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Abstract

In recent years, the use of morphological decomposition strategies for

Arabic Automatic Speech Recognition (ASR) has become increasingly pop-

ular. Systems trained on morphologically decomposed data are often used

in combination with standard word-based approaches, and they have been

found to yield consistent performance improvements. The present article

contributes to this ongoing research endeavour by exploring the use of the

‘Morphological Analysis and Disambiguation for Arabic’ (MADA) tools for

this purpose. System integration issues concerning language modelling and

dictionary construction, as well as the estimation of pronunciation proba-

bilities, are discussed. In particular, a novel solution for morpheme-to-word

conversion is presented which makes use of an N-gram Statistical Machine

Translation (SMT) approach. System performance is investigated within a

multi-pass adaptation/combination framework. All the systems described in

this paper are evaluated on an Arabic large vocabulary speech recognition
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task which includes both Broadcast News and Broadcast Conversation test

data. It is shown that the use of MADA-based systems, in combination with

word-based systems, can reduce the Word Error Rates by up to 8.1% relative.
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probabilities

1. Introduction

During the past decade, the problems associated with building Automatic

Speech Recognition (ASR) systems for Arabic have become a prominent re-

search concern (Kirchhoff et al., 2003; Messaoudi et al., 2006; Gales et al.,

2007; Rybach et al., 2007; Vergyri et al., 2008; Soltau et al., 2009; Nguyen

et al., 2009; Tomalin et al., 2010; Saon et al., 2010). Though most of the

acoustic modelling techniques developed for Indo-European languages (such

as English, French, or German) are also well suited for Arabic, standard

language modelling techniques are less appropriate.

Arabic is an agglutinative, morphologically complex language. Words

are formed from tri-consonantal roots and varying patterns of short vow-

els (vowelisation). The resulting stems may be expanded by clitics in order

to convey information about parts-of-speech, gender, number, case, and so

on. In Quranic Arabic, the vowels are marked by diacritics, but in Mod-

ern Standard Arabic (MSA), these are usually omitted and the resulting

ambiguities are resolved by the syntactic context. This complex morpho-

logical process causes non-trivial problems when Arabic speech is modelled

in Speech-to-Text (STT) systems: any given stem is likely to have many
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different morphologically distinct forms, and these must all be handled sep-

arately. These distinctive linguistic properties cause data sparsity problems

and comparatively high Out-of-Vocabulary (OOV) rates if conventional lan-

guage modelling approaches developed for non-agglutinative languages are

used for Arabic. For instance, for CallHome data the vocabulary growth

rate for Arabic is approximately 2.5 times higher than the rate for English

(Kirchhoff et al., 2006).

In this work we address these problems by using the ‘Morphological Anal-

ysis and Disambiguation for Arabic’ (MADA) tools1 (Habash and Rambow,

2005, 2007). The MADA tools implement a morphological decomposition of

Arabic words into linguistically motivated prefixes, stems, and suffixes. Input

Arabic text, lacking diacritics, can be converted into morphologically decom-

posed, fully diacritised, vowelised text. In addition, MADA also provides a

rank ordered list of all vowelised word-forms associated with the correspond-

ing input lexeme. This list is used by MADA for its disambiguation analysis,

but it can also be used for STT-related tasks.

The current investigation focuses on the integration of MADA into the

Cambridge University (CU) Arabic Large Vocabulary Continuous Speech

Recognition (LVCSR) system. We analyse its impact on system performance

and introduce a novel method for mapping the output morpheme sequences

back into word sequences. Both graphemic and phonetic systems are dis-

cussed. While graphemic Arabic systems model vowels implicitly, phonetic

systems model vowels explicitly in the dictionary – that is, they appear as

1MADA version 2.3 was used for this work.
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overt letters in the orthography. This dual system design provides insights

into the importance of short vowel modelling in Arabic STT. The dictionary

design for the phonetic system is discussed in detail, and, in particular, the

use of pronunciation probabilities based on the rank ordering of vowelised

word-forms provided by MADA is investigated.

