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Abstract
Large vocabulary speech recognition systems typically use a
combination of multiple systems to obtain the final hypothe-
sis. For combination to give gains, the systems being com-
bined must be complementary, i.e. they must make different er-
rors. Often, complementary systems are chosen simply by train-
ing multiple systems, performing all combinations, and select-
ing the best. This approach becomes time consuming as more
potential systems are considered, and hence recent work has
looked at explicitly building systems to be complementary to
each other. This paper considers building multiple complemen-
tary systems based on directed decision trees, and combining
them within a multi-pass adaptive framework. The tree diver-
gence is introduced for easy comparison of trees without having
to build entire systems. Experiments are presented on a Broad-
cast News Arabic task, and show that gains can be achieved by
using more than one complementary system.
Index Terms: automatic speech recognition, system combina-
tion, complementary systems

1. Introduction
State-of-the-art large vocabulary speech recognition (LVCSR)
systems often use a multi-pass framework for decoding. Ini-
tial lattices and 1-best transcriptions are generated and used to
perform speaker adaptation. The lattices are next rescored by
several different systems and the outputs combined to give the
final hypothesis. Methods such as ROVER [1] or Confusion
Network Combination (CNC) [2] are used to perform this com-
bination. Improvements can only be seen if the models being
combined are complementary. That is, if they make different
errors.

The most straightforward way to find systems that are com-
plementary is to independently train a variety of systems us-
ing, for example, different frontends or covariance modelling,
and evaluate all possible combinations. This approach becomes
time-consuming as the number of potential systems increases,
and it is not guaranteed that any will in fact be complementary.
Previous work has found that the best results are obtained when
combining independently trained systems that have compara-
ble error rates [3]. Having similar error rates is not a necessary
requirement for systems to be complementary, and this obser-
vation suggests that the types of independently trained system
that can be successfully combined in practice is limited.

Ensembles of classifiers have proven to be successful in the
machine learning community [4], and recent work has looked at
explicitly training complementary systems for automatic speech
recognition. However, many machine learning algorithms re-
quire alterations before they can be applied to ASR. Boosting
is one algorithm that has successfully been adapted to speech
recognition [5]. Boosting introduces a weighting on the training
data so that in successive iterations, more emphasis is placed on

harder to recognise training data. Minimum Bayes Risk Lever-
aging [6] takes a similar approach to weighting training data to
reflect confusions.

As an alternative to weighting the training data, [7] pro-
poses building directed decision trees that bias the trees to-
wards becoming complementary. Another approach to generat-
ing complementary decision trees is to add randomness into the
decision tree generation [8]. This paper builds on previous di-
rected decision tree work by building multiple complementary
systems, decoding within a multi-pass adaptive framework, and
introducing a divergence measure to judge how close decision
trees are to each other.

The following sections describe decision trees, a framework
for building multiple complementary systems, and a measure
for tree divergence. Experimental results are then presented and
discussed on a Broadcast News Arabic task.

2. Decision Trees
Decision trees are binary trees used to cluster states of triphone
HMMs, so that parameters can be shared [9]. They contain
questions, typically concerning triphone context, at their nodes,
and states clustered at their leaves. A top-down clustering algo-
rithm is used to build the tree, and there are three stages involved
in decision tree generation. First, statistics are gathered for each
state of each triphone in the training data. Second, the tree is
built by repeatedly splitting the states into smaller clusters. For
each split, all possible questions are ordered according to the
likelihood of the data after the split, and the question selected
to split the states is the one which maximises the likelihood.
Thirdly, the tree stops growing when the data likelihood falls
below a threshold.

Decision trees are widely used for parameter tying because
they provide an elegant way to cluster triphones that aren’t seen
in the training data and the size of the tree can easily be con-
trolled by altering the stopping criterion threshold. However,
states that are clustered together share the same output distribu-
tion, and so higher level information such as the language model
or context is needed to tell them apart.

Splitting the data in decision tree generation is a locally op-
timal operation, and small changes to the question selection can
lead to very different decision trees. Random decision trees [8]
take advantage of this fact to build different decision trees by
altering the question selection stage so a random question from
the top � is chosen, rather than simply picking the best.

3. Directed Decision Trees
Directed decision trees [7] aim to build complementary systems
by biasing the decision tree generation towards separating states
which are confusable. As well as obtaining the standard statis-
tics for decision tree generation, a second set of weighted statis-
tics is also obtained. These statistics are weighted so as to give



a higher weight to poorly recognised parts of the training data.
The question selection stage is then altered so that best question
is chosen with respect to these weighted statistics rather than the
original statistics. The original statistics are used for the stop-
ping criterion so that the directed trees are a similar size to the
original trees.

