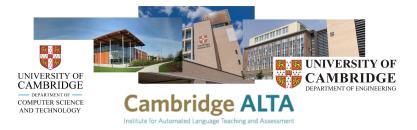


Use of Deep Learning in Free Speaking Non-native English Assessment

Kate Knill

TSD 6th September 2021

Automated Language Teaching & Assessment Institute



- Virtual Institute for
 - cutting-edge research on non-native English assessment
 - Machine Learning and Natural/Spoken Language Processing
 - develop technology to enhance assessment and learning

Cambridge ALTA

improve learner experience and progress, support teachers

ALTA SLP Technology Team Past and Present

Prof Mark Gales

Dr Xie "Jeff" Chen

Dr Rogier van Dalen

Kostas **Kyriakopolous**

Yitina "Edie" Lu

Liusie

Dr Andrey Malinin

Dr Xizi

Wei

Potsawee Manakul

Vvas

Raina

Cambridge ALTA

Dr Anton Ragni

Wang

Dr Yu Wang Dr Xixin Wu

plus undergraduate and masters research project students

< □ > < □ > < □ > < □ > < □ >

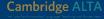
Spoken Language Assessment & Learning

Spoken Language Assessment & Learning

Spoken Language Assessment & Learning

- Automate (English) spoken language assessment & learning
 - without simplifying/limiting form of test: "free speaking"
 - possibility for richer, interactive, tests
 - desire to assess communication skills

- Internationally agreed standard for assessing level
 - Common European Framework of Reference (CEFR)
- Basic User
 - A1 breakthrough or beginner
 - A2 way-stage or elementary
- Independent User
 - B1 threshold or intermediate
 - B2 vantage or upper intermediate
- Proficient User
 - C1 effective operational proficiency or advanced
 - C2 mastery or proficiency



- Cambridge Assessment English computer-based oral English test
 - General and Business (formerly BULATS) English
 - hybrid assessment: auto-marking & human examiners [12]
- Overview of Tasks:
 - 1 Interview: 8 questions about the candidate
 - 2 Reading Aloud: read aloud 8 sentences
 - **3** Presentation: speak on a given topic

- 4 Presentation with Visual Info: speak based on graphic info
- 5 Communication Activity: opinion on 5 ques. related to a scenario

- Assessment Framework
- Feature-Based Assessment
- Neural Assessment
- Multi-view Assessment

Robustness

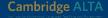
Assessment Framework

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ 三回 めんゆ

9/56

• Reliability: assessment is consistent with human scores

- Reliability: assessment is consistent with human scores
- · Validity: all aspects associated with a construct are evaluated

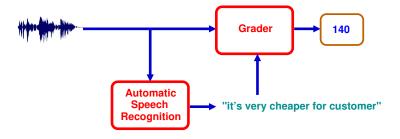


- Reliability: assessment is consistent with human scores
- · Validity: all aspects associated with a construct are evaluated
- Robustness: handles 'gaming' and organised/systemic cheating

- Reliability: assessment is consistent with human scores
- · Validity: all aspects associated with a construct are evaluated
- Robustness: handles 'gaming' and organised/systemic cheating
- Fairness: the assessment shows no bias for any user group

Assessment Framework [11]

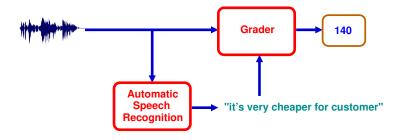
Cambridge ALTA



크

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

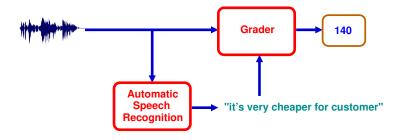
Assessment Framework [11]



Key Issues:

- Input speech variability
 - Speakers: large range of L1s, non-native speech, wide ability
 - Recordings: varying background noises, channel corruptions

Assessment Framework [11]

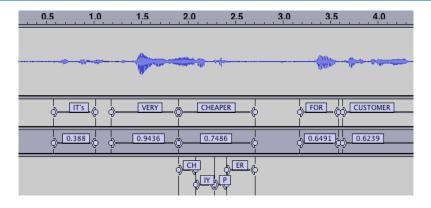


Key Issues:

Input speech variability

- Speakers: large range of L1s, non-native speech, wide ability
- Recordings: varying background noises, channel corruptions
 ⇒ High word error rate (WER): propagates through system

Automatic Speech Recognition [10, 2]



- Baseline Automatic Speech Recognition (ASR) yields:
 - time aligned word/disfluencies/partial-word sequence
 - time aligned phone/grapheme sequence
 - word level confidence scores

Cambridge ALTA

・ロト ・ 日 ・ ・ ヨ ・ ・

- Non-Native ASR: real-time decoding (non-RNNLM)
 - "basic users" (A1/A2) highly challenging data

	A1					
Baseline ASR	33.8	27.7	21.2	19.9	16.5	21.3
+su-RNNLM	31.8	25.4	19.6	18.0	14.7	19.5

- Non-Native ASR: real-time decoding (non-RNNLM)
 - "basic users" (A1/A2) highly challenging data

	A1	A2	B1	B2	С	Avg
Baseline ASR	33.8	27.7	21.2	19.9	16.5	21.3
Baseline ASR +su-RNNLM	31.8	25.4	19.6	18.0	14.7	19.5

• Need to mitigate for ASR errors in grader

Cambridge ALTA

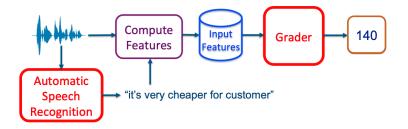
 \Rightarrow match train and test i.e. use ASR outputs for both

Feature-Based Assessment

・ロト・母ト・ヨト・ヨー めんの

14/56

Feature-based Assessment Framework [11]



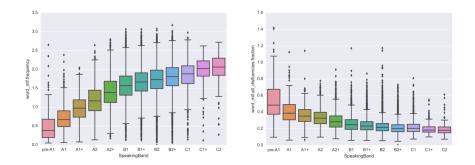
Hand-craft grader input features to optimise assessment

Cambridge ALTA

イロト イヨト イヨト

- Baseline features mainly fluency based, including:
- Audio Features: statistics about e.g.
 - fundamental frequency (F0)
 - speech energy and duration
- Aligned Text Features: statistics about e.g.
 - silence durations
 - number of disfluencies (um, uh etc)
 - speaking rate
- Text Features: statistics about e.g.
 - number of repeated words (per word)
 - number of unique word identities

Baseline Features: Correlation with Grades



• Examine distribution of extracted features with grade

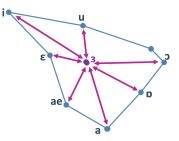
Cambridge ALTA

example box-plots for speaking rate and percentage disfluencies

▲ロ▶ ▲御▶ ▲注▶ ▲注▶ … 注: 釣ぬ()

Derived Features: e.g. Phone-Distances [8]

- Pronunciation is an important predictor of proficiency
 - but no reference native speech for free speaking tasks
- Phone distance features are one approach



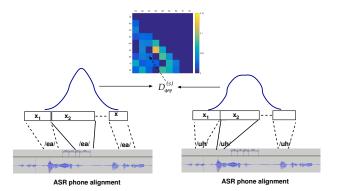
- each phone characterised relative to others
- independent of speaker attributes

Cambridge ALTA

characterise speaker's pronunciation of each phone

18/56

Model-based Pronunciation Features [4]

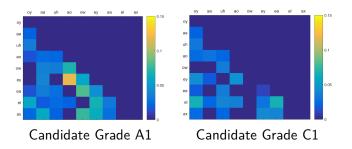


• Train Gaussian model for each phone $\mathbf{x}^{(i)}$ and speaker s:

$$p(\mathbf{x}^{(i)}|\omega_{\phi}) = \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_{\phi}^{(s)}, \boldsymbol{\Sigma}_{\phi}^{(s)})$$

- Compute relative entropy between each phone-pair $\mathcal{D}_{\phi,\psi}{}^{(s)}$

