on two separate but aligned
sets of input features. For example, when applied to far-field speech
recognition [3], the teacher is trained on inputs from a close-talking
microphone, while the student is trained on far-field inputs. It
is hoped that the far-field student can perform similarly to the
close-talking teacher. Another example of applying teacher-student
learning for domain adaptation is in speaker adaptation [16]. Here,
the teacher can be trained with per-speaker Constrained Maximum
Likelihood Linear Regression (CMLLR) transforms [17] applied
to the features, while the student uses features without CMLLR
transforms. Transcriptions are required to train the CMLLR trans-
forms for each speaker, and therefore when not using teacher-student
learning, a two-pass recognition scheme is often used to obtain the
CMLLR transforms for unseen speakers. This is computationally
expensive and the reliability of the CMLLR transforms depends
on the accuracy of the first recognition pass. When using teacher-
student learning for speaker adaptation, the student uses features
without CMLLR transforms, and therefore only a single recognition
pass is needed. However, the teacher uses a different CMLLR trans-
form on the inputs of each speaker, while the student is required to
emulate this behaviour using the same inputs for all speakers.

Other than for the purpose of domain adaptation, it may also

be beneficial to train a student toward teachers that use different in-
put features, to, for example, gain from the diversity of an ensemble
that uses diverse features. Such an ensemble can leverage upon the
wide variety of possible feature representations that have been pro-
posed for ASR, such as Mel-scale filterbank (FBK), Mel Frequency
Cepstral Coefficients (MFCC) [18], and Perceptual Linear Predic-
tive (PLP) [19] features. When using either different input sources
or input feature representations, the different inputs may contain dif-
ferent information and may place different emphases on different
aspects of the input information. Combining together models that
use different features in an ensemble may benefit from the diversity
of possible behaviours that can emerge from these differences.

However, the student is only privy to the information expressed
in its own features, which may be different from that expressed in the
features of the teacher. The experiments in this paper assess how this
different input information can affect the student’s ability to learn.

3. SEQUENCE-LEVEL TEACHER-STUDENT LEARNING

The aim of teacher-student learning is for the student to develop a
behaviour that is similar to that of the teacher. One approach to train
the student is to minimise the KL-divergence between the per-frame
state posteriors of the teacher and student [2],

Ffrm (Θ) = −
T∑

t=1

∑
st

P (st|ot,Φ) logP (st|ot,Θ) , (1)

where st are the states clusters, t is the frame index, T is the total
number of frames, ot are the input features, Φ is the teacher model,
and Θ is the student model. However, this criterion only propagates
information about the per-frame posteriors of the teacher. ASR is a
sequence-to-sequence classification task, and this criterion may not
effectively communicate information about the teacher’s sequence-
level behaviour. Furthermore, sequence-level training often yields a
better performance than frame-level training when training toward
the reference transcriptions [20].

Teacher-student learning can be generalised to the sequence-
level, by minimising the KL-divergence between state sequence pos-
teriors [4],

Fseq (Θ) = −
∑
s1:T

P (s1:T |O1:T ,Φ) logP (s1:T |O1:T ,Θ) , (2)

where s1:T are the state sequence hypotheses and O1:T is the in-
put feature sequence. Here, a sum over utterances is omitted for
brevity. The gradient with respect to the student’s observation log-
likelihoods is

∂Fseq (Θ)

∂ log p (ot|st,Θ)
= γ [P (st|O1:T ,Θ)− P (st|O1:T ,Φ)] , (3)

where γ is the acoustic scaling factor that is often included to adjust
the balance between the dynamic ranges of the acoustic and language
models. Both P (st|O1:T ,Θ) and P (st|O1:T ,Φ) can be computed
using a forward-backward operation, over the student’s and teacher’s
denominator lattices respectively. It is possible to compute this gra-
dient using a lattice-free framework [21].

4. TEACHER-STUDENT LEARNING WITH A GMM

Two commonly used acoustic model types are based on NNs and
GMMs. This paper explores the possibility of propagating informa-



tion between them. The GMM acoustic model computes the per-
frame observation likelihoods as

p (ot|st,Θ) =

Kst∑
k=1

λkstN (ot|µkst ,Σkst) , (4)

where k is the mixture component index, Ks is the number of
mixture components for state s, N is a Gaussian density function,
and the model parameters, Θ, consist of the means, µks, covari-
ances, Σks, and mixture weights, λks. The mixture weights satisfy∑

k λks = 1 and λks ≥ 0. With sufficient mixture components, the
GMM can potentially model any probability density function shape
of the observations for each state.

