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Apple Siri (2011)
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Speech Application Areas
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Speech Processing:
Proof of Concept
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Speech Production (Synthesis)
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Speech Perception (Recognition)
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Speech Understanding
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Should Speech Recognisers have Ears?

8/57



Should Speech Recognisers have Ears?

No - I’m and Engineer!
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Speech Recognition
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Speech Recognition
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Sequence-to-Sequence Modelling

• Sequence-to-sequence modelling central to speech/language:
• machine translation:

word sequence (discrete) → word sequence (discrete)
• speech synthesis:

word sequence (discrete) → waveform (continuous)
• speech recognition:

waveform (continuous) → word sequence (discrete)

• The sequence lengths on either side can differ
• waveform sampled at 10ms/5ms frame-rate - T -length x1∶T
• word/token sequences - L-length ω1∶L
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Speech Recognition Framework (Traditional)

Language
Model

Waveform

ya uphe...Features Decoder

Acoustic
Model

Lexicon

• Acoustic model: likelihood model generating observed features
• Language model: probability of any word sequence
• Lexicon: maps words to sub-word units (phones)
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Generative Models [2, 3]

• Consider two sequences (note L ≤ T ):
• features: x1∶T = {x1,x2, . . . ,xT}
• words: ω1∶L = {ω1, ω2, . . . , ωL}

• Consider generative model

p(ω1∶L,x1∶T ) = P(ω1∶L)p(x1∶T ∣ω1∶L)

• P(ω1∶L): language model
• p(x1∶T ∣ω1∶L): acoustic model
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Language Model: N-grams [15]

<s> the cat sat on the mat </s>

<s> the cat sat on the mat </s>
<s> the cat sat on the mat </s>
<s> the cat sat on the mat </s>
<s> the cat sat on the mat </s>
<s> the cat sat on the mat </s>
<s> the cat sat on the mat </s>
<s> the cat sat on the mat </s>

P(ω1∶L) =
L
∏

i=1
P(ωi ∣ω1∶i−1) ≈

L
∏

i=1
P(ωi ∣ωi−N+1∶i−1)
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Acoustic Model: Hidden Markov Models [1, 8, 23]
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• HMMs standard model for many year (1970s-2010s)
• each (context-dependent) phone modelled by an HMM
• typically 3-emitting state topology, left-right
• non-emitting (end) states used for “gluing” models together

• φ1∶T is the T -length state-sequence
• φt indicates the HMM-state at time instance t
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Acoustic Model: HMMs [1, 8]

• Important sequence model: hidden Markov model (HMM)
• an example of a dynamic Bayesian network (DBN)

t xt+1

t t+1φ φ

x

• discrete latent variables
• φt describes discrete state-space
• conditional independence assumptions

P(φt ∣φ1∶t−1) = P(φt ∣φt−1)
p(xt ∣x1∶t−1,φ1∶t) = p(xt ∣φt)

• The likelihood of the data is

p(x1∶T ∣ω1∶L) = ∑

φ1∶T ∈Φω1∶L

(

T
∏

t=1
p(xt ∣φt)P(φt ∣φt−1))
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Decoding (Traditional) [23]

• Use Bayes’ Decision Rule

ω̂ = argmax
ω
{P(ω∣x1∶T )}

= argmax
ω
{P(ω,x1∶T )}

= argmax
ω
{P(ω)p(x1∶T ∣ω)}

• need to efficiently search over all possible word sequences
• Viterbi decoding used for efficiency with HMMs & N-grams

• leverages model conditional independence assumptions
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Deep Learning and
Recurrent Neural Networks
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What is Deep Learning?