Model-based Pronunciation Features

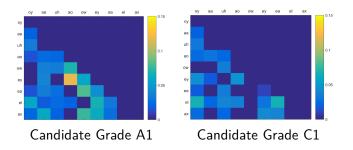


- Pair-wise entropies used as features in grader
 - yields small gains in assessment performance
 - pattern is first language (L1) dependent

Cambridge ALTA

20/56

Model-based Pronunciation Features

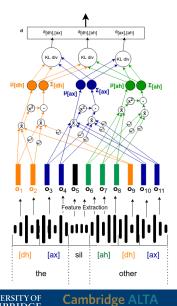


- Pair-wise entropies used as features in grader
 - yields small gains in assessment performance
 - pattern is first language (L1) dependent

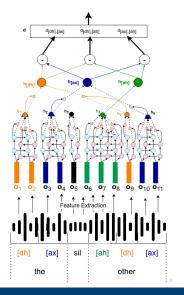
Cambridge ALTA

General approach ⇒ tunable approach based on deep learning

Deep Learning Pronunciation Features [5]



BRIDGE



21/56

• Standard metrics developed based on durations (*d_k*)

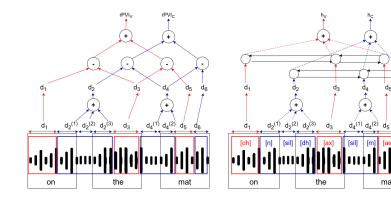
$$\texttt{rPVI} = \frac{1}{m-1} \sum_{k=1}^{m-1} |d_k - d_{k+1}|; \qquad \texttt{nPVI} = \frac{1}{m-1} \sum_{k=1}^{m-1} \frac{|d_k - d_{k+1}|}{(d_k + d_{k+1})/2}$$

added as simple features for assessment

Cambridge ALTA

(日)

Deep Learning Rhythm Features [6]



Cambridge ALTA

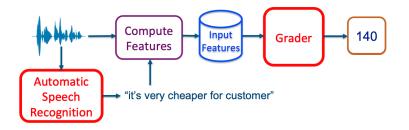
UNIVERSITY OF CAMBRIDGE

23/56

イロト イヨト イヨト イヨト 크

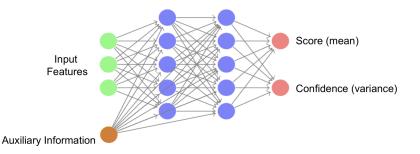
mat

Grader



- Supervision data for assessment is a score
 - assessment run as a regression task: $p(y|\mathbf{x}^*; \boldsymbol{\theta})$
- · For practical use also want to know how trustworthy prediction is

Deep Density Network-based Grader [1, 7]



Deep Density Networks predict parameters of a distribution

$$p(y|\mathbf{x}^{\star};\boldsymbol{\theta}) = \mathcal{N}(y; f_{\mu}(\mathbf{x}^{\star};\boldsymbol{\theta}), f_{\sigma}(\mathbf{x}^{\star};\boldsymbol{\theta}))$$

flexible framework for any form of distribution

Cambridge ALTA

distribution variance gives measure of confidence in assessment

- Deep learning optimisation is highly complex
 - multiple local minima in cost function
 - not possible to obtain the best model
- Simple solution train multiple models an ensemble
 - average the prediction from the members of the ensemble
 - also useful for score confidence

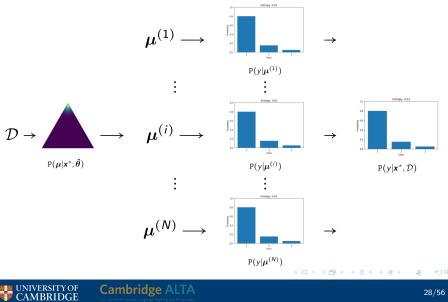
Model	PCC	MSE	MAE	%<0.5	%<1.0
Single Ensemble	$\begin{array}{c} 0.885_{\pm 0.7} \\ 0.888 \end{array}$	$\begin{array}{c} 0.32_{\pm 0.02} \\ 0.31 \end{array}$	$0.43_{\pm 0.01}$ 0.43	$67.8_{\pm 2.6}$ 68.2	93.7 _{±1.6} 94.2

