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ABSTRACT

There has been significant interest in developing new forms of
acoustic model, in particular models which allow additional de-
pendencies to be represented than allowed within a standard hid-
den Markov model (HMM). This paper discusses one such class
of models, augmented statistical models. Here a locally exponen-
tial approximation is made about some point on a base distribution.
This allows additional dependencies within the data to be modelled
than are represented in the base distribution. Augmented models
based on Gaussian mixture models (GMMs) and HMMs are briefly
described. These augmented models are then related to genera-
tive kernels, one approach used for allowing support vector ma-
chines (SVMs) to be applied to variable length data. The training
of augmented statistical models within an SVM, generative kernel,
framework is then discussed. This may be viewed as using max-
imum margin training to estimate statistical models. Augmented
Gaussian mixture models are then evaluated using rescoring on a
large vocabulary speech recognition task.

1. INTRODUCTION

There have been a wide-range of acoustic models applied to the
speech recognition task. These range from the standard hidden
Markov model (HMMs), to segmental models [1], switching linear
dynamical systems (LDSs) [2], buried Markov models (BMMs) [3]
and mixed memory models [4]. Many of these models can be
viewed as state-space models and graphical models [2]. The un-
derlying aspect of all these models is how to appropriately model
the dependencies (and complexities) of the speech signal. For ex-
ample, forms of dependencies include observation independence
given the current state, as in an HMM, and independence given a
continuous latent state-space variable, as in a LDS. The fundamen-
tal questions that must be answered when looking at these models
is which latent variables should be included, what dependencies
should be modelled, and how the distributions of the observations
are altered by the dependencies. To the authors’ knowledge, there
are as yet no approaches that allow all these questions to be an-
swered.

In this paper a structured approach is described to obtain the
statistics that determine the dependencies to be modelled in the ob-
servation sequence. The approach adopted is to use a base statisti-
cal model, and then for each point on that distribution to construct
a local exponential model. The base statistical model determines
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the latent variables; the sufficient statistics are determined using
higher order derivatives of the log-likelihood. This is similar to a
constrained exponential model [5]. However here all the parame-
ters of the model, including the parameters of the base distribution,
may be trained. This will be referred to as an augmented statistical
model [6]

Using this form of model, the number of model parameters
rapidly increases. Though with sufficient training data, large num-
bers of model parameters can be trained, the use of robust train-
ing criteria that allow for good generalisation are useful. In this
work maximum margin training, as used to train support vector
machines (SVMs), is used. The paper is organised as follows. The
next section describes the general theory of augmented statistical
models and the forms that they take for Gaussian mixture mod-
els (GMMs) and HMMs. SVMs and generative kernels are then
described. This is followed by a description of how maximum
margin training can be used to train augmented models. The is-
sues of applying these models to large vocabulary systems is then
described followed by results on an large vocabulary task.

2. AUGMENTED STATISTICAL MODELS

2.1. The Exponential Family

Many standard forms of statistical model are based on the expo-
nential family. The general form for the exponential family with
parameters� can be expressed as

p(o;�) =
1

τ
h(o) exp

�
�′T (o)

�
(1)

whereh(o) is thereference distribution,� are thenatural param-
eters, τ is the normalisation term (a function of both the reference
distribution and the natural parameters) and the functionT (o) is
a sufficient statistic. There are a number of standard examples,
including the exponential distribution and Gaussian (Normal) dis-
tribution. The reason for the interest in members of the exponential
family is that the sufficient statistics are of a fixed dimensionality
and that conjugate priors can be defined simply for all members
of this family. When dynamic data is being considered, such that
each example is a series of observations,O = o1, . . . ,oT , the
range of possible statistics becomes very large. Dependencies be-
tween observations as in BMMs [3], as well as within the feature
vector, can now be modelled.

