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ABSTRACT

Many speaker verification (SV) systems combine multiple classifiers
using score-fusion to improve system performance. For SVM classi-
fiers, an alternative strategy is to combine at the kernel level. This in-
volves finding a suitable kernel weighting, known as Multiple Kernel
Learning (MKL). Recently, an efficient maximum-margin scheme
for MKL has been proposed. This work examines several refine-
ments to this scheme for SV. The standard scheme has a known ten-
dency towards sparse weightings, which may not be optimal for SV.
A regularisation term is proposed, allowing the appropriate level of
sparsity to be selected. Cross-speaker tying of kernel weights is also
applied to improve robustness. Various combinations of dynamic
kernels were evaluated, including derivative and parametric kernels
based upon different model structures. The performance achieved on
the NIST 2002 SRE when combining five kernels was 7.78% EER.

Index Terms— Speaker recognition, Dynamic kernels, Support
Vector Machines, Classifier Combination

1. INTRODUCTION
Speaker Verification is a binary classification task in which the ob-
jective is to decide whether a given speech utterance was emitted by
a specific claimed speaker. There has been considerable interest in
applying Support Vector Machines (SVM) to this task. The SVM is
a general purpose classifier that has been found to perform well on
a wide range of tasks. Recent approaches such as [1] have shown
gains by fusing the scores of multiple classifiers. For SVM-based
systems, an alternative approach is to combine classifiers at the ker-
nel level. This involves finding a suitable kernel weighting, known
as Multiple Kernel Learning (MKL).

One approach to MKL is to perform a grid-search and select
those weights that minimise the cross-validation error. However
this approach is only practical for pairwise combination. An effi-
cient, maximum-margin based scheme has recently been proposed
in [2]. In this paper several refinements to maximum-margin MKL
for speaker-verification are considered. The standard MKL scheme
has a known tendency to yield sparse weightings. For a given set of
kernels there is no guarantee that the level of sparsity is appropri-
ate. A regularisation term is therefore proposed to allow the desired
sparsity to be adjusted by the user. Unlike grid-search based MKL
an optimal level of sparsity may be efficiently selected using cross-
validation even when the number of kernels is high by tuning a single
parameter. Cross-speaker tying of kernel weights is also considered.
By defining the objective function over all enrolled speakers, a ro-
bust set of kernel weights may be obtained even when the available
enrollment data per speaker is limited.

Maximum-Margin MKL is applied to combinations of two gen-
eral classes of dynamic kernel, termed parametric and derivative
kernels. These two forms of kernel are normally complementary
although under certain conditions the associated features are known

to be identical [3]. In [3] dynamic kernels were combined by con-
catenating feature spaces, weighting all kernels equally. This paper
extends that work by by examining the case where kernels are in-
dividually weighted. Combination of dynamic kernels based upon
different generative model structures is also evaluated. This paper
is organised as follows. The next section describes dynamic ker-
nels and introduces two categories of dynamic kernel, derivative and
parametric kernels. In Section 3, Multiple Kernel Learning is dis-
cussed. In Section 4, experimental results on the NIST 2002 SRE
dataset are presented. Finally conclusions are drawn.

2. DYNAMIC KERNELS

The Support Vector Machine is a binary discriminative classifier that
has been successfully applied to a wide range of tasks. A useful
property of the SVM is that it can be kernelised. During train-
ing and inference all references to data are in the form of inner
products between training examples ��� and ��� . A kernel function��� � �	� � ��
 can be defined that implicitly calculates these inner prod-
ucts in some, potentially very high dimensional, feature space.

One disadvantage to using SVMs that that they can only classify
data of some fixed dimensionality. By contrast, speech utterances are
typically parameterised as variable length sequences of observations.
One approach to overcoming this disadvantage is through the use of
dynamic kernels. These typically make use of generative models and
have the form���� � � � ����� 
������ �� �	��� 
���� �� ����� 
�� (1)

where � is the set of parameters associated with a generative model
and � �� ��� 
 is a function that maps a speech utterance into a fixed
dimensional feature space, known as a score-space. Many com-
monly used dynamic kernels can be placed into one of two classes,
parametric kernels and derivative kernels [3], summarized below.

