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Overview

• Speech Synthesis

– statistical parametric speech synthesis

• Adaptation and Adaptive Training Approaches

– linear transform-based adaptation
– cluster adaptive training

• Acoustic Factorisation

• Applications

– polyglot synthesis
– controllable speaker and expressive synthesis
– e-book reading
– expressive talking head synthesis - “Zoe”
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Speech Recognition (ASR/STT) as a Task

ASR
System The cat sat on the ...

• Convert (parametrised) acoustic waveform Y into words w

– same “task” for all domain - recognition of words
– but realisation of words impacted by multiple factors:

speaker, noise, task differences
– need to remove impact of factors on “clean” speech
– output sentences highly dependent on domain
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Speech Synthesis (TTS) as a Task

TTS
SystemThe cat sat on the ...

• Convert word sequence w into (raw) waveform Y

– highly specific task - synthesis of a particular voice
– but realisation of words impacted by multiple factors:

speaker, language, context, expressiveness
– need to add impact of factors on “clean” speech

Cambridge University

Engineering Department
eNTERFACE June 2014 3



Controllable and Adaptable Statistical Parametric Speech Synthesis Systems

Speaker Differences

• Large differences between speakers

• Linguistic Differences e.g.

– Accents
tomato in RP/American English

– Speaker idiosyncrasies
either in English

– non-native speaker

• Physiological Differences e.g.

– physical attributes - gender,
length of vocal tract

– transitory effects
cold/stress/public speaking
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Expressive Speech

• Spoken communication is more than just conveying a sequence of words

– expressive speech is essential for efficient communication

• Wide range of expressive states

• Emotional state e.g.

– happy, sad, angry

• Contextual state e.g.

– relationship to listener
– interaction on a dialogue

• “Definition” vague

– how to label expressive state?
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Environment Differences
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Statistical Speech Synthesis
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Training and Synthesis [1]
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Synthesis Trajectory Generation [1]
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Controllable/Adaptable Speech Synthesis

Extraction

Prediction

Characteristics

Characteristics

Characteristics

Control
Controllable

Synthesis

Audio

External
Agent

Non−Audio

• Different characteristics required depending on information source

– external agent: meaningful labels required for synthesis system
– audio/non-audio: consistent labels required for synthesis system

• Influences training and synthesis requirements
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Acoustic Model Adaptation
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Model Adaptation Process

• Aim: modify a “canonical” model to represent a target speaker or domain

– should require minimal data from the target scenario
– should accurately represent target scenario speech

Target Speaker ModelCanonical Speaker Model

Adapt

• Need to determine

– nature (and complexity) of the adaptation transformation
– how to train the “canonical” model that is adapted
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Forms of Model Adaptation

M
∑

m=1

c(m)
x N (µ(m)

x ,Σ(m)
x ) →

N
∑

n=1

c(n)y N (µ(n)
y ,Σ(n)

y )

• Adaptive Compensation: general transform

– not specifically related to particular form of distortion
– often limited to (piecewise) linear transformation
– typically requires large number of model parameters

• Predictive Compensation: use “model” of acoustic factor

– impact of distortions explicitly represented
– requires definition of (approximate) mismatch function
– often non-linear in nature
– typically very low dimensional representation
– can be used to derive a prior for adaptive schemes
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Adaptation Examples

• Adaptive Approaches examples:

– Maximum A-Posteriori MAP [2] adaptation: general “robust” estimation

– Cluster Selection: Gender-dependent (GD) models

– Cluster Interpolation: combine multiple cluster parameters
EigenVoices[3], CAT [4] more complex (interesting) forms.

– Linear Transform Adaptation: dominant form for LVCSR
linear transform comprises: transformation A

(s) and bias b(s)

• Predictive Approaches examples:

– Vocal Tract Length Normalisation: motivated from physiological perspective
– Vector Taylor Series Compensation: model-based environment compensation
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Training a “Good” Canonical Model

• Need to estimate model parameters for the clean speech

– for both general and environment conditions, clean speech, xt, unobserved
– how to estimate the clean speech models Mx

Multi−Style

Model
Adapted 

Canonical Model
Adapted
Model

Canonical 
Model

Two different forms of canonical model:

• Multi-Style: treat observed data yt as the clean speech

• Adaptive: attempt to estimated underlying clean model [5, 6, 7]
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Form of the Adaptation Transform
• Dominant form for LVCSR are ML-based linear transformations

– MLLR adaptation of the means [8]

µ(s)
y = Aµx + b

(s)

– MLLR adaptation of the covariance matrices [9, 6]

Σ
(s)
y = H

(s)
ΣxH

(s)T

– Constrained MLLR adaptation [6]

µ(s)
y = A

(s)µx + b
(s); Σ

(s)
y = A

(s)
ΣxA

(s)T

• Forms may be combined into a hierarchy [10] e.g.