Morphological decomposition schemes for Arabic LVCSR have recently

become an active research area (Vergyri et al., 2004; Afify et al., 2006; Nguyen

et al., 2009; Ng et al., 2009; Xiang et al., 2006; Choueiter et al., 2006; Lamel

et al., 2008; Kuo et al., 2009, 2010). However, although MADA has already

been widely used both for Arabic-to-English Statistical Machine Translation

(SMT) systems (Habash and Sadat, 2006; Bender et al., 2007; de Gispert

et al., 2008) and for Arabic dictionary generation (Vergyri et al., 2008), work

on MADA-based morphological decomposition for Arabic STT has only re-

cently started to receive attention (Tomalin et al., 2010; El-Desoky et al.,

2009). In addition to providing decompositions, vowelisations, and disam-

biguation analysis for Arabic, one advantage of the MADA tools is that they

are publicly available for research use.2 This contrasts with some of the

commercially available alternative software.

This article is structured as follows: section 2 introduces the MADA tools;

section 3 discusses the integration of MADA into the CU Arabic LVCSR sys-

tem; section 4 describes the experimental setup; section 5 provides informa-

tion concerning experiments and results, while, finally, section 6 summarises

the main conclusions.

2Available from http://www1.ccls.columbia.edu/∼cadim/
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2. The MADA Tools

Arabic is a highly inflected, morphologically rich language in which gram-

matical features are often indicated by the attachment of clitics and affixes to

lexical roots. The attachment of conjunction (CONJ) and particle (PART )

proclitics, the definite article Al, and pronominal (PRON) enclitics is largely

rule-governed, and the basic patterns are indicated in the following schema

(Sadat and Habash, 2006):

[CONJ + [PART + [Al + ROOT + PRON ]]]

As mentioned in section 1, all the MADA-based systems described in this arti-

cle were trained on data that had been processed using the MADA tools, and

specifically the MADA D2 configuration. The tools implement a tokenisation

and tagging stage which is then followed by a morphological disambiguation

stage. The final output contains decomposed morpheme sequences (Habash

and Rambow, 2005).

The MADA tools support various levels of morphological detail. In the D2

configuration, four particle proclitics (specifically, l+ (to/for), b+ (by/with),

k+ (as/such), f+ (in)) and one conjunction proclitic, w+ (and), are iden-

tified and separated from their associated word roots (Habash and Sadat,

2006).3 If required, the basic D2 processing can be modified. For instance,

in Diehl et al. (2009) a processing referred to as D2+Al was investigated.

3The Buckwalter romanised Arabic transliteration conventions are used throughout

this paper.
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The D2+Al scheme separates the same morphemes as D2, but, in addition,

it separates all definite articles (Al) which do not precede one of the so-called

‘solar’ consonants.4 However, since the D2+Al scheme degraded system per-

formance when compared to the D2 scheme, the latter was used in the work

reported in the current article.

The following two schemes are discussed in this work:5

• Word: a word-based system, with no morphological decomposition

(baseline)

• D2: the prefixes l+, b+, k+, f+, and w+ are separated from the word

stem using MADA tools

An example of D2 decomposition is given in Table 1. In addition to illus-

trating the decomposition itself, this example also indicates a further feature

which MADA provides – namely, stem normalisation. The second A (alif )

in AlAyrAnY becomes M (alif with hamza below), and the Y (alif maksura)

in AlAyrAnY becomes y (yeh).

The stem normalisation is based on an analysis of both the lexical to-

ken and its immediate grammatical context (Habash and Rambow, 2005).

Typically, approximately 20% of the tokens are affected by normalisation.