From Wikipedia:
Deep learning is a branch of machine learning based on a
set of algorithms that attempt to model high-level
abstractions in data by using multiple processing layers,
with complex structures or otherwise, composed of
multiple non-linear transformations.
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Deep Neural Networks [13]

y(x)x

• General mapping process from input x to output y(x)

y(x) = F(x)

• deep refers to number of hidden layers
• Output from the previous layer connected to following layer:

• x(k) is the input to layer k
• x(k+1) = y(k) the output from layer k
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Neural Network Layer/Node

φ()wi

zi

• General form for layer k:

y (k)i = φ(w ′
ix(k) + bi) = φ(z(k)i )
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Recurrent Neural Networks [19, 18]
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Recurrent Neural Networks

• Consider a causal sequence of observations x1∶t = {x1, . . . ,xt}

t
x

t−1
h

t

Time

h

delay

1:ty(x   )

• Introduce recurrent units

ht = fh
(Wf

hxt +Wr
hht−1 + bh)

y(x1∶t) = ff
(Wyht + by)

• ht history vector at time t

• Uses approximation to model history of observations

F(x1∶t) = F(xt ,x1∶t−1) ≈ F(xt ,ht−1) ≈ F(ht) = y(x1∶t)

• network has (causal) memory encoded in history vector (ht)
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RNN: Dynamic Bayesian Network

t
x

t−1
h

t

Time

h

delay

1:ty(x   )

xt+1xt

ht t+1h

yt yt+1

• Maps between two sequences x1∶T → y1∶T
• Figure on right is unwrapped in time

• shows dependencies - shaded blue are deterministic mappings
• Seen similar models - HMMs, CRFs, SSVMs ..

• doesn’t handle sequence length mappings in ASR
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RNN: Variants and Extensions [21, 6, 14, 11, 22, 7]

• Extensions of standard RNN structure:
• bi-directional RNN (depends on future and past)
• latent-variable RNNs (continuous latent variables)

• Modification to the recurrent units (gating)
• long-short term memory units (LSTMs)
• gated recurrent units (GRUs)
• highway connections (gating in time)
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Acoustic Modelling
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Hidden Markov Models [1, 8]

t xt+1

t t+1φ φ

x

• Discrete latent variables
• φt describes discrete state-space
• conditional independence assumptions

P(φt ∣φ1∶t−1) = P(φt ∣φt−1)
p(xt ∣x1∶t−1,φ1∶t) = p(xt ∣φt)

• The likelihood of the data is

p(x1∶T ∣ω1∶L) = ∑

φ1∶T ∈Φω1∶L

p(x1∶T ∣φ1∶T )P(φ1∶T )

= ∑

φ1∶T ∈Φω1∶L

(

T
∏

t=1
p(xt ∣φt)P(φt ∣φt−1))
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History Approximations and Inference

t xt+1

t t+1φ φ

x

φ φ

xt xt+1

ht−1 th

t t+1 φ φ

xt xt+1

th
~

ht+1

~

t t+1

HMM Finite State Finite Feature

∏
T
t=1 p(xt ∣φt) ∏

T
t=1 p(xt ∣φt ,ht−1) ∏

T
t=1 p(xt ∣h̃t)

• Inference costs significantly different:
• finite state: all past history observed - deterministic
• finite feature: past history unobserved - depends on path
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Acoustic Model Approximations

• HMM: simplest form of approximation

p(x1∶T ∣φ1∶T ) ≈
T
∏

t=1
p(xt ∣φt)

• Finite State:

p(x1∶T ∣φ1∶T ) ≈
T
∏

t=1
p(xt ∣φt ,x1∶t−1) ≈

T
∏

t=1
p(xt ∣φt ,ht−1)

• Finite Feature:

p(x1∶T ∣φ1∶T ) ≈
T
∏

t=1
p(xt ∣φ1∶t) ≈

T
∏

t=1
p(xt ∣h̃t)
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“Likelihoods” [3]

• Deep learning can be used to estimate distributions
• mixture density neural network (MDNN)
• more often trained as a discriminative model
• need to convert to a “likelihood”

37/57



“Likelihoods” [3]

• Deep learning can be used to estimate distributions
• mixture density neural network (MDNN)
• more often trained as a discriminative model
• need to convert to a “likelihood”

