Overview

• Dependency Modelling in Speech Recognition:
 – latent variables
 – exponential family

• Augmented Statistical Models
 – Gaussian mixture models and hidden Markov models

• Support Vector Machines
 – Generative Kernels
 – maximum margin training

• Preliminary LVCSR experiments
Dependency Modelling

• Speech data is dynamic - observations are not of a fixed length

• Dependency modelling essential part of speech recognition:

\[p(o_1, \ldots, o_T; \lambda) = p(o_1; \lambda)p(o_2|o_1; \lambda) \ldots p(o_T|o_1, \ldots, o_{T-1}; \lambda) \]

 – impractical to directly model in this form
 – make extensive use of conditional independence

• Two possible forms of conditional independence used:
 – observed variables
 – latent (unobserved) variables

• Even given dependency (form of Bayesian Network):
 – need to determine how dependencies interact
Bayesian networks

Yield conditional-independence assumptions

- round node: continuous variable;
- square node: discrete variable;
- shaded node: observable;
- no arrow: conditional independence.

Examples:

1. Factor Analysis:
 \[p(o_t | x_t) = \mathcal{N}(o_t; C_t x_t + \mu_t^{(o)}, \Sigma_t^{(o)}) \]

2. Gaussian Mixture Model:
 \[p(o_t | \omega_t = n) = \mathcal{N}(o_t; \mu_n, \Sigma_n) \]
Hidden Markov Model - A Dynamic Bayesian Network

(a) Standard HMM phone topology

(b) HMM Dynamic Bayesian Network

- Notation for DBNs:
 - circles - continuous variables
 - shaded - observed variables
 - squares - discrete variables
 - non-shaded - unobserved variables

- Observations conditionally independent of other observations given state.
- States conditionally independent of other states given previous states,
- Poor model of the speech process - piecewise constant state-space.
Dependency Modelling using Latent Variables

Switching linear dynamical system:
- discrete and continuous state-spaces
- observations conditionally independent given continuous and discrete state;
- exponential growth of paths, $O(N_s^T)$
 \Rightarrow approximate inference required.

Multiple data stream DBN:
- e.g. factorial HMM/mixed memory model;
- asynchronous data common:
 - speech and video/noise;
 - speech and brain activation patterns.
- observation depends on state of both streams
Frames from phrase:
SHOW THE GRIDLEY’S . . .

Legend
- True
- HMM
- SLDS

- Unfortunately doesn’t currently classify better than an HMM!
Adaptive Training

- Observations conditionally independent:
 - state that generated the observation
 - continuous latent variable(s) s

- Latent variable:
 - represents the speaker/environment
 - various forms CMN/CVN/VTLN

- One powerful form is Speaker Adaptive Training using constrained MLLR

\[
p(O; \lambda) = \sum_{\theta \in \Theta} \int_{\mathcal{R}^n} \left(\prod_{t=1}^{T} P(\theta_t | \theta_{t-1}) |A| p(Ao_t + b | \theta_t; \lambda) \right) p(A, b | \lambda) dA db
\]

- ML/MAP estimation commonly used for A, b
- exact Bayesian inference intractable (at the moment)
- used in many state-of-the-art speech recognition systems
Dependency Modelling using Observed variables

- Commonly use member (or mixture) of the exponential family

\[
p(O; \alpha) = \frac{1}{\tau} h(O) \exp(\alpha^T T(O))
\]

- \(h(O)\) is the reference distribution
- \(\alpha\) are the natural parameters
- \(\tau\) is the normalisation term
- the function \(T(O)\) is a sufficient statistic.