4In Buckwalter notation the solar consonants are v t S $ s z r d D Z C l n T.
5The MADA tools can also split off pronominal suffixes. However, such decomposition

schemes were not explored in the work described in this article. We also explored the

possibility of merging affixes to create ’compound’ affixes (e.g., l + w + ROOT → lw +

ROOT ). However, compared to the original decomposition without merging affixes we

found that this kind of decomposition does not improve system performance.
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System Example Sentence

Word wktb AlAyrAnY

D2 w+ ktb AlMyrAny

Translation and he-writes the Iranian

Table 1: Examples of D2 morphological decomposition.

From the perspective of morpheme-to-word conversion, stem normalisation

introduces an additional level of complexity. Before reattaching the prefixes

to their corresponding stems, the normalised words must be mapped back to

their original forms. However, due to the context dependent nature of the

stem-normalisation process, there is no unique bidirectional mapping from

the MADA domain back to the word domain. Instead, a context dependent

morpheme-to-word back-mapping procedure is required.

Prior to MADA processing, a normalisation step is applied which regu-

larises a range of common inconsistencies of the Arabic orthography. This

involves

1. mapping non-word-final alif maksura and all other alif s to plain alif

2. mapping word-final yeh to alif maksura

3. deleting possible short vowel markers fatha, damma, kasra, fathatan,

dammatan, kasratan

4. deleting the vowel omission marker sukun and the consonant gemina-

tion marker shadda

The MADA vowelisation and stem normalisation incorporates these into

the text, though in a consistent way.
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2.1. Dictionary Generation

In Arabic, word-forms are based on tri-consonantal roots. Although these

roots sometimes convey the core semantic information, it is by means of

vowelisation and affixation that they become full lexical items. The content-

dependent addition of short vowels (i.e., fatha /a/, damma /u/ and kasra

/i/) and affixes determines the semantic and grammatical features of the

word, as well as its pronunciation. Table 2 gives some examples for possible

word variations for the tri-consonantal root ktb (write).

Vowelised Form Meaning

kataba he writes

kutiba it is written/fated/destined

kitab book (indefinite)

kutubun books (indefinite)

kutubu books (definite)

Table 2: Several vowelised forms for the tri-consonantal root ktb

The short vowels and the word-final nunations fathatan /an/, dammatan

/un/ and kasratan /in/, are indicated by diacritic markers placed over the

preceding consonant.6 However, these diacritic markers are not normally

written in MSA, and the reader is expected to infer the diacritised form of

6In Buckwalter notation the nunations /an/, /un/, and /in/ are transcribed as ‘F’, ‘N’,

and ‘K’, respectively. However, phonologically, they correspond to a short vowel followed

by the nasal /n/, which is reflected by the transcriptions ‘an’, ‘un’, and ‘in’ used in this

work.
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the word from the semantic and grammatical context. Since there exists a

roughly one-to-one mapping between the fully diacritised orthographic word-

forms and the associated phoneme sequences (Habash, 2010), the diacritised

word-forms are used as phonetic transcriptions in the STT dictionary.

From Table 2, it is clear that many possible pronunciations exist for a

given tri-consonantal root. The absence of the short vowel markers in MSA

Arabic text complicates the process of dictionary generation for STT. The

usual approach for Arabic pronunciation generation is to rely on an analysis

system such as Buckwalter (Buckwalter, 2002). For instance, Buckwalter

expands the grapheme sequence ‘ktb’ (‘book’) in 8 distinct ways (some of

which are given in Table 2). These are generally verbal and nominal forms.

The Buckwalter analyser forms an integral part of the MADA tools, and

the generation of diacritised morphemes is controlled by setting the ‘DIAC’

option. For the example given in Table 1, this setting produces the diacritised

morpheme sequence shown in Table 3.

System Example Sentence

Word wktb AlAyrAnY

D2+DIAC wa+ kataba AlMiyrAniyu

Table 3: Examples of D2+DIAC morphological decomposition.