A NN acoustic model is often designed to compute state poste-
riors, P (st|ot,Θ). The NN performs multiple levels of non-linear
and possibly recurrent operations on the observations, with a final
softmax performed on the output to compute a normalised state pos-
terior distribution. Un-normalised observation likelihoods can then
be obtained as

p (ot|st,Θ) ∝ P (st|ot,Θ)

P (st)
. (5)

The GMM and NN compute the observation likelihoods differ-
ently, and therefore may yield highly diverse behaviours. Consid-
ering these differences, it is interesting to question whether it is
possible for these acoustic models to learn from each other using
teacher-student learning. NN acoustic models can readily be used
with frame-level teacher-student learning of (1). However, without
state posteriors, it is not trivial to use GMM acoustic models with
(1).

Sequence-level teacher-student learning with (2) does not
require per-frame state posteriors. All that is required is that
it must be possible to compute the state sequence posteriors,
P (s1:T |O1:T ,Θ), from the models. It is therefore possible to
use sequence-level teacher-student learning with a GMM acoustic
model. This can be used to, for example, train a GMM student to
learn from a NN teacher.

The GMM acoustic model is often trained using the Baum-
Welch [22] or Extended Baum-Welch (EBW) [23] algorithms, which
are instances of the expectation-maximisation algorithm. It is also
possible to train a GMM with gradient descent [24, 25]. However,
doing so sacrifices the guarantee that the training criterion will not
worsen at each iteration. Diagonal covariance matrices are used in
this paper. When using gradient descent, it needs to be enforced that
the mixture component weights satisfy

∑
k λks = 1 and λks ≥ 0,

and that the diagonal variances satisfy σiks ≥ 0, where i is the input
dimension index. These can be enforced by re-parameterising the
GMM with λ̃ and σ̃, such that

λks =
exp

[
λ̃ks

]
Ks∑

k′=1

exp
[
λ̃k′s

] (6)

and
σiks = exp [σ̃iks] . (7)

Note that in the notation used here, σ represents the variance, not the
standard deviation. The trainable parameters of the GMM are then
Θ =

{
µks, σ̃ks, λ̃ks ∀k, s

}
. The derivatives of the per-frame

observation log-likelihoods with respects to the parameters are [24]

∂ log p (o|s,Θ)

∂µiks
=
λksN (o|µks,Σks)

p (o|s,Θ)

oi − µiks

σiks
(8)

∂ log p (o|s,Θ)

∂σ̃iks
=
λksN (o|µks,Σks)

p (o|s,Θ)

(oi − µiks)
2 − σiks

2σiks

(9)

∂ log p (o|s,Θ)

∂λ̃ks

= λks

[
N (o|µks,Σks)

p (o|s,Θ)
− 1

]
. (10)

Here, the frame index, t, has been omitted for easier readability.
These derivatives can be combine together with (3) using the chain
rule, to compute the parameter gradients to train a GMM student.

5. EXPERIMENTS

The experiments aim to assess the ability of the student to learn,
when differences exist between the designs of the student and
teacher. These were implemented using the Kaldi speech recog-
nition toolkit [26]. Two datasets were used. The AMI meeting
transcription task [27] comprises spontaneous speech from multiple
speakers in role-play meeting scenarios. The full corpus ASR parti-
tion was used, consisting of an 81 hours training set and a 9 hours
eval set. The Individual Headset Microphone (IHM) audio record-
ings were used. The 2017 Multi-Genre Broadcast (MGB-3) English
task [28] comprises audio recordings from television programs of a
variety of genres. Lightly supervised decoding and selection [29]
was used to extract a training set with 275 hours of data, out of the
full 375 hours of available audio data. The 5.5 hours dev17b test
set was used, and was divided into segments using a DNN-based
segmenter [30] that was trained on the MGB-3 data.