BULATS data - "expert" grades, 225 speakers, 6 L1s

Cambridge ALTA

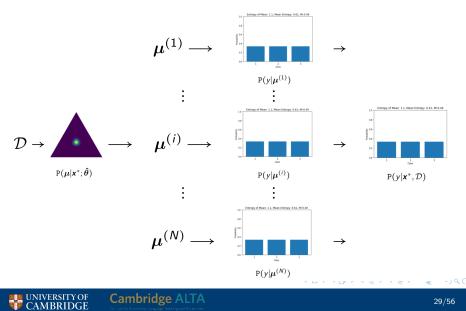
• □ > • □ > • □ > •

Ensemble Score Confidence

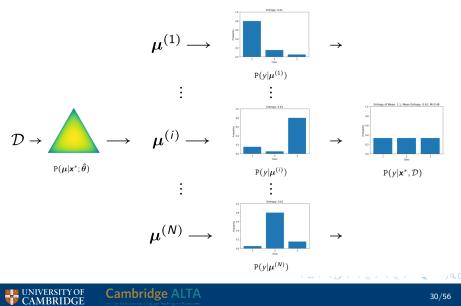


28/56

Ensemble Score Confidence

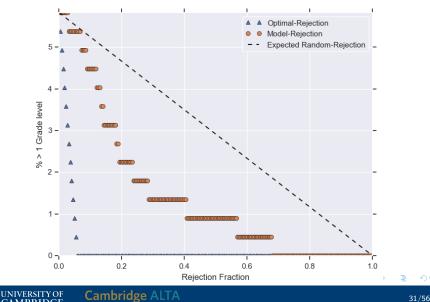


Ensemble Score Confidence



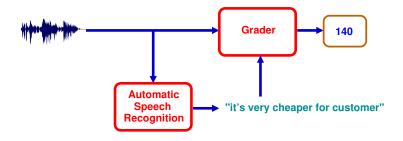
Detecting Outliers (candidates > 1.0 error)

CAMBRIDGE



Neural Assessment

Assessment Framework

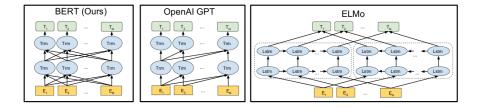


- Expert (handcrafted) features good, but are they optimal?
- Use deep-learning to map from ASR/audio to grade

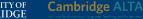
Cambridge ALTA

- network extracts trainable (optimal?) features from text/audio
- needs to be able to handle variable length nature of audio/text

Text Processing: Word Embeddings

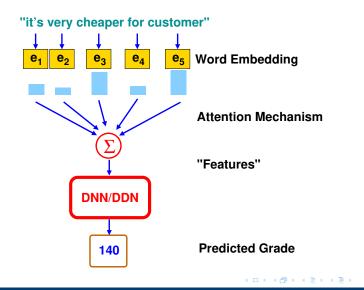


- First stage is to map from discrete words to continuous vector
 - word-embeddings very popular at the moment
 - use BERT trained on large amounts of text data



Text: "Vanilla" Neural Assessment

Cambridge ALTA



크

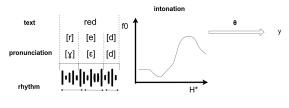
Model	PCC	MSE	MAE	%<0.5	%<1.0
DDN (All)	0.888	0.31	0.43	68.2	94.2
Neural (Text)	0.879	0.34	0.44	68.2	91.4

- Ensemble systems
- Good performance but weak on validity and reliability

Cambridge ALTA

Multi-view Assessment

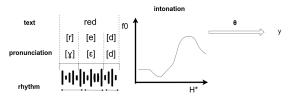
• Input \boldsymbol{x} is mapped to holistic score \boldsymbol{y} by model with parameters $\boldsymbol{\theta}$



х

Cambridge ALTA

 Holistic proficiency, y, captures overall communicative competence
 e.g. the candidate can interact with a degree of fluency and spontaneity that makes regular interaction with native speakers quite possible (CEFR B2) • Input \boldsymbol{x} is mapped to holistic score \boldsymbol{y} by model with parameters $\boldsymbol{\theta}$