The difference between the morpheme sequences generated by the D2+DIAC

and the D2 options consists in the additional annotation of the three short

vowels, as well as the use of shadda /∼/ and sukun /o/. Removing the

corresponding markers from the D2+DIAC output produces the same mor-

pheme sequence as that generated by the D2 option. The D2+DIAC output
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in Table 3 constitutes the most likely diacritised morpheme sequence for the

input word sequence. It results from the morphological analysis and disam-

biguation performed by MADA. However, for all words in the input text,

MADA also provides ranked listings of all possible diacritised morpheme

forms (Habash, 2010), as shown in table 4.

Rank Weight Transliteration

1. 0.740871 wa+ kataba

2. 0.710576 wa+ kutiba

3. 0.535714 wa+ kutubun

=3. 0.535714 wa+ kutubu

=3. 0.535714 wa+ kutub

=3. 0.535714 wa+ kutubin

=3. 0.535714 wa+ kutubi

=3. 0.535714 wa+ kutuba

Table 4: Ranked MADA transliterations for the word wktb. The higher the weight, the

higher the likelihood for the corresponding transliteration.

Table 4 shows the ranking for the complex wktb. Besides providing all

possible diacritised morpheme sequences, weights are also provided and these

define a rank ordering of all transliterations. The weights are generated by

the morphological analysis and disambiguation performed by MADA and

they indicate which transliteration is the most likely variant (in the given

syntactic context). The most likely morpheme sequence for the word wktb in

Table 3 is the highest ranked entry in of Table 4. Therefore, this sequence

constitutes the 1-best MADA output.
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2.2. Pronunciation Probabilities

MADA offers an elegant, self-contained way to obtain pronunciation prob-

abilities for the various vowelisation alternatives it assigns to the surface form

of a word. According to Table 4, for each token processed by MADA, a list of

vowelised word-forms is generated. These forms are ordered by a weight in-

dicating respective vowelisation likelihood. Given the vowelisation frequency

counts, ‘pseudo’ alignment counts can be generated by multiplying the num-

ber of vowelisation occurrences by the corresponding weight. These pseudo

counts can be normalised to obtain estimates for the pronunciation proba-

bilities.

The MADA-derived pseudo counts have the advantage that they do not

depend on the availability of acoustic alignment data (unlike the alignment-

based pronunciation probabilities used in (Gales et al., 2007)). Alignment-

based pronunciation probabilities are based on the alignment of acoustic

training data, and therefore they suffer from the fact that counts for differ-

ent pronunciation alternatives can only be obtained for words seen in the

acoustic training data. By contrast, MADA-derived pseudo counts are based

on the Language Model (LM) training data which contains over 50 times

more tokens. Consequently, greater dictionary coverage is obtained. In fact,

pronunciation probabilities can be generated for all words for which MADA

provides vowelised word-forms.

3. System Integration and SMT-style Domain Conversion

The MADA decomposition of a given Arabic text, and the corresponding

dictionary generation, is initiated by applying MADA using the D2+DIAC
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option. To obtain the final graphemic morpheme sequence, the short vowels,

as well as shadda and sukun, are removed from the 1-best output. The dictio-

nary generation is based on the rank ordered listing of the possible diacriti-

sations of a word. Final pronunciations (the ‘phonetic’ forms), are obtained

by removing shadda and sukun from the transliterations.7 As this descrip-

tion indicates, graphemic forms and their corresponding phonetic forms are

distinguished only by the use of the short vowels and the related word-final

nunation forms. Consequently, in summary, the main processing steps in

the word-to-morpheme sequence conversion and dictionary generation are as

follows:

• Apply MADA with the option D2+DIAC to the Arabic text.

• For word-to-morpheme sequence conversion the short vowels, nuna-

tions, shadda, and sukun are stripped-off from the 1-best MADA translit-

eration. The prefixes l+, b+, k+, f+, and w+ (with their prefix

marker) are left unchanged. The resulting morpheme sequences provide

the transcriptions for LM and acoustic training.

• For dictionary generation, all word-morpheme pairs are collected from

the rank ordered transliterations. As for morpheme sequence genera-

tion, the graphemic forms are obtained by stripping-off the short vow-

els, shadda, and sukun. However, for the phonetic forms, only shadda

and sukun are removed.