- Hard to determine the appropriate form of statistics (\(T(O)\)) to use ...
Sufficient Statistic Example

- For the one-dimensional observation sequences $O = o_1, \ldots, o_T$ extract:

 - $T_1(O) = \sum_{t=2}^{T} o_t$; $T_2(O) = \sum_{t=2}^{T} o_{t-1}$
 - $T_3(O) = \sum_{t=2}^{T} o_t o_{t-1}$; $T_4(O) = \sum_{t=2}^{T} o_t^2$; $T_5(O) = \sum_{t=2}^{T} o_{t-1}^2$

- Probability (given the first observation) by

 \[
 p(o_2, \ldots, o_T | o_1; \alpha) = \exp \left(\sum_{i=1}^{5} \alpha_i T_i(O) \right) / \tau
 \]

 - α and τ directly found from the joint distribution of $\{o_t, o_{t-1}\}$

 \[
 \mu = \frac{1}{T-1} \begin{bmatrix} T_1(O) \\ T_2(O) \end{bmatrix}; \quad \Sigma = \frac{1}{T-1} \begin{bmatrix} T_4(O) & T_3(O) \\ T_3(O) & T_5(O) \end{bmatrix} - \mu \mu'
 \]

 - has the form of a single component single-state buried Markov model
Constrained Exponential Family

- Could hypothesise all possible dependencies and prune
 - discriminative pruning found to be useful (buried Markov models)
 - impractical for wide range (and lengths) of dependencies
- Consider constrained form of statistics
 - local exponential approximation to the reference distribution
 - ρ^{th}-order differential form considered (related to Taylor-series)
- Distribution has two parts
 - reference distribution defines latent variables
 - local exponential model defines statistics ($T(O)$)
- Slightly more general form is the augmented statistical model
 - train all the parameters (including the reference, base, distribution)
Augmented Statistical Models

- Augmented statistical models (related to fibre bundles)

\[
p(O; \lambda, \alpha) = \frac{1}{\tau} \tilde{p}(O; \lambda) \exp \left(\alpha' \begin{bmatrix} \nabla_{\lambda} \log(\tilde{p}(O; \lambda)) \\ \frac{1}{2!} \text{vec} (\nabla^2_{\lambda} \log(\tilde{p}(O; \lambda))) \\ \vdots \\ \frac{1}{\rho!} \text{vec} (\nabla^\rho_{\lambda} \log(\tilde{p}(O; \lambda))) \end{bmatrix} \right)
\]

- Two sets of parameters
 - \(\lambda \) - parameters of base distribution (\(\tilde{p}(O; \lambda) \))
 - \(\alpha \) - natural parameters of local exponential model

- Normalisation term \(\tau \) ensures that

\[
\int_{\mathbb{R}^n} p(O; \lambda, \alpha) dO = 1; \quad p(O; \lambda, \alpha) = \bar{p}(O; \lambda, \alpha)/\tau
\]

- can be very complex to estimate
Augmented Gaussian Mixture Model

• Use a GMM as the base distribution: \(\tilde{p}(o; \lambda) = \sum_{m=1}^{M} c_m N(o; \mu_m, \Sigma_m) \)
 - considering only the first derivatives of the means

\[
p(o; \lambda, \alpha) = \frac{1}{\tau} \sum_{m=1}^{M} c_m N(o; \mu_m, \Sigma_m) \exp \left(\sum_{n=1}^{M} P(n|o; \lambda) \alpha_n^T \Sigma_n^{-1}(o - \mu_n) \right)
\]

• Simple two component one-dimensional example:
Augmented Gaussian Mixture Model Example

- Maximum likelihood training of A-GMM on symmetric log-normal data

- 2-component base-distribution (poor model of data)
- A-GMM better model of distribution (log-likelihood -1.45 vs -1.59 GMM)
- approx. symmetry obtained without symmetry in parameters!
Augmented Hidden Markov Model

- For an HMM: \(\tilde{p}(O; \lambda) = \sum_{\theta \in \Theta} \left\{ \prod_{t=1}^{T} a_{\theta_{t-1}\theta_{t}} \left(\sum_{m \in \theta_{t}} c_{m} \mathcal{N}(o_{t}; \mu_{m}, \Sigma_{m}) \right) \right\} \)
 - The form of the statistics when an HMM used as the base distribution

\[
\nabla_{\mu_{jm}} \log \tilde{p}(O; \lambda) = \sum_{t=1}^{T} \gamma_{jm}(t) \Sigma_{jm}^{-1} (o_{t} - \mu_{jm})
\]

\[
\gamma_{jm}(t) = P(\theta_{t} = \{s_{j}, m\}|O; \lambda), \ \theta_{t} \text{ is the state/component pairing at time } t
\]