An interesting subset of the set of all possible members of the
exponential family is theconstrained exponential family[5]. Here
rather than allowing any form of statistics, a local exponential ap-
proximation to the reference distribution is used as the statistical
model, where the local approximation replicates some of the prop-
erties of the reference distribution. In this paper a slightly more



general form of statistical model than the constrained exponential
family is used. In addition to the values of the local exponential
model, the reference distribution parameters may be learnt from
the data. These models are referred to asaugmented statistical
models[6].

2.2. Augmented Statistical Models

Augmented statistical models are an attractive approach to build-
ing class-conditional probability density functions, since they yield
a mathematically consistent formulation to add higher order de-
pendencies into the model. First a base statistical model,p̌(o;�),
is defined. A member of the exponential family that locally ap-
proximates this base distribution for a particular set of parameters
� is then used as the final statistical model. The general form of
augmented statistical model for a base statistical model can be ex-
pressed as

p(o;�,�) =
1

τ
p̌(o;�) exp

�
�′
n
r(ρ)

λ log(p̌(o;�))
o�

=
1

τ
p(o;�,�) (2)

wherer(ρ)
λ log(p̌(o;�)) is the vector form of all the derivatives1

up to orderρ,
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λ log(p̌(o;�)) =
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τ is the appropriate normalisation term, thus

τ =

Z
Rd

p(o;�,�)do (4)

For this augmented model to be a valid PDF, the integration must
be bounded. Additionally, it must satisfyp(o;�,�) ≥ 0.

If the base statistical model is itself a member of the exponen-
tial family, the augmented statistical model will also be a member
of the exponential family, though not necessarily of the same form
as the base distribution. This is not true for situations where the
base statistical model is not a member of the exponential family,
for example the Gaussian mixture model discussed in section 2.3.

It is interesting to contrast the nature of the dependencies that
are incorporated into the augmented model compared to the base
model. Independence assumptions in the base statistical model
are reflected in the independence assumptions in the augmented
model. However this is not the case for the conditional indepen-
dence assumptions. For example, for the augmented GMM (A-
GMM) discussed below, the observations are not conditionally in-
dependent given the base component that generated them – the
posterior,P (n|o;�) in equation 7, causes the likelihood to be a
function of all the components. The augmented statistical models
can be related performing a Taylor series expansion on the statisti-
cal model [7, 6].

1For simplicity, in this work thenatural basisand higher order deriva-
tives are assumed to yield a set of orthogonal basis. Given this assumption
it is not necessary to distinguish between covariant and contravariant basis
and components [5].

2.3. Augmented Gaussian Mixture Models

One of the standard forms of model used in statistical pattern pro-
cessing are mixture models, in particular GMMs. The base statis-
tical model, a GMM, has the form

p̌(o;�) =

MX
m=1

cmN (o;�m,Σm) (5)

Considering just the first order derivatives of the mean as an ele-
ment of the augmented model

rµm log(p̌(o;�)) = P (m|o;�)Σ−1
m (o− �m) (6)

whereP (m|o;�) = cmN (o;�m,Σm)/p̌(o;�), and cm, �m

andΣm are the prior, mean and covariance matrix for component
m. The associated A-GMM is then given by

p(o;�,�) =
1

τ

MX
m=1

cm

�
N (o;�m,Σm)× (7)

exp

 
MX

n=1

P (n|o;�)�′nΣ−1
n (o− �n)

!�
The parameters� = {�1, . . . ,�M} are additional model param-
eters for the A-GMM.
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Fig. 1. Modelling of “symmetric” log-normal distribution

Figure 1 shows two distributions used to model data generated
using a symmetric log-normal distribution. ML training was used
to obtain a two-component GMM for the training data. In addition
an A-GMM using first-order derivatives of the mean only was also
trained. From the diagram it is clear that the additional power of
the A-GMM is able to model the distribution better than the GMM,
though using an additional 2 model parameters. This is reflected
in the average log-likelihoods, -1.59 for the GMM and -1.45 for
the A-GMM. Interestingly even using a 4-component GMM the
log-likelihood was only -1.46, still less than the two component
A-GMM.