The NN models used in the experiments were trained with a
lattice-free implementation of either the Maximum Mutual Infor-
mation (MMI) criterion [31] or the sequence-level teacher-student
learning criterion of (2), beginning from a random parameter ini-
tialisation. Minimum Bayes’ Risk (MBR) decoding [32] was used
to perform recognition. In MGB-3, decoding was done using a tri-
gram language model, trained on the MGB-3 subtitle data. In AMI-
IHM, decoding lattices were first generated using a trigram language
model, then rescored using a 4-gram language model, both trained
on a combination of the AMI training set and Fisher English training
part 1 (LDC2004T19) transcriptions.

5.1. Different model types, complexities, and input contexts

The first experiment assesses the ability of a student to learn, when
its model type, model complexity, and input context differ from
that of the teacher. Different models were first trained using the
lattice-free MMI criterion, to be used as the teachers. The diagonal-
covariance GMM for AMI-IHM had 20 mixture components per
state and used 13-dimensional MFCC features, to allow a reasonable
match with the diagonal covariance. Only 13 dimensions were used
to limit the number of parameters in the GMM. First and second tem-
poral derivatives were appended to the GMM inputs. The lattice-free
GMM was trained using gradient descent, to provide a comparable
baseline for the students, which were also trained with gradient de-
scent. NN acoustic models used 40-dimensional Mel-scaled FBK
features as inputs. Two feed-forward DNNs were used, a large DNN
had 17 layers, while a smaller model with 4 layers is referred to as
DNNsmall. These DNNs used a symmetric input context of 9 spliced
frames, which matches the temporal context of the GMM’s temporal



derivatives. A 17 layer TDNN was also used, with a symmetric total
input context of 69 frames. Both the DNN and TDNN layers used
rectified linear unit activations, had residual connections, and were
factorised (these are often referred to as TDNN-F in the literature
[33], but the F is omitted here for simplicity). Finally, an acous-
tic model with interleaved TDNN and uni-directional LSTM layers
was also used in MGB-3, and is referred to as TDNN-LSTM. The
TDNN-LSTM has a potentially infinite backward context, and used
a forward context of 23 frames (excluding the current frame).

The performances of these models with lattice-free MMI train-
ing for AMI-IHM and MGB-3 are shown in the right side columns
of Tables 1 and 2 respectively. As a reference, a GMM that was
trained with an EBW lattice-based implementation of the MMI cri-
terion has a WER of 37.7% in AMI-IHM. Several differences exist
between this lattice-based GMM and the lattice-free GMM in Table
1. The lattice-based GMM used a triphone decision tree with 4000
leaves, while the lattice-free GMM used a left-biphone decision tree
with 2000 leaves for efficient training. Also, the lattice-based GMM
used a frame shift of 10ms and a 3-state HMM with trained transi-
tion probabilities, while the lattice-free GMM used a frame shift of
30ms and a 2-state HMM with uniform transition probabilities, again
for efficient training. The lattice-based GMM was first trained with
a maximum likelihood criterion, then fine-tuned with MMI, while
the lattice-free GMM was trained toward the MMI criterion, be-
ginning from a random parameter initialisation. The lattice-based
GMM used a variable number of mixture components per state, and
the number of mixture components was grown by splitting the most
likely components at regular training iteration intervals. As opposed
to this, the lattice-free GMM implementation used here fixed all
states to have the same number of mixture components, to simplify
the GPU-based feed-forward and back-propagation. These differ-
ences may account for the performance degradation of the lattice-
free GMM. Work in [24] suggests several methods to improve gra-
dient descent training of a GMM. Out of these, it was found that L2
regularisation of the GMM parameters greatly improved the perfor-
mance.

Table 1. Student WER (%) when learning from teachers with
different acoustic models and input contexts, using sequence-level
Teacher-Student (TS) learning, on AMI-IHM

Sequence TS toward lattice-free
Student GMM DNN TDNN MMI
GMM 46.6 41.7 45.4 45.0
DNNsmall 42.2 28.6 29.1 28.8
DNN 42.0 27.8 27.9 27.7
TDNN 41.3 26.6 22.1 22.9

The NN models are able to outperform both the lattice-based and
lattice-free GMMs. The results also show that increasing the acous-
tic model’s complexity and input context can yield an improved per-
formance.