- An example higher order derivative has the form

\[
\nabla_{\mu_{in}} \nabla'_{\mu_{jm}} \log (\tilde{p}(O; \lambda)) =
\sum_{t=1}^{T} \sum_{\tau=1}^{T} \left\{ (\gamma_{\{jm, in\}}(t, \tau) - \gamma_{jm}(t) \gamma_{in}(\tau)) \Sigma_{in}^{-1} (o_{\tau} - \mu_{in})(o_{t} - \mu_{jm})' \Sigma_{jm}^{-1} \right\}
\]

where \(\gamma_{\{jm, in\}}(t, \tau) \) is the joint state/component posterior.
Augmented Model Dependencies

• If the base distribution is a mixture of members of the exponential family

\[
\tilde{p}(\mathbf{O}; \boldsymbol{\lambda}) = \prod_{t=1}^{T} \sum_{m=1}^{M} c_m \exp \left(\sum_{j=1}^{J} \lambda^{(m)}_j T^{(m)}_j (\mathbf{o}_t) \right) / \tau^{(m)}
\]

– consider a first order differential

\[
\frac{\partial}{\partial \lambda^{(n)}_k} \log (\tilde{p}(\mathbf{O}; \boldsymbol{\lambda})) = \sum_{t=1}^{T} P(n|\mathbf{o}_t; \boldsymbol{\lambda}) \left(T^{(n)}_k (\mathbf{o}_t) - \frac{\partial}{\partial \lambda^{(n)}_k} \log (\tau^{(m)}) \right)
\]

• Augmented models of this form

 – keep independence assumptions of the base distribution
 – remove conditional independence assumptions of the base model
 - the local exponential model depend on a posterior ...

• Same applies for dynamic models such as HMMs
Augmented Model Summary

- Extension to standard forms of statistical model
- Consists of two parts:
 - base distribution determines the latent variables
 - local exponential distribution augments base distribution
- Base distribution:
 - standard form of statistical model
 - examples considered Gaussian mixture models and hidden Markov models
- Local exponential distribution:
 - currently based on ρ^{th}-order differential form
 - gives additional dependencies not present in base distribution
- Normalisation term may be highly complex to calculate
 - maximum likelihood training may be very awkward
SVMs are a maximum margin, binary, classifier:

- related to minimising generalisation error;
- unique solution (compare to neural networks);
- may be kernelised - training/classification a function of dot-product ($x_i . x_j$).

Successfully applied to many tasks - how to apply to speech?
Support Vector Machine Training

- For non-linearly separable data a soft margin classifier is used: minimise

\[\tau(w, \xi) = \frac{1}{2}||w||^2 + C \sum_{i=1}^{n} \xi_i \]

subject to \(y_i (\langle w, x_i \rangle + b) \geq 1 - \xi_i, \quad \xi_i \geq 0 \)

- two terms: \(\frac{k}{\text{margin}^2} \) and error rate bound \((C\) balances importance)

- The dual is commonly optimised (based only on \(\alpha^{\text{svm}} \))

\[
\hat{\alpha}^{\text{svm}} = \max_{\alpha^{\text{svm}}} \left\{ \sum_{i=1}^{n} \alpha_i^{\text{svm}} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i^{\text{svm}} \alpha_j^{\text{svm}} y_i y_j (x_i, x_j) \right\}
\]

subject to \(0 \leq \alpha_i^{\text{svm}} \leq C, \quad \sum_{i=1}^{m} \alpha_i^{\text{svm}} y_i = 0, \quad y_i \in \{-1, 1\} \) indicates the class.

\[w = \sum_{i=1}^{n} \alpha_i^{\text{svm}} y_i x_i \]
The “Kernel Trick”

- SVM decision boundary linear in the feature-space
 - may be made non-linear using a non-linear mapping \(\phi() \) e.g.

\[
\phi \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}, \quad K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle
\]

- Efficiently implemented using a Kernel: \(K(x_i, x_j) = (x_i \cdot x_j)^2 \)
SVMs, Generative Kernels and Maximum Margin Statistical Models

Handling Speech data

- Speech data has **inherent variability** in the number of samples:

<table>
<thead>
<tr>
<th>The</th>
<th>cat</th>
<th>sat</th>
<th>on</th>
<th>the</th>
<th>mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 frames</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O_1 = { o_1, \ldots, o_{1200} })</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The</th>
<th>cat</th>
<th>sat</th>
<th>on</th>
<th>the</th>
<th>mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 frames</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O_2 = { o_1, \ldots, o_{900} })</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Kernels can be used to map from variable to fixed length data.