The most commonly used form of acoustic model for speech
recognition is the HMM. Augmented forms of HMMs may also be
generated. The first order derivatives of the log-likelihood have a
similar form to the GMM and may be written as [7]

rµjm log p̌(O;�) =

TX
t=1

γjm(t)Σ−1
jm

�
ot − �jm

�
(8)



whereγjm(t) = P (θt = {sj , m}|O;�), θt is the state/component
pairing at timet. In contrast to GMMs, HMMs do not assume that
the observations are independent of one another. Thus temporal
dependencies within the data can be modelled using the higher or-
der derivatives.

3. SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) [8] are an approximate imple-
mentation of structural risk minimisation. They have been found
to yield good performance on a wide of range tasks. This section
briefly reviews SVMs and the use of generative kernels which are
one approach to handling the dynamic nature of speech.

3.1. Maximum Margin Training

SVMs are based upon the intuitive concept of maximising the mar-
gin between the decision hyperplane and the closest training ex-
amples. This has been shown to be related to minimising an upper
bound on the generalisation error [8]. However, in general it is
not possible to construct a separating hyperplane between classes
with no classification errors. In these situations, an optimal hy-
perplane is found to minimise the probability of error, averaged
over the training set. This is accomplished by allowingsoft mar-
gins. The margin between classes is said to be soft if there exist
training examples,oi (with labelsyi ∈ {−1, 1}), that violate the
constraintyi(〈w,oi〉 + w0) ≥ 1, wherew is the weight vector,
w0 is the bias of the optimal hyperplane and〈·, ·〉 indicates the in-
ner product between the two vectors using an appropriate metric2.
Slack variables,εi ≥ 0, are introduced to measure the deviation
of these examples from the ideal condition of pattern separability.
The objective function and constraint become,

{ŵ, ŵ0} = arg min
w,w0

(
1

2
〈w,w〉+ C

nX
i=1

εi

)
(9)

subject toyi(〈w,oi〉 + w0) ≥ 1 − εi. C acts as a regularisation
parameter and controls the trade-off between the margin and the
number of misclassified points. For non-linearly separable data,
Cover’s theorem states that examples may be made linearly sep-
arable with a high probability given a non-linear transformation,
�(o;�), from input-space,o, to a feature-spaceof sufficient di-
mensionality. Using this mapping, the kernelised form of the dual
objective function is defined for the Lagrange multipliersαsvm

�̂svm = (10)

arg max
αsvm

(
nX

i=1

αsvm
i − 1

2

nX
i=1

nX
j=1

αsvm
i αsvm

j yiyjK(�,oi,oj)

)
subject to

Pn
i=1 αsvm

i yi = 0 and0 ≤ αsvm
i ≤ C. Here

K(�,oi,oj) = 〈�(oi;�),�(oj ;�)〉 (11)

The upper limit on the Lagrange multipliers,�svm, limits the influ-
ence of individual examples (which may be outliers). At optimal-
ity, the Karush-Kuhn-Tucker (KKT) conditions ensure that only
examples that lie on the margin (〈w,oi〉 + w0 = 1 − εi) have
αsvm

i > 0. These examples are known as thesupport vectors[8].

2Where a Euclidean metric is used this simply becomes the scalar prod-
uct of the two vectors

3.2. Generative Kernels

One of the issues with applying SVMs to time varying data, such
as speech data, is that the SVM is inherently static in nature. To
handle this problem Fisher Kernels [9] and generative kernels [7]
have been proposed. Here a generative model that can handle dy-
namic data is used. An example first-order form of a generative
kernel for the set ofT observations,O = {o1, . . . ,oT }, may be
written as

�(O;�) =
1

T

264 log
�
p̌(O;�(1))

�
− log

�
p̌(O;�(2))

�
rλ(1) log p̌(O;�(1))

rλ(2) log p̌(O;�(2))

375 (12)

wherep̌(O;�(1)) andp̌(O;�(2)) are the generative models asso-
ciated with classesω1 andω2 respectively.