Students with a variety of acoustic model types were trained
toward these different models as teachers, using sequence-level
teacher-student learning. The performances of these students for
AMI-IHM and MGB-3 are shown in the left three columns of Tables
1 and 2 respectively. From these results, it can be seen that several
of the students outperform their teacher. This is especially so when
the student uses a more complex model or has a wider input context
than the teacher. During teacher-student learning, the student is
trained to produce similar state sequence posteriors as the teacher
on the training set. However, during recognition, the performance of

Table 2. Student WER (%) when learning from teachers with differ-
ent acoustic models and input contexts, on MGB-3

Sequence TS toward lattice-free
Student DNN TDNN TDNN-LSTM MMI
DNNsmall 31.7 31.4 30.1 32.5
DNN 30.4 29.1 28.1 29.5
TDNN 29.1 22.5 21.9 22.6
TDNN-LSTM 29.2 22.4 21.3 21.4

the student is measured based on its word sequence hypotheses on
an unseen test set. As such, the teacher does not strictly represent
a lower bound of the WER performance for the student, and it is
possible that the student may generalise to unseen data better than
the teacher. In AMI-IHM, the TDNN student outperforms its TDNN
teacher. The TDNN teacher and TDNN student have WERs of 8.3
and 8.8% respectively when measured on the training set, and WERs
of 22.9 and 22.1% when measured on the unseen eval set from Table
1. This suggests that it is possible for the student to generalise better
to unseen data than the teacher.

When both the teacher and student use the same TDNN acous-
tic model, is surprising that the student develops better generalisa-
tion behaviour, considering that the global optimum for this teacher-
student learning optimisation problem is for the student’s model pa-
rameters to be equal to those of the teacher. One possible explanation
for the better generalisation ability of the student is that the student
may have converged to a local optimum that has different parameters
from the teacher, suggesting that teacher-student learning is sensitive
to the initialisation of the student. Another possibility is that the ex-
ponentially decaying learning rate schedule and gradient-based op-
timisation that were used may not have allowed the student to reach
an optimum, thereby yielding a regularisation effect, similar to early
stopping.

Comparing the model type, it can be seen in AMI-IHM that a
GMM can learn from a NN teacher, yielding a better performance
than lattice-free MMI training of the GMM and a GMM student
learning from a GMM teacher. It is therefore possible to effectively
propagate information across these different acoustic model types by
using sequence-level teacher-student learning.

Next, a student can be trained toward a larger teacher. As a ref-
erence, a DNNsmall student learning from a DNNsmall teacher has a
WER of 29.1 and 33.3% for AMI-IHM and MGB-3 respectively.
Learning from the larger DNN teacher improves the student perfor-
mance. The DNNsmall students of the DNN teachers also perform
better than DNNsmall models trained with lattice-free MMI, corrobo-
rating the results in [2]. The results suggest that a smaller DNNsmall

student can benefit by learning from the larger DNN teacher.
Finally, a student can be trained toward a teacher with a differ-

ent input context. From the AMI-IHM results in Table 1, the GMM
and DNNsmall students learn better from a DNN teacher than from
a TDNN teacher, even though the TDNN teacher performs better
than the DNN teacher. The DNN teacher has the same input context
as these students. In MGB-3, the DNNsmall students perform better
when learning from the TDNN and TDNN-LSTM teachers, rather
than the DNN teacher. This may suggest that using more training
data may help the student to learn to better accommodate for its re-
duced input context. However, the TDNN and TDNN-LSTM teach-
ers have much larger performance improvements over the lattice-free
MMI DNNsmall model, compared to the performance difference be-
tween DNNsmall students trained toward the TDNN or TDNN-LSTM
teachers, and toward the DNN teacher. The trend is the same for the



larger DNN student in MGB-3. These results suggest that it may
be difficult for a student to learn from a teacher with a wider input
context. The student may not have access to the input information
that would allow it to effectively emulate the teacher. The results
also show that when the student has a wider input context than the
teacher, then learning is effective.