7So, shadda and sukun are not modelled as acoustic base units.
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3.1. MADA-to-Word Back-mapping

As mentioned above, the stem normalisation introduced by MADA com-

plicates the morpheme-to-word conversion. Crucially, the prefixes cannot

simply be reattached to their stems. Instead, an additional stem back-

mapping is required. The stem normalisation performed by MADA is a

context-sensitive process. There is no one-to-one assignment between an

original stem and a normalised stem. Consequently, a context dependent

mapping procedure is required.

To cope with this, a novel approach was adopted in which the MADA-

to-word conversion is viewed as a SMT task. In this framework the MADA-

domain is the source ‘language’, while the word-domain is the target ‘lan-

guage’. Put simply, the morpheme sequences are ‘translated’ into word se-

quences. This particular ‘translation’ problem involves many-to-one map-

pings from the source to the target. Many-to-one mappings from the target

to the source do not occur (see Table 1). Further, the approach does not

require any reordering, and it gives a linear alignment between the source

domain tokens and the target domain tokens. Translation problems struc-

tured like this are well defined, and the N-gram SMT approach provides an

efficient solution (Mariño et al., 2006). N-gram-based SMT applies a ‘bi-

lingual’ LM trained on so-called ‘tuples’. These tuples (t, s), which form the

basic bi-lingual units, assign exactly one target token t to one or more source

tokens s. They are obtained in training by the unambiguous alignment of

the source and target data.

The translation model probability p(T, S) from a source sentence S to a

target sentence T is given by an N-gram of tuples. For a sentence pair with
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K target tokens, p(T, S) is approximated by:

p(T, S) =

K∏

k=1

p((t, s)k|(t, s)k−1, ..., (t, s)k−N+1) (1)

Decoding is done by likelihood maximisation of p(T |S) with respect to T =

(t1, t2, ..., tK) (Crego et al., 2005).

Due to unseen tuples in the training data of the bi-lingual LM, as well

as so-called ‘stranded’ prefixes generated by the ASR system, the N-gram

SMT approach fails to translate such morpheme sequences back to the word

domain. In these ‘Out-of-Tuples’ (OOT) cases, possible prefixes are joined

to the stem and the resulting MADA domain word is directly transferred to

the word domain. When a normalised stem or prefix is involved, but also

‘stranded’ prefixes, a new word which is not in the vocabulary may be pro-

duced. However, since the ‘stranded’ prefixes problem is very rare and only

about 20% of the tokens are affected by stem normalisation, simply recom-

posing the word by joining the prefixes to the stem provides a reasonable

back-mapping procedure.

As a side-effect of the stem back-mapping, the N-gram SMT approach

implicitly solves the problem of rejoining the prefixes to their stems. This

is effectively caused by the many-to-one assignments from MADA-domain

tokens to word-domain tokens to form the tuples. With respect to the exam-

ple given in Table 1, one of these tuples would be: (wktb,w+ktb), effectively

rejoining the split-off prefix to its stem.
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4. Experimental Setup

In this section, graphemic and phonetic MADA-based systems are dis-

cussed together with their corresponding word-based systems which do not

make use of any morphological decomposition strategy. The latter provide a

baseline reference for system performance. After describing the experimental

setup, the MADA-based LM is compared to its word-based counterpart and

the process of dictionary generation is discussed.