х

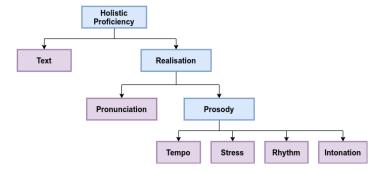
- Holistic proficiency, *y*, captures overall communicative competence
 - e.g. the candidate can interact with a degree of fluency and spontaneity that makes regular interaction with native speakers quite possible (CEFR B2)
- Can we assess proficiency in a more interpretable way?

Cambridge ALTA

Give candidate useful feedback to help them improve

Multi-view Assessment and Feedback [3]

Cambridge ALTA

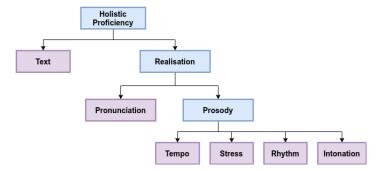


æ

イロト イヨト イヨト イヨト

Multi-view Assessment and Feedback [3]

Cambridge ALTA



Single-view proficiency, y_j (e.g. y_{text}, y_{rhythm}), captures one aspect

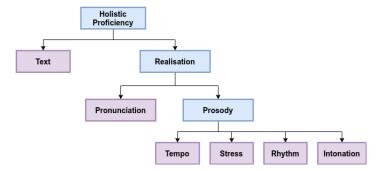
• e.g. Rhythm: pattern of durations of speaker's words and phones

39/56

크

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Multi-view Assessment and Feedback [3]



- Single-view proficiency, y_j (e.g. y_{text} , y_{rhythm}), captures one aspect
 - e.g. Rhythm: pattern of durations of speaker's words and phones
- Build single view graders: combine for multi-view assessment
 - · Challenge: only holistic grades available for training

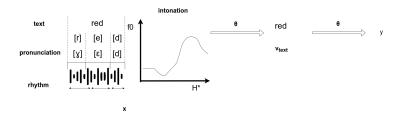
Cambridge ALTA

イロト イ理ト イヨト イヨト

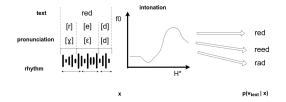
Single-view grading

- To force single-view grading want to limit information to one view
- Add an initial projection $\mathbf{x} \rightarrow \mathbf{v}_i$
 - to extract information about view j from x
 - discard information about other views

Cambridge ALTA



1. Extract a \mathbf{v}_j from \mathbf{x} according to a distribution $p(\mathbf{v}_j | \mathbf{x}; \boldsymbol{\theta})$:

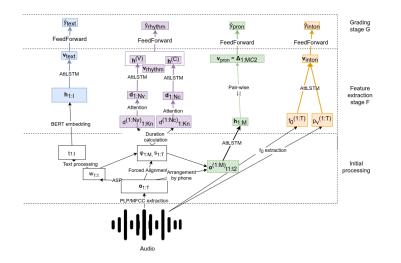


2. Then map each \mathbf{v}_j to a y with $p(y|\mathbf{v}_j; \boldsymbol{\theta})$ s.t. for the full grader:

Cambridge ALTA

$$p(y|\mathbf{x};\boldsymbol{\theta}) = \int p(y|\mathbf{v}_j;\boldsymbol{\theta}) p(\mathbf{v}_j|\mathbf{x};\boldsymbol{\theta}) d\mathbf{v}_j$$

Single-view graders



Cambridge ALTA

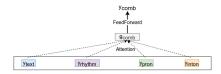
12

・ロト ・四ト ・ヨト ・ヨト

Multi-view Grader Combination

Use attention to combine the single-view scores

Cambridge ALTA



$$\hat{\bar{y}} = \sum_{j=1}^{S} \alpha_j \hat{y}_j$$
where
$$\alpha_j = \frac{\exp(s_j)}{\sum_{n=1}^{I} \exp(s_j)} \qquad s_j = \mathcal{A}(\mathbf{v}_j, \boldsymbol{\theta})$$