In this paper, the following method is used for weighting the
training data. First, Confusion Networks are obtained for every
utterance in the training data, and are aligned with the reference
transcription. Words in confusion networks are annotated with
posterior probabilities, so it is trivial to obtain a posterior prob-
ability for each word in the reference. Then, a loss for each
training data word is calculated, so that loss is inversely corre-
lated with the word posterior
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Hence states which are often confused in the training data

will have higher weights than those which are well recognised.
Previous work using directed decision trees has concen-

trated on building just one complementary system. It is easy
to extend the idea to building multiple complementary systems
using an iterative framework such as that used in boosting. First,
it is necessary to consider how the loss function calculation is
changed when training a system to be complementary to a num-
ber of previous models
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. Training data confusion

networks are generated for all previous systems, and aligned
with the reference, as in figure 1. Then, it is straightforward to
obtain an average word posterior for each reference word. This
average posterior is used in the loss function, which becomes
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Figure 1: Calculating the loss function with multiple previous
systems
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, trained using this modified loss func-
tion will be complementary to models
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than to just one other system. Next, this can be used in an itera-
tive framework to build multiple complementary systems. Fig-
ure 2 shows this framework. First, one system is trained to be

complementary to a baseline. Then, a second system is trained
complementary to both the baseline and the first complementary
system. This can be repeated to obtain a number of systems, all
complementary to each other. The advantage of this iterative
framework is that the order of combination is now given as the
order the systems were built in.

This is a general framework for training complementary
systems, and can be used with any complementary training al-
gorithm. Although Confusion Networks are used as the combi-
nation method here, any other combination algorithm can be
used, and the combination method used in decoding can be
matched with that used in training.
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Figure 2: Framework for generating multiple complementary
systems

4. Decision Tree Divergence
The decision tree generation stage typically occurs early in the
process of building a speech recognition system. For the ex-
periments presented in section 5, decision tree clustering is per-
formed on a triphone system which has one Gaussian compo-
nent per state output distribution. Then, ML training is per-
formed while increasing the number of components to 16, an
HLDA transform is computed and MPE training performed.
Only after the system has been trained is it possible to evalu-
ate its performance. Hence, some measure for comparing deci-
sion trees earlier in the process is useful when building systems
based on multiple decision trees.
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Figure 3: Comparing Decision Trees

Figure 3 shows an example of two decision trees with dif-
ferent clusterings. It is possible to compare these clusterings di-
rectly using, for example, a cluster similarity measure like that
in [10]. However, a cluster comparison measure typically uses
many pairwise comparisons between clustered elements, and so
proves expensive in practice.

The divergence measure used here relies on the fact that
all states clustered at a node share a common Gaussian distri-
bution. Hence, for each state of each triphone, it is possible to



obtain a Gaussian distribution from both trees. If these are close
together, then it is likely that the clustering is similar, and if they
are further apart the clustering is likely to be different. Hence,
a measure of tree divergence can be calculated as in figure 4.
The symmetric KL divergence is used as a measure of distance
between Gaussians from the two trees, and can be calculated for
each state of each triphone in the training data. The tree diver-
gence is an average of these KL divergences, weighted by the
state occupation count.

divergence = 0.0
For each state of each triphone:F = training data state occupation countG * = state output distribution in tree 1GIH

= state output distribution in tree 2
d = Symmetric-Kullback-Leibler(

G * , GJH )
divergence += F * d

end

Figure 4: Calculating Decision Tree Divergence

5. Results
Experiments were performed on a Broadcast News Arabic task.
Each system was trained using 101.8 hours of data and a PLP
frontend. After decision tree clustering, the systems were mixed
up to 16 components per state using ML training. Next, an
HLDA transform was computed to map from 52 dimensions
(12 PLP coefficients plus energy, 1st, 2nd and 3rd derivatives)
to 39 dimensions before the number of components per state
was reordered to be proportional to the state occupation count.
An average of 16 components per state is maintained. Finally,
MPE training is performed using an MMI prior and gender de-
pendent models were built. A baseline system, S0, was first
built, and D1 was built to be complementary to S0 by using a
directed decision tree. Next, D2 was built, also using a directed
decision tree, to be complementary to both S0 and D1. D1 and
D2 were built in exactly the same way as S0, the only difference
being the decision tree generation.

Results are given on three test sets: bnat05 (5.72 hours)
and bnat06 (2.76 hours) are broadcast news data, with the for-
mer being more closely matched to the training data. bcat06
(2.81 hours) consists of broadcast conversation shows, and
hence is the least closely matched. As short vowels are missed
out of Arabic transcriptions, pronunciations are generated using
Buckwalter morphological rules, and pronunciation probabili-
ties are used in decoding. A trigram language model with a
65k wordlist was used, and trigram lattices were converted to
confusion networks in order to perform confusion network de-
coding for the individual system results. This allows the gains
achieved by combination to be easily seen. Decoding was per-
formed in a multi-pass framework using CMLLR adaptation.
This framework is explained in further detail below, and further
information about Broadcast News transcription can be found
in [3].