- **Generative models** are an obvious candidate:
 - HMMs and GMMs handle variable length data
 - view as “mapping” sequence to a single dimension (log-likelihood)

\[
\phi (O; \lambda) = \frac{1}{T} \log (p(O; \lambda)) = \frac{1}{T} \sum_{t=1}^{T} \log p(o_t; \lambda)
\]
Generative Kernels

- SVMs can handle large dimensional data robustly:
 - higher dimensions - data more separable;
 - how to increase dimensionality?

- Have a generative model for each class: parameters $\omega_1: \lambda^{(1)}$ and $\omega_2: \lambda^{(2)}$

- Use a score-space:
 - add derivatives with respect to the model parameters
 - example is a log-likelihood ratio plus first derivative score-space:

$$\phi^{11}(O; \lambda) = \frac{1}{T} \left[\log \left(p(O; \lambda^{(1)}) \right) - \log \left(p(O; \lambda^{(2)}) \right) \right]$$

$$\nabla_{\lambda^{(1)}} \log \left(p(O; \lambda^{(1)}) \right)$$

$$- \nabla_{\lambda^{(2)}} \log \left(p(O; \lambda^{(2)}) \right)$$

- dimensionality of feature-space: $1 + \text{parameters } \lambda^{(1)} + \text{parameters } \lambda^{(2)}$
Score-Space Metrics

- SVM training involves a distance from the decision boundary
 - need to determine appropriate distance metric

- Choose a maximally non-committal metric

\[K(O_i, O_j; \lambda) = \phi(O_i; \lambda)'G^{-1}\phi(O_j; \lambda) \]

where \(O_i \) and \(O_j \) are sequences of length \(T_i \) and \(T_j \) respectively, and

\[G = \mathcal{E} \{ (\phi(O; \lambda) - \mu_\phi)(\phi(O; \lambda) - \mu_\phi)' \} \]

where \(\mu_\phi = \mathcal{E} \{ \phi(O; \lambda) \} \).

- In practice \(G \) is usually set to be a diagonal matrix
Augmented Model Training

- Only consider simplified two-class problem

- Bayes’ decision rule for binary case (prior $P(\omega_1)$ and $P(\omega_2)$):

 $$
 \frac{P(\omega_1)\tau^{(2)}p(O; \lambda^{(1)}, \alpha^{(1)})}{P(\omega_2)\tau^{(1)}p(O; \lambda^{(2)}, \alpha^{(2)})} \begin{cases}
 \omega_1 > 1; & \omega_2 < 1 \end{cases} \frac{1}{T} \log \left(\frac{p(O; \lambda^{(1)}, \alpha^{(1)})}{p(O; \lambda^{(2)}, \alpha^{(2)})} \right) + b \begin{cases}
 \omega_1 > \omega_2 \geq 0

 - b = \frac{1}{T} \log \left(\frac{P(\omega_1)\tau^{(2)}}{P(\omega_2)\tau^{(1)}} \right) - \text{no need to explicitly calculate } \tau

 - Can express decision rule as the following scalar product

 $$
 \begin{bmatrix} w \\
 w_0 \end{bmatrix} \begin{bmatrix} \phi(O; \lambda) \\
 1 \end{bmatrix} \begin{cases}
 \omega_1 > 1; & \omega_2 < 1 \end{cases} \begin{cases}
 \begin{cases}
 \omega_1 > \omega_2 \geq 0

 \end{cases}

 - form of score-space and linear decision boundary

 - SVM good choice as possibly high dimensional score-space
Augmented Model Training - Binary Case (cont)

- **Score-space** is given by (first order derivatives)

\[
\phi(O; \lambda) = \frac{1}{T} \left[\log \left(p(O; \lambda^{(1)}) \right) - \log \left(p(O; \lambda^{(2)}) \right) \right]
\begin{bmatrix}
\nabla_{\lambda^{(1)}} \log \left(p(O; \lambda^{(1)}) \right) \\
\n\nabla_{\lambda^{(2)}} \log \left(p(O; \lambda^{(2)}) \right)
\end{bmatrix}
\]