CMLLR → MLLRMEAN
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Speaker Adaptive Training (AVM) [5, 6, 11]

Speaker 1

Speaker S

Transform

Model

Speaker S

Transform
Speaker 1

Transform

Model

Speaker 2
Model

Model

Speaker 2Canonical

• In adaptive training the training corpus is split into “homogeneous” blocks

– use adaptation transforms to represent unwanted acoustic factors
– canonical model only represents desired variability

• All forms of linear transform can be used for adaptive training

– CMLLR adaptive training highly efficient
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CMLLR Adaptive Training

• The CMLLR likelihood may be expressed as [6]:

p(y
(s)
t |M̂x,M

(s)
s ,m) = |A(s)|N (A(s)yt + b

(s); µ̂(s)
x , Σ̂(m)

x )

same as feature normalisation - simply train model in transformed space

Estimate Speaker
Transform

Canonical Model
Estimate

Transforms

Canonical Model

Model

GI Acoustic Model
Identity Transform

• Interleave Model and transform estimation

• Update formulae for mean

µ̂(m)
x =

∑

s,t γ
(sm)
t

(

A
(s)yt + b

(s)
)

∑

s,t γ
(sm)
t
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Adaptation Transform Complexity

• Two aspects of transform complexity can be controlled:

– structure of the transform: full, block, diagonal
– number of transforms

The structure is normally determined by an “expert”

2500

1400

1150600 500

1100

250

• Regression Class trees often used [12]
to determine number of transforms

• Example with a threshold of 1000 shown:

• Also able to incorporate a prior

– CSMAPLR [13]
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EigenFaces

• Developed for face recognition

• Estimate the average face

• Dimensions yield “face” variability

– combine dimensions to yield a
face

– any face represented as a point

Apply same concept to speaker adaptation
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Cluster Adaptive Training (EigenVoices)

• The dimensionality of the space is

100K (comp) × 39 (dim) = 3.9M

• Low-dimensional (3-10) subspace

• Each speaker represented by a point
λ in the subspace

– the speaker specific mean is

µ(s)
y = µb +

P
∑

i=1

λ
(s)
i ci

• CAT yields complete ML estimation (PCA for original EigenVoices) [3, 4]

Each speaker specified by only 3-10 parameters!
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Multiple Decision Trees [14]

Single Tree Tree Intersect

• An important aspect of the acoustic model is the decision tree

– each leaf (context group) usually modelled by a single Gaussian

• Tree interact models yield a compact way of representing many contexts

– associate a separate tree with each cluster
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CAT [15] and AVM [11] Representations
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Combined Schemes - AVM plus CAT [16]

• AVM and CAT have complementary attributes

– CAT: very fast, good quality, average similarity
– AVM: slow(er), average/good quality, good similarity

• Use CAT as the canonical model the AVM

– additional transform improves similarity
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Combined Schemes - Multiple AVMs [17]

Primary AVM
adaptation

Synthesis

Target data

Secondary AVM
adaptationSecondary AVM

adaptationSecondary AVM
adaptation

Mean vector 
extraction

Secondary AVM
adaptation

Interpolation

• Possible to combine multiple AVMs together

– effectively tunes CAT bases to the target speaker
– only the means are interpolated (simplifies the maths)
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Acoustic Factorisation
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Multiple Acoustic Factors

• In most scenarios multiple acoustic factors impact the signal

– speaker and noise:

the same speaker may be observed in multiple noise conditions

– speaker and language:

the same speaker characteristics will be perceived irrespective of language

How to Use/Estimate Transforms in this Case?
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Standard Approach

Spkr2,N2

SpkrS, NK
Transform

Model

Model

Model

Model
Canonical

Data 1

Data 2

Data SK

Transform
Spkr1, N1

Transform

• The standard approach is estimating a transform for speaker/noise pairs

M
(sn)
f = argmax

{

p(Y (sn)|H;M,Mx)p(M)
}

• BUT ignores aspects of speaker/noise relationships

How to Incorporate this Information?
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Acoustic Factorisation

• Conceptually the process is very easy [18]

M
(sn)
f = M(s)

s ⊗M(n)
n

– form of transform for the speaker Ms

– form of transform for the environment Mn

• Aim is to avoid exponential growth of number of transforms

– transforms assigned to specific acoustic factors
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Example (1) - “Practical” Speaker Enrolment

Speaker Transform

Training Data

• Often only see data from a speaker with varying acoustic condition

– consider in-car navigation system/ recording session variability

• Canonical speaker transform required

– recognition in different environments [19]/speaker identification [20]
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Example (2) - Rapid Adaptation

Model N1, S

Models
Canonical

Transform
Adapted Speaker SNoise N1

Transform
Adapted Noise N2

Model N2, S

Transform

• Consider the above condition for speaker and noise:

– general speaker transform requires ≈ 1500 frames for robust estimate
– VTS environment model requires ≈ 100 frames for robust estimate
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Example (3) - Polyglot Synthesis

Model L1, S

Models
Canonical

Adapted Speaker SLanguage L1

Language L2
Transform

Adapted 
Model L2, S

Transform Transform

• Consider the above condition for speaker and language:

– synthesis speaker characteristics in a different language
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Transform Orthogonality

Fix noise change speaker

Noise

Fix speaker change noise

Speaker

• Need to be able to apply transforms independently - transform orthogonality

How to ensure this orthogonality/attributable to factors
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Multiple Linear Transforms

• Consider the case of using linear transforms for both speaker and noise [21]

A
(s)(A(n)yt + b

(n)) + b
(s) = A

(sn)yt + b
(sn)

– there’s no orthogonality - transform structure the same

• Simplest solution is to ensure speaker/noise overlaps

Noise

Speaker

• Not always possible to control nature of the data

– possible to impose explicit orthogonality constraints [22]
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Example Applications
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Controllable Speaker and Emotion Synthesis [23]

Speaker SpaceEmotion Space

• Use CAT to define both speaker and emotion spaces

– train so that spaces are orthogonal to one another
– enables separate control over speaker and emotion characteristics

• System trained on a range of emotions and speakers

– enables appropriate spaces to be automatically generated
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Controllable Speaker and Emotion Synthesis

Video
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Polyglot Synthesis [14]

• An interesting challenge is

How to have a speaker talk in a different language?

– need to maintain the same speaker characteristics
– need to change the language

• Not normally possible to get multi-lingual speakers to record corpora

– would dramatically limit the size of corpus that could be used

• Parametric statistical speech synthesis is attractive for this task

– based on graphical models (HMMs-like)
– standard adaptation approaches can be applied
– factorisation should be possible
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Multi-Lingual Synthesis

• Major problem with multi-lingual systems is variations in phonetic information

– phone sets may differ between languages
– contextual importance may differ between languages
– some contextual/acoustic attributes shared (common physical system)

• Some of these attributes are reflected in the decision trees

– a single decision tree will not be sufficient
– multiple decision trees one option - yields a tree intersect style model

• CAT to multiple decision trees [14]

– a CAT specified language space for language attributes
– use CMLLR to represent the speaker attributes
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Speaker and Language Transformations

Speaker Transform

Decision Tree Cluster 1 Decision Tree Cluster 2

Language Space
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E-Book Reading

• E-books (Kindle, Kobo etc) increasingly popular

– audio-books useful extension - “eyes-free” listening
– is it possible to automatically generate an audio-book from text?

• Highly challenging task:

– paragraph-level (not sentence) synthesis
– high level of “listenability” required
– expressive synthesis often used in reading
– character voices sometimes used

• Consider expressive synthesis aspect:

– normally need label the expressive state of every utterance
– very hard to get consistency (what is an expressive state?)

• Jointly train extraction and synthesis to maximise likelihood
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Integrated Expressive Speech Training [24]

Training

Expressive State

Prediction

Extraction
Acoustic FeatureLinguistic Feature

Extraction

Acoustic Model
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Expressive Space Representation

Expressive State
Prediction

Acoustic Model
Training

Linguistic Features Audio Features

• Automatically initialise a set of expressive states [25]

• Update complete system to maximise likelihood of audio data

1. estimate acoustic models given prediction model
determines bases of expressive space

2. estimate prediction model given acoustic model
determines position in expressive space

• Neural network based predictor used in initial work
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Expressive Audio-Visual Synthesis

Prediction Acoustic Models
Expressive State Expressive

Waveform
Synthesis

?

Linguistic Feature
Extraction
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Photo-Realistic Expressive Speech Synthesis [26]

Video Features
(17 dim)

Mel Cep. Coeff
(45 dim)

Log F0

BAP Features
(25 dim)

(19 dim)
Phase Features

Extraction

Audio Feature 
Extraction

Video Feature

• Collect a high quality expressive audio-visual corpus

– extract synchronised audio and video (upsampled) features

• Construct an expressive CAT speech synthesis system

– add the video features (with delta and delta-deltas) as additional stream

• Synthesise audio and video features for selected emotion!
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Photo-Realistic Expressive Speech Synthesis
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Conclusions
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Conclusions

• Speech is an incredibly rich signal

– words only part of the speech information signal
– signal has speaker/environment/channel/language distortions

• Makes speech recognition/synthesis interesting (and challenging)

• Acoustic factorisation highly flexible/controllable adaptation

– essential for controllable speech synthesis
– improves efficiency/portability for speech recognition

• CAT and AVM useful approaches for diverse data

– can be operated in adaptable or controllable modes
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