As SVM training is a distance based learning scheme it is nec-
essary to define an appropriate metric for the distance between two
points. The simplest approach is to use aEuclideanmetric. How-
ever, in the same fashion as using theMahalanobis, rather than
Euclidean, distances for nearest-neighbour training, an appropri-
ately weighted distance measure may be better. One such metric
which is maximally non-committal is given by

K(�,Oi,Oj) = �(Oi;�)′G−1�(Oj ;�) (13)

whereOi andOj are sequences of lengthTi andTj respectively,
and

G = E
n�
�(O;�)− �φ

� �
�(O;�)− �φ

�′o
(14)

where�φ = E {�(O;�)}. This will be the form of generative
kernel used in this work.

In contrast to many forms of kernel there may be many param-
eters associated with the generative model. It is therefore sensi-
ble to investigate maximum margin training of the generative ker-
nels [10]. Here

{�̂svm, �̂} = arg max
αsvm

min
λ

(
nX

i=1

αsvm
i − (15)

1

2

nX
i=1

nX
j=1

αsvm
i αsvm

j yiyjK(�,Oi,Oj)

)
Unfortunately there is no simple method for optimising the values.
A simple iterative process can be used where the support vectors
are estimated and then the generative kernel parameters are up-
dated using gradient descent.

4. MAXIMUM MARGIN STATISTICAL MODELS

From the previous section, maximising the margin is a good train-
ing criterion when dealing with large dimensional feature-spaces,
or little training data. Furthermore as maximum margin training
attempts to correctly classify all the training examples, it is inher-
ently discriminatory in nature and is thus an obvious alternative
criterion to discriminative criteria such as maximum mutual infor-
mation (MMI) [11]. The disadvantage of the approach is that it
is inherently a binary classification approach. For this work, the
binary case will be considered, although schemes have been pro-
posed to handle the multiclass case. For the binary case, there
are two sets of augmented model parameters to train,{�(1),�(1)}



and{�(2),�(2)}. For a binary classification problem, the Bayes’
decision is based on

P (ω1)τ
(2)p(o;�(1),�(1))

P (ω2)τ (1)p(o;�(2),�(2))

ω1
>
<
ω2

1 (16)

whereP (ω1) andP (ω2) are priors for the two classes. Taking
logs of both sides, this may be expressed as

log

�
p(o;�(1),�(1))

p(o;�(2),�(2))

�
+ b

ω1
>
<
ω2

0 (17)

where the class priors and normalisation terms are combined as

b = log

�
P (ω1)τ

(2)

P (ω2)τ (1)

�
(18)

Note here the priors for the classes are not trained using ML, but
rather using maximum margin. Using equation 2, equation 17 can
be rewritten as the scalar product,(·, ·),��

w
w0

�
,

�
�(o;�)

1

�� ω1
>
<
ω2

0 (19)

This now has the form of ascore-space, �(o;�), which is a func-
tion of the base-statistical model parameters

�(o;�) =

"
log
�
p̌(o;�(1))

�
− log

�
p̌(o;�(2))

�
r(ρ)

λ log(p̌(o;�))

#
(20)

and a linear decision boundary which is determined by the aug-
mented model parameters�3

�
w
w0

�
=

2664 1

�(1)

−�(2)

b

3775 (21)

One candidate to train the decision boundary is the Support
Vector Machine (SVM). This is suitable for these forms of models
as the decision boundaries that are estimated achieve good gen-
eralisation even when the dimensionality of the feature-space (in
this case the score-space) is very large. This may be viewed as
maximum margin training of the statistical models. If the SVM is
trained, the parameters of the augmented model are given by4

α0

24 1

�(1)

−�(2)

35 = α0w =

nX
i=1

αsvm
i yiG

−1�(oi;�) (22)

whereG is given by equation 14. The additional scaling termα0

has no affect on the decision boundary, but allows standard SVM
training to be used5.