5.2. Different input features

The previous experiment investigated teacher-student learning be-
tween different acoustic model types, model complexities, and input
contexts. The next experiment assesses the ability of the student
to learn when its input feature representation differs from that used
by the teacher. All acoustic models used in this experiment were
TDNNs. In AMI-IHM, the same 40-dimensional FBK40 and 13-
dimensional MFCC13 features from the previous experiment were
used, without any temporal derivatives. In this experiment, the fea-
ture dimension is explicitly written in the subscript for clarity. The
MFCC13 features were computed by taking a linear Discrete Cosine
Transform (DCT) of the FBK40 features, then retraining only the
first 13 dimensions. This truncation may result in information loss
in the features. As a comparison, 40-dimensional MFCC40 features
were also used, without truncating the DCT output. The DCT is a
full-rank linear transform, and therefore should not result in any in-
formation loss. In MGB-3, a comparison is made between FBK40

and 13-dimensional PLP13 features. The feature extraction pipelines
for FBK and MFCC features are identical, differing only by a DCT
[18]. As opposed to this, the extraction pipeline for PLP [19] is sig-
nificantly different, and it may therefore express information differ-
ently. When a student learns from a single teacher that uses the same
input features, there may not be much to gain. Therefore, a better
teacher that used the same input features and the same input con-
text was constructed by combining an ensemble of 4 models, each
trained beginning from a different random parameter initialisation.
The performances of these single and ensemble teachers are shown
in Table 3. Ensemble combination was performed using MBR com-
bination decoding [32]. The cross-WER (cWER) [34] provides an
approximate measure of the ensemble diversity. This computes the
word-level minimum edit distance between the hypotheses of two
models, normalised by the hypothesis length, averaged over all pairs
of models in the ensemble. A larger cWER indicates a wider diver-
sity of hypotheses.

Table 3. Single models and random initialisation ensembles with
FBK, MFCC, and PLP features

Single WER (%) Ensemble Diversity
Dataset Feature mean std dev WER (%) cWER (%)

AMI-IHM
FBK40 22.9 0.1 21.1 14.3
MFCC40 23.0 0.1 21.1 14.7
MFCC13 24.1 0.1 22.2 15.1

MGB-3 FBK40 22.6 0.2 21.0 12.1
PLP13 24.9 0.2 23.2 13.8

The MFCC40 model is able to perform comparably to the FBK40

model, while there are performance degradations for the MFCC13

and PLP13 models, indicating the detrimental impact of information
loss in the input features. It can also be seen that for all feature types,
generating ensembles by simply training multiple models from dif-
ferent random parameter initialisations is able to yield diverse be-
haviours and combination gains over the respective single models.
For each of the ensembles, the cWER is a significant fraction of the

combined WER, indicating a wide diversity of behaviours among
the constituent models.

Table 4. Student WER (%) when learning from teachers with FBK
and MFCC features, on AMI-IHM

Single teacher Ensemble Teacher
Model FBK40 MFCC40 MFCC13 FBK40 MFCC40 MFCC13

Student
FBK40 22.1 22.1 22.8 21.5 21.6 22.2
MFCC40 21.9 22.2 22.8 21.5 21.4 22.1
MFCC13 23.0 23.1 23.2 22.6 22.4 22.6
Teacher 22.9 23.0 24.1 21.1 21.1 22.2

Students were trained toward the teachers with sequence-level
teacher-student learning, using the variety of input features. The
results are shown in Tables 4 and 5 for AMI-IHM and MGB-3 re-
spectively.

Table 5. Student WER (%) when learning from teachers with FBK
and PLP features, on MGB-3

Single teacher Ensemble teacher
Model FBK40 PLP13 FBK40 PLP13

Student
FBK40 22.5 23.9 22.0 23.4
PLP13 24.2 24.8 23.7 24.2
Teacher 22.6 24.9 21.0 23.2

Similarly to the results in Table 1, several of the AMI-IHM stu-
dents in Table 4 also perform better than their single model teach-
ers. However, for both datasets, the students are not able to per-
form better than the ensemble teachers. In AMI-IHM, the FBK40

and MFCC40 students show comparable performances when learn-
ing from either the FBK40 or MFCC40 teachers. This suggests that
the NN acoustic model is able to accommodate for the difference in
the input representation caused by the DCT. The MFCC13 student is
not able to gain from the better performances of either the FBK40 or
MFCC40 teachers. In MGB-3, the PLP13 student yields a better per-
formance when learning from a FBK40 teacher, over learning from a
PLP13 teacher. This may suggest that using more training data may
allow the student to better learn to accommodate for deficiencies in
its input representation. However, the improvement in the student,
when learning from the FBK40 teacher rather than the PLP13 teacher,
is much smaller than the performance improvement that the FBK40

teacher has over the PLP13 teacher. These results suggest that it may
be difficult for the student to learn from the teachers about how to
correct for the information loss in its input features.