Image: A mathematical states and the states and

I

- Can train on its own or end-to-end with the single-view graders

Cambridge ALTA

Grader	PCC	MSE	MAE	%<0.5
holistic	0.888	0.31	0.43	68.2
text	0.820	0.46	0.51	60.7
pron	0.820	0.53	0.57	53.6
rhythm	0.819	0.54	0.58	49.6
intonation	0.826	0.44	0.49	60.7

Cambridge ALTA

text	pron	inton	rhythm
1.000			
0.638	1.000		
0.588	0.653	1.000	
0.613	0.699	0.690	1.000
	1.000 0.638 0.588	1.0000.6381.0000.5880.653	1.000

Kendall's τ between single-view grader predictions

Grader	PCC	MSE	MAE	%<0.5
holistic	0.888	0.31	0.43	68.2
multi-view	0.881	0.36	0.47	64.2

Multi-view performance shows single-view graders complementary

Robustness

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

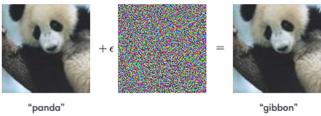
- L1 Speech Detection
- Speaker Verification
- Off-Topic Response Detection

Cambridge ALTA

- Spoken Language Adversarial Attacks and Detection

Adversarial Attacks

Image adversarial attacks popular/important research area



57.7% confidence

Cambridge ALTA

99.3% confidence

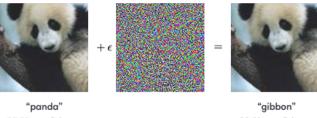
< □ > < 同 > < 回 >

increasing work for text and ASR attacks as well

What is the equivalent for spoken language assessment?

Adversarial Attacks

Image adversarial attacks popular/important research area



57.7% confidence

Cambridge ALTA

99.3% confidence

(日)

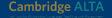
increasing work for text and ASR attacks as well

What is the equivalent for spoken language assessment?

Add a phrase to the end of a response that increases score

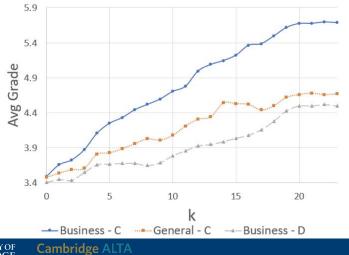
Spoken Language Assessment Attacks [9]

Add a phrase to a user response (BULATS part 3 used)
 <user response> offensively obese astronauts amazingly ...



Spoken Language Assessment Attacks [9]

Add a phrase to a user response (BULATS part 3 used)
 <user response> offensively obese astronauts amazingly ...



$Grader\;(+adv)$	Score	PCC	RMSE	%<0.5	%<1.0
Ensemble					83.2
+ adversarial	4.33	0.700	1.110	27.2	62.9

Increase average score by 0.9 using 6 words

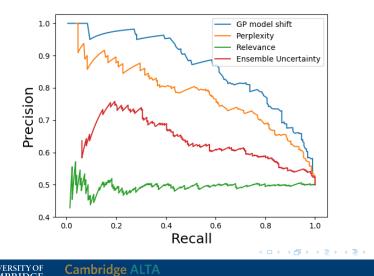
Cambridge ALTA

Image: A math a math

Adversarial Attack Detection (6 words) [9]

/ERSITY OF

CAMBRIDGE



Conclusions

- Spoken language learning and assessment important
 - increasing need for automated (and validated) systems
 - auto-marked free speaking systems now live
- Deep learning is central to current state-of-the-art systems
 - Need to factor in interpretability & robustness to adversarial attacks
- Next steps:
 - Providing more feedback lack of annotated data a big challenge
 - Assessment of conversational speaking tests

Cambridge ALTA

- Thanks to Cambridge Assessment, University of Cambridge for supporting this research.
- Thanks to the CUED ALTA Speech Team for their contributions: Prof. Mark Gales, Xie "Jeff" Chen, Rogier van Dalen, Kostas Kyriakopoulos, Adian Liusie, Yiting Lu, Andrey Malinin, Potsawee Manakul, Vatsal Raina, Vyas Raina, Anton Ragni, Linlin Wang, Yu Wang, Xizi Wei, Xixin Wu ...
- http://mi.eng.cam.ac.uk/~mjfg/ALTA/index.html

Cambridge ALTA

Speak and Improve: https:speakandimprove.com

Current beta of free speaking web-application

Cambridge ALTA

MBRIDGE

 collaboration between ALTA, Cambridge Assessment and Industrial partners [1] C. M. Bishop, Pattern Recognition and Machine Learning. Springer Verlag, 2006.