2.1. Parametric Kernels

Parametric kernels are a form of dynamic kernel where the features
are the parameters � associated with a generative model trained to
represent an utterance

� ����� �!�!"#"#"#���%$�& . Parametric score-spaces
have the form�(' �� ��� 
��*),+� - , +� �/.10�2435.16' �1798:2<; �� ��� 
�& (2)

A form of parametric kernel that is becoming increasingly widely
used for speaker verification is the GMM-supervector kernel [4].
Here a GMM is used as the generative model and the feature space
is formed by concatenating the means of an utterance-dependent
GMM. As there is typically not enough observations per component
to robustly estimate the model parameters, successive iterations of
MAP adaptation, using the UBM as a prior, are typically used in-
stead. For component = the MAP-adapted mean at iteration > is
obtained using EM.
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where
S? E are the UBM means associated with component = (which

are also used as the initial parameters ? @9V�DE ), K @CB#DE �JN 
W�/X � =ZY � H ��� @CB#D 
 ,
the posterior probability of component = at time

N
given observation� H and � @CB#D , and

Q
is the standard MAP adaptation constant that con-

trols the influence of the prior on the final model

2.2. Derivative Kernels

Derivative kernels extract a fixed dimensional set of features from an
utterance by calculating the derivatives of the log-likelihood of the
utterances with respect to the parameters of a generative model. For
a set of model parameters, � , the derivative feature-space generated
from an utterance has the form�([ �� ��� 
��]\^*_` 'T798:2<; �� ��� 
baaac'ed (4)

where +� is the model parameter value at which the derivative is eval-
uated. An example of a derivative kernel that uses a GMM as a gen-
erative model is the Fisher kernel [5]. Here, derivatives with respect
to the means of component = after > iterations of MAP adaptation
are given by`gfih 798:2<; �� ��� 
 aaa 'Lj9k�l � $m HUI � K @CB#DE �JN 
�n M �E �Uo H p ?A@CB#DE 
 (5)

where K @CB#DE �JN 
 is the posterior probability of component = generat-
ing

o H
given � @CB#D , and n E is the covariance matrix associated with

component = of the GMM.

2.3. Generative Model Structure

For dynamic kernels that incorporate a generative model, such as
parametric or derivative kernels, an appropriate form of model must
be selected. If a GMM is used, the number of Gaussian components
must be chosen. This is a trade-off between improving the ability
of the model to approximate the distribution over the acoustic space
and ensuring that the model parameters can be robustly estimated
with the available data. A suitable model size is typically chosen by
selecting a value that reduces the error rate on some development
dataset. As the trade-off is data-dependent this strategy may not be
optimal.

If a suitable scheme for combining classifiers is available, then
other strategies may be used. Rather than selecting a single form
of model, a series of dynamic kernels can instead be defined, each
based on different model structures. The associated classifiers can
then be combined. Although this approach is more computationally
expensive it has two advantages. Firstly, there is no need for prior
knowledge about the task in order to select a suitable model size.
Secondly, rather than making a single trade-off, the combined clas-
sifier can make use of features extracted from a range of different
model structures, potentially leading to gains.

3. MULTIPLE KERNEL LEARNING
There has been considerable interest in combining multiple systems
to improve performance. This is normally achieved by fusing the
output scores of individual systems as in [1]. For SVM-based sys-
tems, an alternative approach is to combine at the kernel level. Given
a set of

�
kernels, a combined kernel function may be defined as the

weighted sum of the individual kernels.q � �W� � ��� 
W�srmB I �:t B q B � �W� � �<� 
 (6)

where t BvuGw and F B t B � \ . Kernel function
q B � � �x� � ��
 , as-

sociated with kernel > , is defined by equation 1 for some function� B �� ��� 
 . Learning a suitable set of weights is known as the Mul-
tiple Kernel Learning (MKL) problem. One approach to finding a
suitable set of weights is to conduct a grid search over all possi-
ble weightings and select the weights that minimise the error. This
MKL criterion is termed minEER when the Equal Error Rate metric
is minimised. Unfortunately this approach is generally impractical
for anything other than pairwise kernel combination.