Table 6. Single models and random initialisation ensembles with
MFCC and MFCC-SA features, on AMI-IHM

Single WER (%) Ensemble Diversity
Feature mean std dev WER (%) cWER (%)
MFCC 24.1 0.1 22.2 15.1
MFCC-SA 22.3 0.2 20.8 13.4

In a speaker adaptation scenario, following the example of [16],
a teacher can be trained with CMLLR transforms applied to the in-
put features, while the student is trained without the CMLLR trans-
forms. At the teacher’s input, a different CMLLR transform is ap-



plied to the features from each speaker. In contrast, the FBK40 stu-
dent and MFCC40 teacher in Table 4 are differentiated by a fixed
linear transform. The student in the speaker adaptation scenario is
therefore tasked with learning to behave as if speaker-specific trans-
forms were used, even though the student has no speaker-specific
transforms. The final experiment investigates the impact of these
speaker-specific transforms on the student’s ability to learn. This ex-
periment is performed on the AMI-IHM dataset. Per-speaker CM-
LLR transforms were obtained using an initial GMM model, trained
with a lattice-based maximum likelihood criterion. These used 13-
dimensional MFCC features as input. In this experiment, the feature
dimension subscript is omitted for simplicity. The CMLLR trans-
forms were applied to the MFCC features, and the result is referred
to as MFCC-SA features, where SA stands for Speaker Adapted. For
speakers in the eval set, the first-pass recognition hypotheses used to
train the CMLLR transforms were obtained using a maximum like-
lihood GMM model that used MFCC features without the CMLLR
transforms. Single lattice-free MMI TDNN models were trained on
MFCC and MFCC-SA features. Ensembles were also constructed to
provide better teachers for each feature type. These were again gen-
erated by training 4 models, beginning from different random param-
eter initialisations. The performances of these teachers are shown in
Table 6.

Table 7. Student WER (%) when learning from teachers with MFCC
and MFCC-SA features, on AMI-IHM

Single teacher Ensemble teacher
Model MFCC MFCC-SA MFCC MFCC-SA
Student
MFCC 23.2 23.4 22.6 22.6
Teacher 24.1 22.3 22.2 20.8

Students that used MFCC features were trained toward each of
the teachers, and the results are shown in Table 7. The MFCC student
learning from the MFCC-SA teacher performs better than an MFCC
model that is trained with lattice-free MMI. This agrees with previ-
ous results in [16], and shows that teacher-student learning can be
used for speaker adaptation. However, this student does not perform
better than an MFCC student learning from an MFCC teacher. As a
reference, a student that uses MFCC-SA features as input and learns
from the single MFCC-SA teacher has a WER of 22.0%, surpassing
the teacher. The eval set CMLLR transforms for this student were
the same as those used for the MFCC-SA models in Table 6, com-
puted with first-pass hypotheses from an initial GMM. The MFCC
student performs worse than the MFCC-SA student when learning
from the MFCC-SA teacher. As opposed to this, the FBK40 and
MFCC40 students perform comparably when learning from either of
the FBK40 or MFCC40 teachers in Table 4. These results suggest that
it is in fact difficult for the MFCC student to emulate the per-speaker
CMLLR transforms of the teacher.

6. CONCLUSION

This paper has studied the ability of a student to learn from a teacher
with different acoustic model types, acoustic model complexities, in-
put contexts, and input feature representations. The results suggest
that the student can effectively learn from a teacher with the same in-
put context and features, but with a larger model complexity. How-
ever, the results also suggest that the student struggles to effectively
learn when it has a narrower input context, has information loss in its
input features, or if only the teacher uses differing transforms for the

inputs of each speaker. Using more training data may slightly im-
prove the student’s ability to learn to overcome the deficiencies in its
input context and features. It may therefore be important to carefully
consider the design of the student for each application. This paper
has also presented a first attempt to propagate information from a NN
teacher to a GMM student, and the results show that this information
can improve the GMM student performance.
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