- this is the generative kernel \(\phi^{11}(O; \lambda) \)
- only a function of the base-distribution parameters \(\lambda \)

- **Linear decision boundary** given by

\[
w' = \begin{bmatrix} 1 & \alpha^{(1)'} & \alpha^{(2)'} \end{bmatrix}'
\]

- only a function of the exponential model parameters \(\alpha \)

- **Bias** is represented by \(w_0 \)
- depends on both \(\alpha \) and \(\lambda \)
Estimating Model Parameters

- Two sets of parameters to be estimated using training data \(\{O_1, \ldots, O_n\} \):
 - generative models (Kernel) \(\lambda = \{\lambda^{(1)}, \lambda^{(2)}\} \)
 - SVM (Lagrange multipliers) \(\alpha_{\text{svm}} = \{\alpha_{\text{svm}}^1, \ldots, \alpha_{\text{svm}}^n\} \)
 - direction of decision boundary \(y_i \in \{-1, 1\} \) label of training example

\[
\mathbf{w} = \sum_{i=1}^{n} \alpha_{i,\text{svm}}^* y_i \mathbf{G}^{-1} \phi(O_i; \lambda)
\]

- SVM parameters trained using maximum margin training (to find \(\alpha_{\text{svm}}^* \))
- Kernel parameters may be estimated using:
 - maximum likelihood (ML) training;
 - discriminative training (e.g. maximum mutual information)
 - maximum margin (MM) training.
SVMs and Class Posteriors

- Common objection to SVMs - no probabilistic interpretation
 - use of additional sigmoidal mapping/relevance vector machines

- Generative kernels - distance from the decision boundary is the posterior ratio

\[
\frac{1}{w_1} \left(\begin{bmatrix} w \\ w_0 \end{bmatrix} \phi(O; \lambda) \right) = \frac{1}{T} \log \left(\frac{P(\omega_1|O)}{P(\omega_2|O)} \right)
\]

- \(w_1 \) is required to ensure first element of \(w \) is 1
- augmented version of the kernel PDF becomes the class-conditional PDF

- Decision boundary also yields the exponential natural parameters

\[
\begin{bmatrix} 1 \\ \alpha^{(1)} \\
\alpha^{(2)} \end{bmatrix} = \frac{1}{w_1} w = \frac{1}{w_1} \sum_{i=1}^{n} \alpha_i^{\text{svm}} y_i G^{-1} \phi(o_i; \lambda)
\]
Maximum Margin Kernel Estimation

- Using maximum margin training to estimate Kernel appealing:
 - optimising α^{svm} yields local exponential parameters
 - optimising λ yields parameters of the base distribution

- Modified version of the standard SVM dual used:

$$\{\hat{\alpha}^{svm}, \hat{\lambda}\} = \arg\max_{\alpha^{svm}} \min_{\lambda} \left\{ \sum_{i=1}^{n} \alpha^{svm}_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha^{svm}_i \alpha^{svm}_j y_i y_j K(O_i, O_j; \lambda) \right\}$$

- Iterative optimisation required:
 - given values of λ perform standard SVM training
 - given values of α^{svm} perform gradient descent optimisation of λ
Maximum Margin Training (detail)

- Training procedure used:
 1. Initialise parameters, λ_0, of generative model using MLE
 2. Train SVM to locate initial support vectors, $\alpha_{0}\text{svm}$
 3. Calculate initial value of objective function, $W(0) = W(\lambda_0, \alpha_{0}\text{svm})$
 4. For each iteration k:
 - (A) $\lambda_k = \arg \min_{\lambda} W(\lambda; \alpha_{k-1}\text{svm})$
 - (B) $\alpha_{k}\text{svm} = \arg \max_{\alpha_{\text{svm}}} W(\alpha_{\text{svm}}; \lambda_k)$
 - Recalculate objective function, $W(k) = W(\lambda_k, \alpha_{k}\text{svm})$
 Repeat until convergence: $|W(k) - W(k-1)| < \epsilon$