• Most common form (for RNN acoustic model):

p(xt ∣φt ,ht−1) =

P(φt ∣xt ,ht−1)p(xt ∣ht−1)
P(φt ∣ht−1)

∝

P(φt ∣xt ,ht−1)
P(φt ∣ht−1)

≈

P(φt ∣xt ,ht−1)
P(φt)

• P(φt ∣xt ,ht−1): modelled by a standard RNN
• P(φt): state/phone prior probability
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“Baseline” Acoustic Training Criteria

• Originally generative models (GMM-HMM systems) used ML

Fml = log (p(x1∶T ∣ωref))

= log
⎛

⎜

⎝

∑

φ1∶T ∈Φωref

p(x1∶T ∣φ1∶T )P(φ1∶T )
⎞

⎟

⎠

• Neural networks: Cross-Entropy with fixed alignment,

Fce = −

T
∑

t=1
log (P(φ̂t ∣xt ,ht−1))

φ̂1∶T = arg max
φ1∶T ∈Φωref

{P(φ1∶T ∣x1∶T )}
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Example “Generative” Acoustic Model [20]

understand the CLDNN architecture are presented in Section 4. Re-
sults on the larger data sets are then discussed in Section 5. Finally,
Section 6 concludes the paper and discusses future work.

2. MODEL ARCHITECTURE

This section describes the CLDNN architecture shown in Figure 1.

2.1. CLDNN

Frame xt, surrounded by l contextual vectors to the left and r con-
textual vectors to the right, is passed as input to the network. This
input is denoted as [xt�l, . . . , xt+r]. In our work, each frame xt is
a 40-dimensional log-mel feature.

First, we reduce frequency variance in the input signal by pass-
ing the input through a few convolutional layers. The architecture
used for each CNN layer is similar to that proposed in [2]. Specif-
ically, we use 2 convolutional layers, each with 256 feature maps.
We use a 9x9 frequency-time filter for the first convolutional layer,
followed by a 4x3 filter for the second convolutional layer, and these
filters are shared across the entire time-frequency space. Our pool-
ing strategy is to use non-overlapping max pooling, and pooling in
frequency only is performed [11]. A pooling size of 3 was used for
the first layer, and no pooling was done in the second layer.

The dimension of the last layer of the CNN is large, due to the
number of feature-maps⇥time⇥frequency context. Thus, we add a
linear layer to reduce feature dimension, before passing this to the
LSTM layer, as indicated in Figure 1. In [12] we found that adding
this linear layer after the CNN layers allows for a reduction in pa-
rameters with no loss in accuracy. In our experiments, we found that
reducing the dimensionality, such that we have 256 outputs from the
linear layer, was appropriate.

After frequency modeling is performed, we next pass the CNN
output to LSTM layers, which are appropriate for modeling the sig-
nal in time. Following the strategy proposed in [3], we use 2 LSTM
layers, where each LSTM layer has 832 cells, and a 512 unit projec-
tion layer for dimensionality reduction. Unless otherwise indicated,
the LSTM is unrolled for 20 time steps for training with truncated
backpropagation through time (BPTT). In addition, the output state
label is delayed by 5 frames, as we have observed with DNNs that
information about future frames helps to better predict the current
frame. The input feature into the CNN has l contextual frames to
the left and r to the right, and the CNN output is then passed to the
LSTM. In order to ensure that the LSTM does not see more than 5
frames of future context, which would increase the decoding latency,
we set r = 0 for CLDNNs.

Finally, after performing frequency and temporal modeling, we
pass the output of the LSTM to a few fully connected DNN layers.
As shown in [5], these higher layers are appropriate for producing a
higher-order feature representation that is more easily separable into
the different classes we want to discriminate. Each fully connected
layer has 1,024 hidden units.