Cambridge ALTA

- [2] X. Chen, X. Liu, Y. Wang, A. Ragni, J. H. M. Wong, and M. J. F. Gales, "Exploiting future word contexts in neural network language models for speech recognition," *IEEE/ACM Trans. Audio, Speech & Language Processing*, vol. 27, no. 9, pp. 1444–1454, 2019. [Online]. Available: https://doi.org/10.1109/TASLP.2019.2922048
- K. Kyriakopoulos, "Deep learning for automatic assessment and feedback of spoken english," Ph.D. dissertation, Cambridge University, 2021.
- [4] K. Kyriakopoulos, M. Gales, and K. Knill, "Automatic characterisation of the pronunciation of non-native English speakers using phone distance features," in *Proceedings of Workshop on Speech and Language Technology for Education (SLATE)*, 2017.
- [5] K. Kyriakopoulos, K. Knill, and M. J. F. Gales, "A deep learning approach to assessing non-native pronunciation of english using phone distances," in *Interspeech 2018, 19th Annual Conference of the International Speech Communication Association, Hyderabad, India, 2-6 September 2018.*, 2018, pp. 1626–1630. [Online]. Available: https://doi.org/10.21437/Interspeech.2018-1087
- [6] K. Kyriakopoulos, K. M. Knill, and M. J. F. Gales, "A deep learning approach to automatic characterisation of rhythm in non-native english speech," in *Interspeech 2019, 20th Annual Conference of the International Speech Communication Association, Graz, Austria, 15-19 September 2019.* ISCA, 2019, pp. 1836–1840. [Online]. Available: https://doi.org/10.21437/Interspeech.2019-3186
- [7] A. Malinin, A. Ragni, M. Gales, and K. Knill, "Incorporating uncertainty into deep learning for spoken language assessment," in Proc. 55th Annual Meeting of the Association for Computational Linguistics (ACL), 2017.
- [8] N. Minematsu, S. Asakawa, and K. Hirose, "Structural representation of the pronunciation and its use for call," in 2006 IEEE Spoken Language Technology Workshop, Dec 2006, pp. 126–129.
- [9] V. Raina, M. J. F. Gales, and K. M. Knill, "Universal adversarial attacks on spoken language assessment systems," in Interspeech 2020, 21st Annual Conference of the International Speech Communication Association, Virtual Event, Shanghai, China, 25-29 October 2020. ISCA, 2020, pp. 3855–3859. [Online]. Available: https://doi.org/10.21437/Interspeech.2020-1890
- [10] Y. Wang, J. H. M. Wong, M. J. F. Gales, K. M. Knill, and A. Ragni, "Sequence teacher-student training of acoustic models for automatic free speaking language assessment," in 2018 IEEE Spoken Language Technology Workshop,

イロト 不得 トイラト イラト 一日

SLT 2018, Athens, Greece, December 18-21, 2018, 2018, pp. 994–1000. [Online]. Available: https://doi.org/10.1109/SLT.2018.8639557

- [11] Y. Wang, M. J. F. Gales, K. M. Knill, K. Kyriakopoulos, A. Malinin, R. C. van Dalen, and M. Rashid, "Towards automatic assessment of spontaneous spoken english," *Speech Communication*, vol. 104, pp. 47–56, 2018.
- [12] J. Xu, M. Brenchley, E. Jones, A. Pinnington, T. Benjamin, K. Knill, G. Seal-Coon, M. Robinson, and A. Geranpayeh, "Linguaskill - building a validity argument for the Speaking test," 2020.