- (A) is a gradient descent scheme involving backing-off
 - back-off required to ensure that KKT conditions still satisfied
- (B) is standard SVM training
Maximun Margin Example

- Artificial example training class-conditional Gaussian with LLR score-space:

$$\phi(o; \lambda) = \left[\log \left(\bar{p}(o; \lambda^{(1)}) \right) - \log \left(\bar{p}(o; \lambda^{(2)}) \right) \right]$$

- Decision boundary closer to Bayes’ decision boundary (dotted line)
 - can also be obtained by optimising α_{svm} using $\phi^{11}(O; \lambda)$ score-space ...
Exponential Family Base Distribution

- For a single component example the form of the augmented model is

\[
p(o; \lambda, \alpha) = \frac{1}{\tau} \exp (\lambda' T(o)) \exp (\alpha' T(o)) = \frac{1}{\tau} \exp ((\alpha + \lambda)' T(o))
\]

- still a member of the exponential family

- Using SVM training with generative kernel

\[
\phi(o; \lambda) = \begin{bmatrix}
\log (\tilde{p}(o; \lambda^{(1)})) - \log (\tilde{p}(o; \lambda^{(2)})) \\
T(o) \\
-T(o)
\end{bmatrix}
\]

- will yield a maximum margin estimate of the exponential model
- not true when using a model with latent variables
Valid Statistical Model?

- For a valid statistical model τ must be bounded:
 - for Gaussian covariance matrix must be positive-definite
- This places restrictions on the values of α
- Consider the simplest single-dimension, Gaussian base distribution
 - score-space is LLR and first derivatives of mean and variance
 - the augmented model is also Gaussian with effective variance

$$\sigma^2 = \frac{\tilde{\sigma}^4}{\tilde{\sigma}^2 - \alpha}$$

if $\alpha \geq \tilde{\sigma}^2$ then the variance is negative!

- In practice this has not been an issue with the models examined here ...
Deterding Dataset

- Data from 11 vowels in British English in context of h*d
 - steady state portions partitioned into 6 Hamming window segments
 - linear prediction analysis to yield 10 log area parameters
 - static 10-dimensional feature vector for training/testing

- Corpus consists of
 - 48 training examples per vowel (total of 528 examples)
 - 42 test examples per vowel (total of 462 examples)

- Multi-class problem handled using set of 1-vs-1 SVM classifiers
 - single pair ties resolved using pair classifier decision
 - multiple ties resolved using the GMM classifier
Deterding Data Experiments

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Num. Comp.</th>
<th>Training (%)</th>
<th>Test (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>initial</td>
<td>final</td>
</tr>
<tr>
<td>GMM</td>
<td>1</td>
<td>40.0</td>
<td>55.8</td>
</tr>
<tr>
<td>GMM</td>
<td>2</td>
<td>27.7</td>
<td>45.2</td>
</tr>
<tr>
<td>SVM (LLR)</td>
<td>1</td>
<td>38.1</td>
<td>1.9</td>
</tr>
<tr>
<td>SVM (LLR)</td>
<td>2</td>
<td>26.3</td>
<td>0.8</td>
</tr>
<tr>
<td>SVM (LLR + $\nabla \mu$)</td>
<td>1</td>
<td>10.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Maximum margin training of kernel (base distribution)
 - initial - performance using ML values for λ
 - final - performance using MM values for λ

- Use of maximum margin training improved performance
 - but overtraining clear with maximum margin training
SVMs and LVCSR

- SVMs are inherently binary:
 - speech recognition has a vast number of possible classes;
 - how to map to a simple binary problem?

- **Use pruned confusion networks:**
 - use standard HMM decoder to generate word lattice;
 - generate confusion networks (CN) from word lattice
 * gives posterior for each arc being correct;
 - prune CN to a maximum of two arcs (based on posteriors).
Incorporating Posterior Information

• Useful to incorporate arc log-posterior \((\mathcal{F}(\omega_1), \mathcal{F}(\omega_1))\) into decision process
 – posterior contains e.g. N-gram LM, cross-word context acoustic information