2.2. Multi-scale Additions

The CNN takes a long-term feature, seeing a context of t�l to t (i.e.,
r = 0 in the CLDNN), and produces a higher order representation
of this to pass into the LSTM. The LSTM is then unrolled for 20
timesteps, and thus consumes a larger context of 20 + l. However,
we feel there is complementary information in also passing the short-
term xt feature to the LSTM. In fact, the original LSTM work in
[3] looked at modeling a sequence of 20 consecutive short-term xt

C

...

D

D

L

L

C
convolutional

layers

LSTM
layers

fully
connected

layers

output targets

[xt-l,..., xt, ...., xt+r]

linear
layer

dim
red

(1)

xt

(2)

Fig. 1. CLDNN Architecture

features, with no context. In order to model short and long-term
features, we take the original xt and pass this as input, along with
the long-term feature from the CNN, into the LSTM. This is shown
by dashed stream (1) in Figure 1.

The use of short and long-term features in a neural network has
been explored previously (i.e., [13, 14]). The main difference be-
tween previous work and ours is that we are able to do this jointly
in one network, namely because of the power of the LSTM sequen-
tial modeling. In addition, our combination of short and long-term
features results in a negligible increase in the number of network
parameters.

In addition, we explore if there is complementarity between
modeling the output of the CNN temporally with an LSTM, as well
as discriminatively with a DNN. Specifically, motivated by work in
computer vision [10], we explore passing the output of the CNN into
both the LSTM and DNN. This is indicated by the dashed stream
(2) in Figure 1. This idea of combining information from CNN and
DNN layers has been explored before in speech [11, 15], though
previous work added extra DNN layers to do the combination. Our
work differs in that we pass the output of the CNN directly into the
DNN, without extra layers and thus minimal parameter increase.

• Example Architecture from Google (2015)
• C: CNN layer (with pooling)
• L: LSTM layer
• D: fully connected layer

• Two multiple layer “skips”
• (1) connects input to LSTM input
• (2) connects CNN output to DNN input

• Additional linear projection layer
• reduces dimensionality
• and number of network parameters!
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Discriminative Models
(“End-to-End” Models)
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Speech Recognition Framework

Waveform

ya uphe...

Model
End−to−End

Features Decoder

• Apply Bayes’ Decision Rule

ω̂ = argmax
ω
{P(ω∣x1∶T )}

• Directly train model to solve task (“speech-to-text”)
• single model trained
• no separate acoustic and language models

• More complicated to incorporate additional LM data
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Discriminative Models [2]

• Compute posterior of word sequence

P(ω1∶L∣x1∶T ) = ∑

φ1∶T ∈Φω1∶L

P(ω1∶L∣φ1∶T )P(φ1∶T ∣x1∶T )
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Discriminative Models

• Compute posterior of word sequence

P(ω1∶L∣x1∶T ) = ∑

φ1∶T ∈Φω1∶L

���
���

�:1
P(ω1∶L∣φ1∶T )P(φ1∶T ∣x1∶T )
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Discriminative Models

• Compute posterior of word sequence

P(ω1∶L∣x1∶T ) = ∑

φ1∶T ∈Φω1∶L

���
���

�:1
P(ω1∶L∣φ1∶T )P(φ1∶T ∣x1∶T )

• finite state RNNs used to model history/alignment

P(φ1∶T ∣x1∶T ) ≈

T
∏

t=1
P(φt ∣x1∶t)

≈

T
∏

t=1
P(φt ∣xt ,ht−1) ≈

T
∏

t=1
P(φt ∣ht)

• Expression does not have a language model
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Connectionist Temporal Classification [10]

• CTC: discriminative model, no explicit alignment model
• introduces a blank output symbol (ε)

/C/

Time

ε

ε

ε

/T/

/A/

• Consider word: CAT

• Pronunciation: /C/ /A/ /T/

• Observe 7 frames
• possible state transitions
• example path:
/C/ ε /A/ /A/ ε /T/ ε
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Including State History?