The decision tree divergence was measured for the three
systems, and figure 5 shows how the tree divergence varies withK in the loss function calculation. D1 was compared to just the
baseline, S0, while D2 was compared both to S0 and to D1.
The divergence tends to increase with K , as more emphasis is
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Figure 5: Decision Tree Divergence with K when comparing
S0+D1 (dotted line), S0+D2 (solid), and D1+D2 (dashed)

placed on harder to recognise training data. Both D1 and D2
are a similar distance from the S0, but D1 and D2 are much
closer together. For the results presented below, D1 was built
with K �L�

and D2 was built with K �L�7M
.
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Figure 6: Multipass framework with (a) common lattice gener-
ation, (b) different lattice generation passes

Experiments were first run in the simple multi-pass frame-
work shown to the left in figure 6. In this framework, an initial
transcription was generated using gender independent S0 mod-
els, so normalisation and adaptation could be performed, before
lattices were generated. These lattices were rescored using S0,
D1 and D2 gender dependent models, and their outputs com-
bined using Confusion Network Combination. The results ob-
tained are shown in table 1.

For the most closely matched testset, bnat05, the individ-
ual performance of the directed tree systems is slightly worse
(0.2% absolute) than the baseline, but improvements are seen
on the other two sets. On the most mismatched set, bcat06,
an improvement of 0.8% absolute is seen, from the baseline er-
ror rate of 42.7% down to 41.9%.

When the combination of S0 and D1 is performed, gains
are seen for all test sets. The smallest gain is again on bnat05,
with an improvement of 0.3% absolute over the baseline, and
the largest gain of 0.9% absolute is seen on bcat06. When
combining all three systems, further gains are only seen on the



bcat06 set, but a final performance on this set of 41.4% WER
is 1.3% absolute better than S0 alone.

System bnat05 bnat06 bcat06
BASELINE S0 20.2 31.4 42.7

DIRECTED D1 20.4 31.0 42.0
D2 20.4 30.7 41.9

CNC S0+D1 19.9 30.5 41.8
S0+D1+D2 19.9 30.5 41.4

Table 1: WER (%) results using shared adaptation and lattice
generation

Decoding was also run in the alternative multi-pass frame-
work to the right in figure 6. In this framework, normalisation,
adaptation and lattice generation were performed independently
for each system using gender independent models, before being
rescored using gender dependent models. Table 2 shows the
results obtained with this setup.

The individual system results obtained for D1 and D2 are
slightly worse than for the previous setup. A gain of 0.2% abso-
lute can be seen for D2 on bnat06, and a gain of 0.6% absolute
for bcat06. However, the results obtained from combination
are better. A gain of 0.5% absolute is seen on bnat05 when
combining S0 with D1, although no gain is seen when adding
a third system too. Gains of 1.0% and 1.1% absolute are seen
for bnat06 and bcat06 respectively when combining S0 and
D1, and further small gains of 0.2% and 0.4% are seen when in-
corporating D2.

System bnat05 bnat06 bcat06
BASELINE S0 20.2 31.4 42.7

DIRECTED D1 20.7 31.4 42.4
D2 20.7 31.2 42.1

CNC S0+D1 19.7 30.4 41.6
S0+D1+D2 19.8 30.2 41.2

Table 2: WER (%) results using independent adaptation and
lattice generation

The results in tables 1 and 2 show clearly the cross adapta-
tion effect that can be achieved when using one system to per-
form adaptation and generate lattices, and another to rescore
them. The effect is demonstrated by the improved individual
system performances when using a shared adaptation and lat-
tice generation pass (table 1) over using independent passes
(table 2). It is interesting then that these gains don’t follow
through when system combination is performed. It is the frame-
work with no cross-adaptation effect that gives the best results
in combination. This shows that individual system error rate
is not necessarily a good indicator of whether two systems are
complementary or not, and, as such, simply aiming to optimise
individual system performances may not lead to optimal perfor-
mance in combination. The first framework is more efficient
for decoding, and it may be the case that relaxing the pruning
on the first passes to give more diverse lattices for rescoring will
combine the efficiency benefits of the first framework with the
performance gains of the second.

A second observation concerns the relative gains obtained
when combining the baseline with either one or two comple-
mentary systems. Although the largest gains over the baseline

are obtained by combining two complementary systems and the
baseline, the contribution from adding the second complemen-
tary system is small compared to that of just the first. This
could be because the two directed decision trees aren’t diverse
enough, as seen with the tree divergence measure in figure 5.

A final interesting observation is that the performance gains
obtained both for the individual directed tree systems and in
combination are directely correlated with training set mismatch.

6. Conclusions
This paper has extended previous work on directed decision
trees by building multiple complementary systems inside an it-
erative framework, and decoding within a multi-pass framework
using speaker adaptation. The results show that gains can be
achieved using more than one complementary system, but that
gains from a second complementary system are smaller than
from the first. Tree divergence was introduced as a way of com-
paring decision trees without having to train speech recognition
systems. Future work will look at optimising the multi-pass
framework both in terms of performance gains and time effi-
ciency, and alternative ways of introducing diversity into the
second complementary system to further improve results.
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