4.1. Acoustic Models

For both the graphemic and phonetic systems, dedicated word-based and

MADA-based acoustic models were required. It is not possible to apply

the existing word-based acoustic models to the MADA-domain since the

phoneme sequences are modified by MADA stem normalisation, and the

morphological decomposition has an impact on the structure of the phone-

lattices needed for Minimum Phone Error (MPE) training (Povey and Wood-

land, 2002). In other words, the use of MADA always involved the complete

rebuild of the acoustic model in the MADA-domain. However, with the ex-

ception of the MADA processing, the corresponding system builds are identi-

cal. Specifically, both graphemic systems model 36 Arabic graphemes: the 28

basic Arabic consonants, plus hamza and the 7 modified letters alif madda,

alif maqsura, alif with hamza below, alif with hamza above, waw hamza, yeh

hamza and ta marbuta (Gales et al., 2007). For the phonetic systems, this

inventory is expanded by the inclusion of the 3 short vowels fatha, damma

and kasra. Both systems are trained on approximately 1825 hours of acoustic

training data. The data consists of GALE Broadcast Conversation (BC) and
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Broadcast News (BN) data (Linguistic Data Consortium, 2010), from GALE

phase 1 to 4, as well as small amounts of FBIS and TDT-4 data.8

The audio data was parametrised using a 39-dimensional Perceptual Lin-

ear Predictive (PLP) front-end which extracts 13 PLP cepstra (including the

zeroth cepstral coefficient with first, second and third delta parameters) fol-

lowed by a Heteroscedastic Linear Discriminant Analysis (HLDA) projection

from 52-dimensions down to 39 (Liu et al., 2003). Cepstral mean normali-

sation was then applied. Cross-word decision-tree state-clustered triphones

(with approximately 9K states and an average of 36 Gaussians per state) were

then trained on this data using (initially) an ML-criterion. MPE discrim-

inative training was then performed. For the multi-pass combination and

adaptation systems, discriminative-MAP adaptation, (Povey et al., 2003),

was used to generate Gender Dependent (GD) models. For the phonetic

system, any pronunciations which could not be derived by the Buckwalter

morphological analyser were obtained using the automatic pronunciation sys-

tem described in Gales et al. (2007).

4.2. Language Models

The MADA-based LMs were built using 1G words of training data. The

22 available word-based sources consisted of webdata and newswire data,

as well as the transcriptions of the acoustic data. All these sources were

processed using MADA, and source-specific uni-gram LMs were built, in-

terpolated, and merged. The interpolation test set combined the dev09sub,

8All the data (except the 45 hour FBIS data) was prepared by the Linguistic Data

Consortium.
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dev08, dev07, and eval06 sets which are used by the various sites partici-

pating in the DARPA GALE program.9 The merged uni-gram provided an

ordering of the words in the training data, and the top 65k, 130k, 195k and

350k words were chosen as wordlists (or, more accurately, morpheme lists).

The word-based LM build followed the same steps, though the 350k wordlist

was built directly using the 22 sources without MADA processing.

To facilitate the comparison of the MADA-based and word-based OOV

rates, the former were normalised. This normalisation is given by Equation

2. It takes into account the increased number of tokens produced by the

MADA decomposition. The normalisation factor was typically around 1.12.

%OOVnorm = %OOV ×
# of morphemes

# of words
. (2)

Table 5 compares the normalised OOV rates for the MADA-based wordlists

with the OOV rates for the word-based wordlist. It shows that the morpho-

logical decomposition scheme reduces the OOV rate for 350k wordlists by

roughly a factor of two. It also shows that the 130k and 350k MADA-based

systems have similar word-level OOV rates. This corresponds to a factor 2.7

in the reduction of the vocabulary size.

Using the 350k wordlists for both the MADA-based and word-based sys-

tems, 22 source-specific LMs were built, interpolated, and merged to create

MADA-based and word-based LMs. Once again the interpolation test set

consisted of the combined dev09sub, dev08, dev07, and eval06 sets. The

9The dev09sub test set is in fact the so-called dev09sub3 test set defined in the DARPA

GALE program. It is the third subset of the dev09 test set and it excludes several snippets

which overlap with the LM training data.
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Wordlist eval07 eval08 dev09sub

350k word 1.26 0.63 1.18

65k MADA 2.18 1.27 2.19

130k MADA 1.16 0.58 1.23

195k MADA 0.80 0.38 0.92

350k MADA 0.52 0.27 0.62

Table 5: OOV rates for the 350k word-based wordlist and various MADA-based wordlists.