One objection to the use of SVMs is that the distances from the
decision boundaries do not have a statistical interpretation [12].

3Due to the definition of the biasb, there is some interaction between
the base statistical model parameters and the�

4The additional use of the metricG below is due to training the SVM
using an inner product, whereas the augmented model is described in terms
of a scalar product.

5The values of the bias must also be scaled, henceb = w0/α0.

This has led to techniques that transform the output so that it is
probabilistic in nature [13] and the use of the relevance vector
machine [12]. However if generative kernels are used the dis-
tance from the decision boundary is directly interpretable as the
log-posterior ratio of the two classes. This comes directly from
equation 19. It is interesting to contrast this to MMI training [11].
In MMI training the average posterior of the correct label is op-
timised. In maximum margin training of this form, all correctly
labelled points beyond the margin are ignored.

−6 −4 −2 0 2 4 6
−2

0

2

4

6

−6 −4 −2 0 2 4 6
−2

0

2

4

6

a) LLR Max Likelihood b) LLR Max Margin

−6 −4 −2 0 2 4 6
−2

0

2

4

6

−6 −4 −2 0 2 4 6
−2

0

2

4

6

c) LLR+rµ,Σ Max Likelihood d) LLR+rµ,Σ Max Margin

Fig. 2. (a) Maximum Likelihood (ML) and (b) Maximum Margin
(MM) distributions in a Log-Likelihood Ratio (LLR) score-space;
and (c) ML base distribution and LLR+rµ,Σ score-space; (d) MM
base distribution and a LLR+rµ,Σ score-space.

A simple example of maximum margin training of a statistical
model is shown in figure 2 on artificial data generated using three-
component GMMs per class. Here single Gaussian component
class-conditional models are used as the base distribution. The
ML estimate for this model is shown in (a) along with the SVM
trained decision boundary from the one-dimension log-likelihood
ratio (LLR) score-space

φ(o;�) =
h
log
�
p̌(o;�(1))

�
− log

�
p̌(o;�(2))

�i
(23)

and the Bayes’ decision boundary (the dotted line). The base
acoustic model was then trained using maximum margin estima-
tion using equation 15 and the score-space in 23. The decision
boundary and positions of the Gaussians are shown in figure (b).
The direction of the decision boundary is closer to that of the
Bayes’ decision boundary and is also reflected in the classification
rate in this data. Figures (c) and (d) show the decision boundaries
that result from using the LLR with derivatives of the mean and
covariances. The decision boundaries that result from (c) and (d)
are very similar to that in (b). This is because the class-conditional
base distribution was a member of the exponential family (a Gaus-
sian). Since the derivatives with respect to the means and the vari-
ances yield first and second order statistics [14], the final distri-
bution should be the same as directly training class-conditional
Gaussian distributions using maximum margin.

One of the issues with using maximum margin training with
generative kernels is that the final distribution is not guaranteed to



be a valid distribution (though a distance from the decision bound-
ary will always be available). This is best illustrated by exam-
ining maximum margin training of a univariate Gaussian class-
conditional distribution. Consider a mean and variance first deriva-
tive score-space. The resultant maximum margin variance is given
by σ4/(σ2 − α) whereα is associated with the variance deriva-
tive. Thus ifα ≥ σ2 the effective variance will not be positive
definite.

For the training to directly correspond to estimating augmented
model parameters a linear kernel in the score-space is required.
However, non-linear kernels such as polynomial and Gaussian ker-
nels are commonly used. Provided that the normalisation integral
(the value ofτ ) is bounded, the distances from the decision may
still be interpreted as a log-posterior ratio. However, this will not
have the form of the augmented models described in section 2.