An efficient approach to MKL was developed in [6] and ex-
tended in [2]. Here the kernel weights are incorporated into the stan-
dard SVM objective function. For a set of N utterances � � � �#"#","#� �zy &
each with associated label { �4| � p \ � \ & , the optimal set of weights
are those that maximise the margin.

min \} rmB I � \t B Y9Y ~ B Y9Y �� O�� ym � I �P� � (7)

w.r.t � � ~ B ���i���
s.t. { �4� rmB I � ~5�B � B �� � ��� 
 O��,� u \ p � �A�P�

� � u�w �%�x� t B u�w � > ��rmB I � t B � \
where ~ B are the primal SVM weights associated with kernel > and�
, � and C are the standard SVM bias, slack vector and regularisation

term. In this formulation � is subsumed into the definition of the
primal weights and hence does not directly appear in the marginal
constraint. There are a number of issues to address when applying
this form of MKL directly to speaker verification.
Regularisation Term In equation 7, an � � -norm constraint is ap-
plied to the kernel weights. A known consequence of this is to in-
troduce a tendency towards sparse solutions [2]. For a given set of
kernels, there is no guarantee that the level of sparsity will be opti-
mal. One solution is to incorporate a regularisation term � into the
objective function to allow the user to control the level of sparsity. A
suitable form of regularisation is� �/� rmB I � � t B p \� 
 � ��� �vrmB I � t �B p \� �

(8)

due to the � � -norm constraint on the kernel weights. Note that since
the optimal solution is independent of any constant terms in the ob-
jective function � ��� F rB I � t �B may be used instead. Here � is an
empirically set constant. For large, positive values of � the effect of
this form of regularisation is to encourage a uniform set of weights.
When � is negative the solution will tend to be sparse and the objec-
tive function will perform kernel selection. Although an additional
parameter has been introduced, note that an appropriate value for �
may be obtained through cross-validation even when the number of
kernels is large.
Cross-Speaker Tying In most SVM-based speaker verification sys-
tems, a distinct set of SVM parameters is trained for each speaker.
However, the amount of enrollment data available per speaker is typ-
ically limited. Additionally learning a set of speaker-dependent ker-
nel weights may therefore lead to over-training. One way to obtain
a more robust set of weights is to tie � over all enrolled speakers.
This can be achieved by redefining the MKL objective function to
sum over all speakers, while maintaining a separate set of marginal
constraints for the enrollment data associated with each speaker.



Dynamic Range Normalisation The form of objective function
given in (7) is biased towards those kernels for which the average
magnitude of the associated feature vectors is greatest. Under a max-
imally non-committal kernel metric this corresponds to the kernels
for which the associated score-space has the greatest dimensionality.
It is therefore important that the kernel function includes some form
of dynamic range normalisation. One option is Spherical Normali-
sation [7] where each feature vector is mapped onto the surface of
a unit sphere. An alternative approach is to perform normalisation
at the kernel level. Here, the features are simply duplicated for each
kernel so all kernels have the same dimensionality.

The maxMarginMKL criterion used in this work is defined by
the following objective function.

min �m � I � � \} rmB I � \t B Y9Y ~ @
� DB Y9Y �� O�� ym � I � � @

� D� � O �GrmB I � t �B (9)
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Where the speaker � ranges from \ ","#"�� and samples � range from\ "#"#"x� @ � D , ~ B ��� ~ @ � DB �#","#"#� ~ @ � DB & , ����� � @ � D �#"#"#"#� � @ � D & and����� � @ � D �#"!"#"#� � @
� D & . Equation 9 may be efficiently optimised by

a similar approach to that used in [2]. Firstly, an equivalent con-
strained optimisation problem is defined.

min � F �� I �%� � �:� � 
 O � F rB I � t �B (10)

s.t. t B u�w � > � F rB I � t B � \
Where � � �:� � 
 is the optimal value of the objective function asso-
ciated with an SVM with kernel (6) and fixed kernel weights � af-
ter training on data associated with speaker � . A projected-gradient
scheme can then be used to optimise (10). At each iteration � � �:� � 

can be estimated using a standard efficient SVM implementation.
An expression for the derivatives of � � �:� � 
 evaluated at � follows
from the form in [2].