t xt+1

t t+1φ φ

x

t+1

tφ

ht+1

t+1φ

th

xt x

φ φ

xt xt+1

th
~

ht+1

~

t t+1

MEMM [16] CTC Full History

• Interesting to consider state dependencies (right)

P(φ1∶T ∣x1∶T ) ≈
T
∏

t=1
P(φt ∣x1∶t ,φ1∶t−1) ≈

T
∏

t=1
P(φt ∣h̃t)
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Nature of Targets

• One trend for discriminative models:
Graphemes (letters) rather than context-dependent phones

• Take the example of the lexicon entry cat: /k/ /a/ /t/

sil k a t sil
sil sil-/k/+/a/ /k/-/a/+/t/ /a/-/t/+sil sil

sil sil-/c/+/a/ /c/-/a/+/t/ /a/-/t/+sil sil
sil c a t sil

• Can be run at the character level
• no need to have a lexicon (hence no OOVs)
• language model implicit by history vector (of features)
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Discriminative Models and “Priors” [12]

• No language models in (this form of) discriminative model
• in CTC the word history “captured” in frame history
• no explicit dependence on state (word) history

• Treat as a product of experts (log-linear model): for CTC

P(ω1∶L∣x1∶T ) =
1

Z(x1∶T )
exp
⎛

⎜

⎝

αT
⎡
⎢
⎢
⎢
⎢
⎣

log (∑φ1∶T ∈Φω1∶L
P(φ1∶T ∣x1∶T ))

log (P̃(ω1∶L))

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎟

⎠

• α trainable parameter (related to LM scale)
• P̃(ω1∶L) standard “prior” (language) model

• Normalisation term not required in decoding
• α often empirically tuned
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Encoder-Decoder Style Models

• Directly model relationship

P(ω1∶L∣x1∶T ) =

L
∏

i=1
P(ωi ∣ω1∶i−1,x1∶T )

≈

L
∏

i=1
P(ωi ∣ωi−1, h̃i−2, c)

• looks like an RNN LM with additional dependence on c

c = φ(x1∶T )

• c is a fixed length vector - like a sequence kernel
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RNN Encoder-Decoder Model [9, 17]

xt+1

th

xT

hTT−1h

xt

ht−1

i+1yi y

hi−1 ih
~ ~

Decoder

Encoder

• Simplest form is to use hidden unit from acoustic RNN/LSTM

c = φ(x1∶T ) = hT

• dependence on context is global via c - possibly limiting
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Attention-Based Models [5, 4, 17]

Decoder

Attention ci+1ic

xt+1

th

xT

hTT−1h

xt

ht−1

Encoder

i+1yi y

hi−1 ih
~ ~
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Attention-Based Models

• Introduce attention layer to system
• introduce dependence on locality i

P(ω1∶L∣x1∶T ) ≈
L
∏

i=1
p(ωi ∣ωi−1, h̃i−2, c i) ≈

L
∏

i=1
p(ωi ∣h̃i−1)

c i =
T
∑

τ=1
αiτ hτ ; αiτ =

exp(eiτ)
∑

T
k=1 exp(eik)

, eiτ = f e
(h̃i−2,hτ)

• eiτ how well position i −1 in input matches position τ in output
• hτ is representation (RNN) for the input at position τ

• Attention can “wander” with large input size (T )
• use a pyramidal network to reduce frame-rate for attention
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Conclusions
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Deep Learning and Speech Recognition

It’s an interesting time!

• Deep learning integrated into standard speech toolkits
• Kaldi, HTK etc

• Rich variety of models and topologies supported by:
• large quantities of training data
• GPU-based training (and parallel implementations)
• array of software tools: TensorFlow, CNTK, Theano ...

• Most state-of-the-art still “generative”
• but next conference in August ...
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Network Interpretation [24]

Standard /ay/ Stimulated /ay/

• Deep learning usually highly distributed - hard to interpret
• awkward to adapt/understand/regularise
• modify training - add stimulation regularisation
• improves ASR performance ...
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Thank-you!
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