5. LVCSR DECODING

SVMs are inherently a binary classifier. For Large Vocabulary
Continuous Speech Recognition (LVCSR) there are a vast num-
ber of possible classes making one-v-one binary classification im-
practical. In order to apply the maximum margin trained statistical
models of the previous section to LVCSR it is necessary to map
this highly complex classification problem into a set of binary clas-
sification problems.

To solve this problem an approach related to that described
in [15] is used. A standard, in this case HMM-based, LVCSR
system is used to generate a set of word-lattices. These consist
of nodes and arcs. The arcs are labelled with words, language
and acoustic model likelihoods. The nodes are labelled with time
stamps. The word-lattices are then converted to aconfusion net-
work. This consists of a series of nodes, with a linear graph. Each
of the arcs is labelled with a word, a start and end time and a log-
posterior,F(ωi). For details of this process see [16]. The con-
fusion network are then pruned so that at each node a maximum
of two possible words occur. The pruning is achieved by simply
selecting the words with the greatest posteriors.

Once a set of confusion pairs have been generated, it is pos-
sible to train a set of statistical models for each pair of data. One
issue is the form of score-space to be used. From equation 16 only
the unigram prior for the word is available (though the probabilities
are trained in a maximum margin fashion). For LVCSR, trigram
and higher order language models (LMs) are commonly used. This
additional information can be incorporated into the binary classi-
fier using the log-posteriors from the confusion networks. The
log-posterior may be treated as an additional information source.
Now the decision rule becomes

1

T
log

�
p(O;�(1),�(1))

p(O;�(2),�(2))

�
+ b + β (F(ω1)−F(ω2))

ω1
>
<
ω2

0

whereβ is an empirically set constant. This is a simple process as
it only requires combining the log-posterior ratio with the distance
from the SVM decision boundary. Alternatively the posterior may
be combined into the score-space to give

�(O;�) =

264 F(ω1)−F(ω2)
1
T

log
�
p̌(O;�(1))

�
− log

�
p̌(O;�(2))

�
1
T
r(ρ)

λ log(p̌(O;�))

375 (24)

This allowsβ to be set using maximum margin training. However
empirically settingβ has a number of advantages. The lattices

used to generate the confusion networks are usually generated us-
ing HMMs that have been trained on all the acoustic data. This
means that the posteriors obtained from the confusion networks
are liable to be biased. Thus theβ value will tend to be larger than
expected when using held out data.

6. RESULTS

The database used for the LVCSR experiments was a 400 hour sub-
set of the Fisher LDC data. This is thefsh2004sub data set used
for initial system development [17]. The model set used was based
on the standard frontend and models described in [17]. However
for this work only ML, rather than discriminatively, trained acous-
tic models were used. The confusion networks were generated
using a bigram language on the same 400hours as used to train the
acoustic models. The held-out dataset for these experiments was
the eval03 test set, which consists of 6 hours of data.

Word Pair
Training

CN # Components
(examples) post. 1 2 4

A/THE
ML

79.8

58.3 58.4 56.2

(8533)
SVM �ll() 61.1 63.0 64.7

+βCN 79.8 80.0 80.3
SVM �cn() 80.4 80.1 80.6

CAN/CAN’T
ML

78.5

81.7 86.0 88.2

(3761)
SVM �ll() 84.8 89.4 90.5

+βCN 88.5 91.2 91.9
SVM �cn() 89.0 91.4 91.6

KNOW/NO
ML

83.1

68.4 69.4 70.8

(4475)
SVM �ll() 72.1 73.6 76.6

+βCN 84.3 84.5 85.2
SVM �cn() 85.7 86.2 86.2

Table 1. 8-Fold cross-validation results (% correct) using variable
number of components, ML training of the base model (ML) and
SVM training with LLR+rµ,Σ (�ll()) and LLR+rµ,Σ+CN pos-
terior (�cn()) score-spaces with the ML model.

