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Apple Siri (2011)
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Speech Application Areas
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Speech Processing:
Proof of Concept
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Speech Production (Synthesis)
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Speech Understanding

Frontal lobe Motor cortex
Executive functions, Movement
thinking, planning,
organising and
problem solving,
emotions and
behavioural control,
personality

Parietal lobe
Perception, making
sense of the world,
arithmetic, spelling

ipital lobe

Temporal lobe
Memory, understanding,
language
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Should Speech Recognisers have Ears?




Should Speech Recognisers have Ears?




Should Speech Recognisers have Ears?

T —

No - I'm an Engineer!
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Speech Recognition
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Speech Recognition

Waveform

ya uphethiloli  wona usuwuthengile Words
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Speech Recognition (Traditional)

Waveform
p— Features
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Speech Recognition (Traditional)

Waveform
— Features
L
/w/ 1O/ In/ /a/ Phones
ya uphethiloli  wona usuwuthengile Words
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Speech Recognition (Traditional)

it e | T gr— g g R Waveform
% Features
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ya uphethiloli  wona usuwuthengile Words
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Speech Recognition (Traditional)

“\“\ g — Lk irnlgfi Waveform
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I Time Features
Context—-Dependent
/w/-/O/+/n/ Phones
/w/ 10O/ In/ la/ Phones
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Sequence-to-Sequence Modelling

= Sequence-to-sequence modelling central to speech/language:
= machine translation:
word sequence (discrete) — word sequence (discrete)
= speech synthesis:
word sequence (discrete) — waveform (continuous)
= speech recognition:
waveform (continuous) — word sequence (discrete)

= The sequence lengths on either side can differ

= waveform sampled at 10ms/5ms frame-rate - T-length xi.1
= word/token sequences - L-length wy;;
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Speech Recognition Framework (Traditional)

Acoustic
Model

\ ¥

e ffpoe b mP Features =P  Decoder = yauphe..
Waveform *

Lexicon

Language
Model

= Acoustic model: likelihood model generating observed features
= Language model: probability of any word sequence

» Lexicon: maps words to sub-word units (phones)
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Generative Models [2, 3]

= Consider two sequences (note L < T):
= features: x1.7 = {x1,X2,...,XT}
= words: wi = {w1,w27-~~,wL}

= Consider generative model

p(wir, x1:7) = Plwi)p(x1:7]wir)

* P(wy.): language model
= p(xy.7|wi:L): acoustic model




Language Model: N-grams [15]

<s> the cat sat on the mat </s>

<s> the cat sat on the mat </s>
<s> the <cat sat on the mat </s>
<s> the cat sat on the mat </s>
<s> the <cat sat on the mat </s>
<s> the <cat sat on the mat </s>
<s> the <cat sat on the mat </s>
<s> the <cat sat on the mat </s>

L L
P(wi.) = [] P(wilwri-1) » [ | P(wilwi-ns1:i-1)
i-1

i=1




Acoustic Model: Hidden Markov Models [1, 8, 23]

1 %2 @323/3\334@345 5 A(I)z =¢’+14>

» HMMs standard model for many year (1970s-2010s)

= each (context-dependent) phone modelled by an HMM

= typically 3-emitting state topology, left-right

= non-emitting (end) states used for “gluing” models together
= ¢q.7 is the T-length state-sequence

= ¢; indicates the HMM-state at time instance t
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Acoustic Model: HMMs |1, 8]

= Important sequence model: hidden Markov model (HMM)
= an example of a dynamic Bayesian network (DBN)

discrete latent variables

a @ = ¢; describes discrete state-space

= conditional independence assumptions

4> q)’” P(¢tl@1.i-1) = P(delde-1)
p(Xe|X1:-1, ¢1:t) = p(x¢|p)
= The likelihood of the data is

-
p(x1TlwiL) = Z (H P(Xt|¢t)P(¢t|¢t—1))

¢1:T€¢w1:,_ t=1
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Decoding (Traditional) [23]

= Use Bayes' Decision Rule

w arg max { P(w|x1.7)}

= argmax {P(w, x1.7)}

argmax {P()p(xul))

= need to efficiently search over all possible word sequences
= Viterbi decoding used for efficiency with HMMs & N-grams
= leverages model conditional independence assumptions
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Deep Learning and

Recurrent Neural Networks
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What is Deep Learning?

From Wikipedia:

Deep learning is a branch of machine learning based on a
set of algorithms that attempt to model high-level
abstractions in data by using multiple processing layers,
with complex structures or otherwise, composed of
multiple non-linear transformations.
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What is Deep Learning?