4. EXPERIMENTAL RESULTS
Various combinations of dynamic kernels were evaluated on the 2002
NIST SRE one-speaker detection task[8]. Each utterance was pa-
rameterised as sequences of 31-dimensional mel-PLP coefficients
(15 static + 15 delta + delta energy) using a framerate of 10ms and
a 30s window. To introduce additional robustness to noise, Cep-
stral Mean Subtraction was performed followed by Cepstral Feature
Warping [9] using a three second window. Systems were primar-
ily evaluated using the EER metric. To aid comparison with other
work some minDCF scores are also quoted. The normalised DCF
cost used in this paper takes the form DCF = X Miss

O�� " � X
False Alarm.

minDCF is the minimum DCF score obtained a-posteriori by ad-
justing the decision threshold. Initially, gender-dependent UBMs
were trained using EM for all SRE 2002 enrollment data. Each
UBM consisted of a diagonal covariance GMM. For each enrolled
speaker, a speaker-dependent GMM was constructed by MAP adapt-
ing the means of the appropriate gender-dependent UBM. Two it-
erations of static prior MAP were used with

Q
set at 25. These

speaker-dependent models were used both as part of a LLR clas-
sifier and as the generative models for a derivative kernel. For this

kernel the feature-space consisted of derivatives with respect to the
GMM means. Parametric kernels were also used. Here utterance-
dependent GMMs were obtained by adapting the appropriate UBM
means using two iterations of MAP. For the parametric kernels

Q
was set at 5. Finally, for each utterance a parametric feature-vector
was constructed by concatenating the GMM means. This setup was
designed to avoid the conditions given in [3] under which derivative
and parametric features are identical. During preliminary experi-
ments, kernel-level normalisation, as described in Section 3, outper-
formed spherical normalisation and was used in these experiments
to normalise the magnitude of the feature vectors. S  ¢¡�£ �9¤#¥ H [10]
was used to train classifiers for each enrolled speaker. The SVM
regularisation term

�
was left at the S  ¢¡ £ �9¤#¥ H default. Imposter

examples were obtained from the enrollment data associated with
other speakers of the same gender. To reduce classifier bias each
true utterance was duplicated until the two training sets were equal.
For each kernel, a maximally non-committal distance metric was de-
fined by normalising the global variance of each feature calculated
over all speakers.

System EER (%) minDCF
GMM-LLR 12.10 0.4915` � �	¦ 8.62 0.3759§P¨x©

9.55 0.3830§ � �	¦ 8.61 0.3521§ �xª ¨ 8.58 0.3498§ ª � � 8.83 0.3702§ � �	¦ O ` � �	¦ 8.08 0.3440

Table 1. Comparison of baseline (equal-weight) kernel combination
against derivative ( ` ), parametric (

§
), and GMM-LLR systems

The performance of these initial systems is shown in Table 1.
For 128-component models, derivative and parametric kernel per-
formance was similar and both yielded significant gains compared
to the GMM-LLR classifier. Initially, pairwise combination of 128-
component derivative and parametric kernels was examined. An
equally weighted combination, used in [3], was evaluated to pro-
vide a baseline. A 6% relative gain was observed compared to the
parametric kernel alone. Gains were observed compared to [3] due
to the improved parametric kernel obtained by tuning

Q
.� Kernel Weights EER (%) minDCF` � �	¦ § � �	¦

0 1.00 0.00 8.62 0.3759
0.008 0.80 0.20 8.19 0.3651
0.064 0.55 0.45 8.11 0.3474« 0.50 0.50 8.08 0.3440

minEER 0.62 0.38 8.04 0.3537

Table 2. Performance of maxMargin MKL combination as �
varies compared to optimal minEER weighting