For initial assessment, 8-fold cross-validation experiments were
carried out on the training data. For all experiments diagonal co-
variance matrix GMMs were trained using the longest time-stamps
from the confusion networks6 for the two confusable words. The
number of examples for each word pairing were sampled so that
the number of positive examples for each word is the same. This
means that random selection will yield 50% correct. The GMMs
were trained using ML. SVMs were then trained using a first order
mean and covariance matrix score-space7. A range of SVMs were
trained and a few examples are shown in detail in table 1. For
all cases using SVMs trained in the likelihood ratio plus deriva-
tive score-space gave performance gain over the ML trained base
model. For the “CAN/CAN’T” pairing the GMM and SVM sys-

6By the longest time-stamps the earliest time of the two words and the
latest time of the two words is used. This is required as the confusion
network times are generated by taking the earliest and latest times that
contribute to an arc.

7In preliminary experiments the use of maximum margin training of
all the model parameters was not found to help performance. Note, for the
single component case the SVM trained augmented model is the equivalent
of maximum margin training model.



tem were better than the confusion network score used as a base-
line. However in general this was not the case. For the “A/THE”
pairing the performance was less than 60% for the ML GMM. Us-
ing the two forms of combining the confusion network posterior
scores from section 5 gains in performance were obtained for most
cases. Though schemes where the GMM performance was poor,
such as “A/THE”, the gains were negligible. Using the score-space
including the confusion network posterior gave consistent gains
over simply interpolating the information sources.

To examine performance on held-out data the eval03 test set
was used. This has a total of 76157 words in the reference tran-
scription. The baseline results using a bigram language model
were 34.4% and 33.9% using Viterbi and Confusion Network (CN)
decoding respectively, and the baseline numbers using a trigram
were 30.8% and 30.1% respectively. As expected the use of CN
decoding consistently decreased the error rate. These CN decod-
ing results were used as the baseline for SVM rescoring. Table 2

SVM Rescoring
#corrected/#pairs (% corrected)
bigram LM trigram LM

9 SVMs 44/1401 (3.1%) 41/1310 (3.1%)
15 SVMs 55/2116 (2.6%) 43/1954 (2.2%)

Table 2. SVM rescoring giving change in number of errors com-
pared to the CN decoding and total pairs rescored using�ll() +
βCN on eval03.

shows the results of rescoring with 9 and 15 SVMs trained on con-
fusion pairs from the 400hour training set. All SVM rescoring was
based on�ll() + βCN, with β roughly tuned to the task8. As ex-
pected from table 1 there was a range of performances depending
on the word pair. The best performance with the bigram LM was
using the “CAN/CAN’T” pairing. This reduced the number of er-
rors by 17 in a total of 165 pairs (10.0% reduction). The use of the
�cn() score-space to findβ was worse than the standard CN de-
coding. This illustrates the dependence of the posterior scores on
the exact acoustic/language models used. Overall though the num-
ber of errors reduced was small, the percentage of pairs corrected,
3.1%, for 9 pairs indicates that the general approach may be use-
ful. Even using SVMs based on 15 commonly confused pairs less
than 3% of the hypothesised words were rescored.

7. CONCLUSION

This paper has described the general form of augmented statisti-
cal models. These models are specified by a base distribution and
a local exponential family approximation to that distribution at a
particular point. The statistics used for the exponential model are
based on first, and higher order, derivatives of the base distribu-
tion. These models are difficult to train because of the potentially
large numbers of model parameters and issues in determining the
normalisation term. This paper shows that these augmented mod-
els can be trained for a two-class problem using maximum margin
training. This is directly related to the use of generative kernels
within an SVM framework. Initial experiments using SVM train-
ing on a large vocabulary speech recognition task indicate that this
form of modelling and training may be useful for speech recogni-
tion.

8The performance was relatively insensitive toβ.
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