• Two simple approaches:
 – combination of two as independent sources (\(\beta\) empirically set)

 \[
 \frac{1}{T} \log \left(\frac{p(O; \lambda^{(1)}, \alpha^{(1)})}{p(O; \lambda^{(2)}, \alpha^{(2)})} \right) + b + \beta (\mathcal{F}(\omega_1) - \mathcal{F}(\omega_2)) \begin{cases} \omega_1 > 0 \\ \omega_2 < 0 \end{cases}
 \]

 – incorporate posterior into score-space (\(\beta\) obtained from decision boundary)

 \[
 \phi^{cn}(O; \lambda) = \begin{bmatrix} \mathcal{F}(\omega_1) - \mathcal{F}(\omega_2) \\ \phi(O; \lambda) \\ 1 \end{bmatrix}
 \]

• Incorporating in score-space requires consistency between train/test posteriors
LVCSR Experimental Setup

- HMMs trained on 400 hours of conversational telephone speech (fsh2004sub):
 - standard CUHTK CTS frontend (CMN/CVN/VTLN/HLDA)
 - state-clustered triphones (~6000 states, ~28 components/state);
 - maximum likelihood training
- Confusion networks generated for fsh2004sub:
 - bigram language model trained on fsh2004sub
- Perform 8-fold cross-validation on 400 hours training data:
 - matched training and test conditions
 - ML-trained Gaussian mixture model (first derivatives) score-space
 - posteriors “biased” as HMMs trained on “test” data
- Evaluation on held-out data (eva103)
 - 6 hours of test data
 - decoded using either LVCSR bigram or trigram
 - baseline using confusion network decoding
8-Fold Cross-Validation LVCSR Results

<table>
<thead>
<tr>
<th>Word Pair (examples)</th>
<th>Training</th>
<th>CN post.</th>
<th># Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A/THE (8533)</td>
<td>ML</td>
<td>79.8</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>SVM $\phi^{ll}()$ + β CN SVM $\phi^{cn}()$</td>
<td></td>
<td>61.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.8</td>
<td>79.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80.4</td>
</tr>
<tr>
<td>CAN/CAN’T (3761)</td>
<td>ML</td>
<td>78.5</td>
<td>81.7</td>
</tr>
<tr>
<td></td>
<td>SVM $\phi^{ll}()$ + β CN SVM $\phi^{cn}()$</td>
<td></td>
<td>84.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78.5</td>
<td>88.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>89.0</td>
</tr>
<tr>
<td>KNOW/NO (4475)</td>
<td>ML</td>
<td>83.1</td>
<td>68.4</td>
</tr>
<tr>
<td></td>
<td>SVM $\phi^{ll}()$ + β CN SVM $\phi^{cn}()$</td>
<td></td>
<td>72.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83.1</td>
<td>84.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85.7</td>
</tr>
</tbody>
</table>

- Posterior score-space best approach, maximum margin distributions useful.
Evaluation Data LVCSR Results

- Baseline performance using Viterbi and Confusion Network decoding

<table>
<thead>
<tr>
<th>Decoding</th>
<th>Language Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bigram</td>
</tr>
<tr>
<td>Viterbi</td>
<td>34.4</td>
</tr>
<tr>
<td>Confusion Network</td>
<td>33.9</td>
</tr>
</tbody>
</table>

- Rescore common confusion pairs using 4-component and $\phi^{11}() + \beta$CN

<table>
<thead>
<tr>
<th>SVM Rescoring</th>
<th>#corrected/#pairs (% corrected)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bigram LM</td>
</tr>
<tr>
<td>9 SVMs</td>
<td>44/1401 (3.1%)</td>
</tr>
<tr>
<td>15 SVMs</td>
<td>55/2116 (2.6%)</td>
</tr>
</tbody>
</table>

- β roughly set - error rate relatively insensitive to exact value
- less than 3% of 76157 hypothesised words rescored - more SVMs required!
Summary

• Dependency modelling for speech recognition
 – use of latent variables
 – use of sufficient statistics from the data

• Augmented statistical models
 – allows simple combination of latent variables and sufficient statistics
 – use of constrained exponential model to define statistics

• Support vector machines
 – use of generative kernels for dynamic data
 – maximum margin training of augmented statistical models

• Preliminary results of a large vocabulary speech recognition task
 – SVMs/Augmented models possibly useful for speech recognition