sources with the highest interpolation weights were the two acoustic sources,

gale bn (weightword = 0.22, weightMADA = 0.21) and gale bc (weightword =

0.22, weightMADA = 0.21). Since they use different wordlists, the raw Per-

plexities (PP) for the two LMs are not directly comparable, so word-level

PPs for both LMs are given in Table 6 since these can be compared. The

MADA-based PPs have been normalised as follows: PP y/x, where y = #

tokens in the MADA-based test sets and x = # tokens in word-based test

sets.10

LM eval07 eval08 dev09sub

word-based 599 348 824

MADA-based 502 354 827

Table 6: Perplexities for the unpruned word-based and MADA-based 4-gram LMs.

Any morphological decomposition of a given text increases the number

10For completeness, the unnormalised MADA-based PPs for the three test sets were as

follows: eval07 = 268, eval08 = 200, dev09sub = 450.
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of tokens in the text. This has the negative side-effect that, when keeping

the context length of the LM in the word-based and MADA-based domain

constant, the LM in the latter domain has reduced coverage. For the experi-

mental setup described in this article, it was found that MADA increases the

number of tokens by a factor around 1.12. Consequently, larger LM contexts

were explored, and 5-gram word-based and MADA-based LMs were built.

These LMs replaced the 4-gram LMs used for lattice rescoring during P3

decoding (see section 4.4). However, in both cases, no consistent improve-

ments in system performance were observed, so these models were not used.

Instead all the tests used 4-gram LMs for lattice rescoring. These results are

not surprising since limited improvements were obtained when word-based

tri-gram LMs were replaced by word-based 4-gram LMs.

4.3. Graphemic and Phonetic Dictionaries

Dictionary generation for the phonetic systems is a complex process.

As described in section 2.1, the process for the MADA-based system in-

volves grapheme sequences being derived from Buckwalter (albeit modified

by MADA), while in the word-based case, Buckwalter is applied directly.

However, Buckwalter’s coverage is limited: the analyses it produces are de-

rived from morpheme tables which list possible Arabic root forms and affixes,

and a set of rules is applied to combine these morphemes. Words which do

not follow the patterns predetermined by the tables and rules cannot be

analysed by Buckwalter. These include certain words which are of non-MSA

origin (e.g., certain proper nouns, foreign words, dialect terms). These lexical

items do not conform to the orthographic patterns expected by the Buckwal-

ter analyser. Consequently, they are not analysed, and no pronunciations are
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provided for them. This accounts for 27% of the entries of the word-based

wordlist and for 46% of the entries of the MADA-based wordlist. Entries

were generated for these missing pronunciations by applying the rule-based

vowelisation method described in Gales et al. (2007). This approach takes

advantage of the typical consonant-vowel patterns of Arabic words. It divides

the words into their constituent graphemes, and it treats them as individual

words with possible pronunciation derived from the analysable words. Pro-

nunciation probabilities are derived by an alignment of the acoustic training

data, and word-level pronunciations are obtained by concatenating the most

likely pronunciations of the individual graphemes forming a given word.

Though this rule-based vowelisation method generates pronunciations for

all missing words in the dictionary, the process is rather complex and the pho-

netic transcriptions produced are of questionable quality. Graphemic systems

provide a way of circumventing these problems (Gales et al., 2007). Instead

of modelling the short vowels explicitly in the dictionary (and therefore by

means of dedicated acoustic models), a graphemic system models the vowels

implicitly. Dictionary generation consists of the direct use of the graphemic

word-forms as the corresponding phonetic transcription. Although this pro-

cedure reduces the resolution of the acoustic modelling, it means that the

dictionary can be produced in an easy and consistent manner. In addition,

since there are no pronunciation alternatives, it keeps the dictionary size

compact, and this results in faster training and decoding times.