Experiments were performed to identify whether individually
weighting these kernels could yield gains compared to baseline com-
bination. Initially, combination using a minEER criterion was eval-
uated. A line-search was performed and the kernel weights selected
that gave the lowest EER. Although infeasible for larger number of
kernels, this criterion forms a bound on the maximum gains obtain-
able using MKL. Next system combination was performed using the
maxMargin criterion for MKL described in Section 3. � was tied
over all speakers. Table 2 compares the performances obtained using
maxMargin for a range of values of � against the optimal minEER



weighting. When �¬� w a sparse weighting is obtained that performs
poorly compared to the baseline. This indicates that the default level
of sparsity associated with MKL is not appropriate for this task. By
increasing � gains are observed. Note that for this configuration the
objective function increases monotonically with � and hence can
not be used to select an appropriate regularisation factor. The case,�/� « , is equivalent to baseline combination. If a value for � is
chosen that minimises the EER, MKL is guaranteed to outperform
or equal baseline combination. Unlike using the minEER criterion
this is feasible for large numbers of kernels.

System EER (%)
Equal-Weight MKL§P¨x© O § � �	¦ 9.02 8.55§ � �	¦ O § �xª ¨ 8.32 8.32§ �xª ¨ O § ª � � 8.52 8.52§P¨x© O § � �	¦ O § �xª ¨ O § ª � � 8.42 8.22§ � �	¦ O ` � �	¦ 8.08 8.04§P¨x© O § � �	¦ O § �xª ¨ O § ª � � O ` � �	¦ 7.99 7.78

Table 3. Comparison of equal-weight combination against
maxMargin MKL for various combinations of kernels

The maxMargin MKL scheme was then applied to other com-
binations of kernels. In each case � was adjusted a-posteriori to
reduce the EER. Results are presented in Table 3. Combination
of parametric kernels based upon different generative model struc-
tures was examined. Although no gains were observed for equal-
weight combination of 64 and 128 component models, combina-
tion of 128 and 256 component models did yield small gains com-
pared to the individual kernels. By comparison a 512-component
system performed at 8.83% indicating that these gains were not sim-
ply due to the increased complexity of the combined classifier. For
maxMargin MKL all pairwise combinations gave gains. These
were cumulative when all four kernels were combined giving a 0.22%
reduction in EER compared to equal-weight combination. Simi-
lar gains were observed in minDCF resulting in 0.3428 for four-
way combination. The best overall performance was 7.78% (0.3389
minDCF) achieved when all kernels were combined. This outper-
formed the optimal minEER pairwise combination by 0.26%. From
the DET curve in Figure 1 it can be seen that this system performed
best over the majority of the operating range. Additional gains may
also be achievable by further combination with other forms of dy-
namic kernel such as the MLLR or CAT kernels, or by combination
with dynamic kernels based upon other generative model structures.

5. CONCLUSIONS

This paper has looked at combining multiple dynamic kernels to im-
prove performance of an SVM-based speaker verification system.
One important question is how to learn an optimal kernel weighting,
known as Multiple Kernel Learning. This paper examined a num-
ber of refinements to a recently proposed maximum-margin based
scheme. The scheme has a known tendency towards sparse weight-
ings, which may not be optimal for Speaker Verification. A regu-
larisation term was proposed. This allows the user to tune the spar-
sity by adjusting a single parameter. Tying of kernel weights over
all speakers was also applied to increase the robustness of the es-
timates. Combinations of dynamic kernels were evaluated on the
NIST SRE02 task, including derivative and parametric kernels based
around different generative model structures. The best performance
achieved was 7.78% EER obtained when all kernels were combined.
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Fig. 1. DET graph comparing maxMargin MKL combination
against individual systems

The focus of this paper has been to give a general scheme for ker-
nel combination. The range of kernels combined during evaluation
was limited, using more diverse forms of kernel is expected to yield
larger gains. Another area for future study is to contrast this scheme
with standard score-fusion approaches.
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