From Wikipedia:
Deep learning is a branch of machine learning based on a
set of algorithms that attempt to model high-level
abstractions in data by using multiple processing layers,
with complex structures or otherwise, composed of
multiple non-linear transformations.
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Deep Neural Networks [13]

= General mapping process from input x to output y(x)

y(x) = F(x)

= deep refers to number of hidden layers

= Qutput from the previous layer connected to following layer:
« x() is the input to layer k
« xU+) = () the output from layer k
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Neural Network Layer/Node

e

77 s‘; .
Ty
7" s*\ .......
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= General form for layer k:

v = o(wix®) + by) = 6(2)
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Recurrent Neural Networks [19, 18]

xt
\ h,

h I

t—1
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Recurrent Neural Networks

= Consider a causal sequence of observations x1.+ = {x1,..., Xt}

= Introduce recurrent units

N I \ n ht = fh (W}flxt + Wiht—l + bh)
U—» |.V(x1~z) y(X]_:t) = ff (Wyht + by)
h, / '

) = h; history vector at time t
" /Time
__.’ delay

= Uses approximation to model history of observations
F(x1t) = F(xe, x1:6-1) & F(xe, heo1) » F(he) = y(x1:¢)

= network has (causal) memory encoded in history vector (h;)
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RNN: Dynamic Bayesian Network

&?@

xt

\ h, .

— Y(x1.0)
» ()

, Time

.7 delay

---

= Maps between two sequences xX1.7 = y1.7
= Figure on right is unwrapped in time

= shows dependencies - shaded blue are deterministic mappings
= Seen similar models - HMMs, CRFs, SSVMs ..

= doesn’t handle sequence length mappings in ASR
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RNN: Variants and Extensions [21, 6, 14, 11, 22, 7]

= Extensions of standard RNN structure:

= bi-directional RNN (depends on future and past)
= latent-variable RNNs (continuous latent variables)

= Modification to the recurrent units (gating)
= long-short term memory units (LSTMs)
= gated recurrent units (GRUs)
= highway connections (gating in time)
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Acoustic Modelling
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Hidden Markov Models [1, 8]

Discrete latent variables

e @ = ¢, describes discrete state-space

= conditional independence assumptions

—0.—0. P(éxlbrc 1) = P(eloeor)
P(Xt|X1:t—1, ¢1:t) = P(Xt|¢t)
= The likelihood of the data is

Z p(x1.7|¢p1.7)P(d1.7)
¢1:T€¢wli

T
Z (H p(xt|¢t)P(¢t|¢t—1))

¢1:T€¢w1:L t=1

P(X1:T|w1:L)
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History Approximations and Inference

(2) @

i
®

‘&

T
4’ (I)t+1 - q)t

t+]|

HMM Finite State

HtT=1 p(xt|o,)

HtT=1 p(xtles, he-1)

= Inference costs significantly different:

—»q)t—»

q)t+]

—

Finite Feature

Hthl P(Xt’i"t)

= finite state: all past history observed - deterministic
= finite feature: past history unobserved - depends on path
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Acoustic Model Approximations

= HMM: simplest form of approximation

-
p(x1.7|d1.7) = HP(Xt|¢t)
t=1
= Finite State:

T T
p(x1:7|d17) ~ [ [ p(xe|ds, X1:e-1) » [ [ (Xl Dy, he1)
t=1 t=1

= Finite Feature:

T T .
p(x1.T|dy.7) = I—{P(Xt|¢1:t) N qP(xtIht)
t= t=
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“Likelihoods” [3]

= Deep learning can be used to estimate distributions

= mixture density neural network (MDNN)
* more often trained as a discriminative model

* need to convert to a “likelihood”




“Likelihoods” [3]

= Deep learning can be used to estimate distributions
= mixture density neural network (MDNN)
= more often trained as a discriminative model
= need to convert to a “likelihood”

* Most common form (for RNN acoustic model):

P(@.|xt, he-1)p(x¢|h:-1)
P(¢|h:-1)
P(¢¢|xt, he-1)
P(¢¢|he-1)
P(¢¢|xt, he-1)
P(&.)

* P(¢,|x¢, he—1): modelled by a standard RNN
= P(¢,): state/phone prior probability

p(xt|¢taht—1) =
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“Baseline” Acoustic Training Criteria

« Originally generative models (GMM-HMM systems) used ML

Fa = log(p(x1:7|wres))

IOg Z p(x12T|¢1:T)P(¢1:T)
¢1:T€¢wref

= Neural networks: Cross-Entropy with fixed alignment,

o
1l

T N
- Zi log (P(¢t|xta ht—l))

arg  max  {P(¢yr|x1T)}

1TEP Wyt

s
g
Il
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Example “Generative” Acoustic Model [20]

output targets

« Example Architecture from Google (2015)
= C: CNN layer (with pooling)
= L: LSTM layer
= D: fully connected layer

fully
connected
layers

Two multiple layer “skips”

= (1) connects input to LSTM input

= (2) connects CNN output to DNN input
Additional linear projection layer

= reduces dimensionality
= and number of network parameters!

LSTM
layers

(2)

layer

convolutional |
layers |
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Discriminative Models
(“End-to-End” Models)
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Speech Recognition Framework

b e b mP Foatures =P  Decoder = yauphe..
Waveform *

End-to-End
Model

= Apply Bayes' Decision Rule
W =arg max {P(w|x1.7)}
+ Directly train model to solve task (“speech-to-text”)

= single model trained
* no separate acoustic and language models

= More complicated to incorporate additional LM data
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Discriminative Models [2]

= Compute posterior of word sequence

P(wirlxit)= Y, Plwiilonr)P(orrlxiT)
¢1:T€¢w1:L
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Discriminative Models

= Compute posterior of word sequence

1
Plwilxer)= Y Plwrddrr)P(dyrixer)

¢1:TE¢WLL




Discriminative Models

= Compute posterior of word sequence

1
Plwilxer)= Y Plwrddrr)P(dyrixer)

¢1:T€¢w1:L

= finite state RNNs used to model history/alignment

P(prrixit) ~ []P(delx1:e)

Q

T T
P(@¢lxe, he1) » q P(¢:lh:)
t=1 t=

= Expression does not have a language model
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Connectionist Temporal Classification [10]

= CTC: discriminative model, no explicit alignment model
= introduces a blank output symbol (€)

O—=O0—= I
Consider word: CAT

O—>
/T/
o/ = Pronunciation: /C/ /A/ /T/

//// = Observe 7 frames

IA/
€ o = possible state transitions
/c/ /7/1// . exampl .
&0 xample path:
I— [C] € [l |A] € [T] €
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23 22
e % 7?/

4’ (I)m

MEMM [16] CTC Full History

1+1]

= Interesting to consider state dependencies (right)

T T .
P(@y.7|x1.7) = 11 P(oi|x1:t,1.0-1) = QP((f’tlht)
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Nature of Targets

= One trend for discriminative models:
Graphemes (letters) rather than context-dependent phones
= Take the example of the lexicon entry cat: /k/ /a/ /t/

sil k a t sil
sil sil-/k/+/a/ /k/-/a/+/t/ /a/-/t/+sil sil

sil sil-/c/+/a/ /c/-/a/+/t/ /a/-/t/+sil sil
sil C a t sil

= Can be run at the character level

* no need to have a lexicon (hence no OOVs)
= language model implicit by history vector (of features)
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Discriminative Models and “Priors” [12]

= No language models in (this form of) discriminative model
= in CTC the word history “captured” in frame history
= no explicit dependence on state (word) history

= Treat as a product of experts (log-linear model): for CTC

w 1 olar| 82, 0y, P(¢1.7|x1.7)
Plenban) Z(ar) " [ ( Iog(%(wlzL)) ) ]

* « trainable parameter (related to LM scale)
* P(w1.) standard “prior” (language) model

= Normalisation term not required in decoding
= o often empirically tuned
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Encoder-Decoder Style Models

= Directly model relationship

L
P(wirlxir) = []P(wilwri1,x1.7)
i1

4

L
[]P(wilwi-1, hi-2, )
i-1

= looks like an RNN LM with additional dependence on ¢

c=¢(x1.7)

= cis a fixed length vector - like a sequence kernel
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RNN Encoder-Decoder Model |9, 17]

Encoder

» Simplest form is to use hidden unit from acoustic RNN/LSTM

c=¢(xu7)=hr

= dependence on context is global via ¢ - possibly limiting
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Attention-Based Models [5, 4, 17]

Decoder | ... >~ ' Ot N .
. f N N N )
Attention | .. c @ ......
VERVA B >elan \ NN

""" B E
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Attention-Based Models

= Introduce attention layer to system
= introduce dependence on locality i

L L
P(wi.r]x1.1) = H p(wilwi-1, hi2,¢i) ~ Hp(wi|hi—1)
i=1 i=1

T _ B
ci=y ai-hy; air = 7<_axp(—e,7)’ eir = °(hi_2, hy)
=1 k=1 exp(eix)

= e;; how well position i—1 in input matches position 7 in output
= h, is representation (RNN) for the input at position 7

» Attention can “wander” with large input size (T)
= use a pyramidal network to reduce frame-rate for attention
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Conclusions
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Deep Learning and Speech Recognition

It's an interesting time!

= Deep learning integrated into standard speech toolkits
= Kaldi, HTK etc
= Rich variety of models and topologies supported by:

= large quantities of training data
= GPU-based training (and parallel implementations)
= array of software tools: TensorFlow, CNTK, Theano ...

= Most state-of-the-art still “generative”
* but next conference in August ...
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Network Interpretation [24]

Standard /ay/ Stimulated /ay/

= Deep learning usually highly distributed - hard to interpret
= awkward to adapt/understand/regularise
= modify training - add stimulation regularisation
= improves ASR performance ...
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Thank-you!
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