For the two phonetic systems, Buckwalter generated up to 58 vowelised

variants per word. Since this is undesirable, a two stage procedure was

applied to reduce the number of pronunciations. The acoustic training data
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was aligned using both the Buckwalter derived dictionaries and the additional

rule-based vowelised word-forms. The resulting count statistics enabled the

Buckwalter pronunciations to be reduced to the N most likely ones. After

preliminary tests, N was set to 15, since no performance improvement was

found when a larger number of pronunciation variants per word was used.

However, since rule-based pronunciations were generally less accurate and

thus acoustically broader, the number of pronunciation alternatives in this

case was set to 5.

The alignment statistics also enabled pronunciation probabilities to be es-

timated. These were simply obtained by normalising the count values from

the alignment.11 For words not seen in the alignment data, a flat count distri-

bution was assumed. In the context of the word-based system, this method

constitutes the standard way to obtain pronunciation probabilities since the

previously described method using pseudo counts derived from MADA is not

available. For the MADA-based systems, this alignment method is a natural

alternative to the pseudo counts method.

4.4. System Architecture

All the systems discussed in this paper used a multi-pass combination

framework (see Figure 1). This is similar to the framework described at

length in (Evermann and Woodland, 2003). P1 is a fast decoding pass which

generates hypotheses for least-squares linear regression (LSLR) and variance

adaptation for the second stage (P2). The P2 stage generates lattices using

a tri-gram based LM. This is then expanded using a 4-gram LM to pro-

11The counts were smoothed by adding an initial count of seven.
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duce the lattices that are passed to the P3 stage. At this point, 1-best

CMLLR (Gales, 1998) and lattice-based MLLR adaptation is applied (Uebel

and Woodland, 2001). The lattices are then rescored and confusion networks

generated (Mangu et al., 2000). Manual segmentations were used for all the

data.12 The P1 and P2 stages featured only the graphemic models. By con-

trast, two separate branches were run for the P3 stage. These applied the

graphemic models and the phonetic models respectively. The individual out-

puts of the two branches were either tested directly or were combined using

Confusion Network Combination (CNC) (Evermann and Woodland, 2000).

System performance was assessed using the dev09sub development set, and

the non-sequestered evaluation sets eval07ns and eval08ns. Each of these test

sets consists of approximately 20k Arabic words (corresponding to 3 hours

of audio) selected from both BN and BC sources. These test sets are used

by the various sites participating in the DARPA GALE program.

5. Experiments and Results

In this section, experiments and results are presented. First, the order

of the ‘bi-lingual’ morpheme-to-word mapping LM is investigated. This is

followed by a discussion of the stem-normalisation property of MADA, and an

12The system architecture does not include the use of neural network LMs for lattice

rescoring, multilayer perceptron acoustic features, or boosted maximum mutual informa-

tion acoustic model training – all techniques discussed as in previous work by the authors.

Incorporating these features into the systems described here would have complicated the

archiecture considerably without contributing in any way to the discussion of MADA-based

techniques for STT.
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Lattices

Alignment

CNC

P2 (gra): Lattice Generation

P1 (gra): Initial Transcription

P3 (gra): Adapt P3 (pho): Adapt

Segmentation

Figure 1: Multi-pass combination framework

in-depth investigation of MADA-based pronunciation probabilities. Finally,

performance figures for single branch and combination systems are given.

5.1. Morpheme-to-word Back-mapping LM

In section 3.1, it was pointed out that the word-to-morpheme conversion

requires a context-sensitive morpheme-to-word back-mapping. This section

describes the ‘bi-lingual’ mapping LM that is needed for the N-gram SMT

back-mapping approach. In addition, the possibilities concerning context

length are explored.

The ‘bi-lingual’ mapping LM was trained using the acoustic training data

transcriptions (∼11M words). After MADA processing, the MADA-domain

data was aligned with the original word-domain data. The resulting streams

of ‘source-target’ token pairs were used to train the LM which generated

23



the mappings. The OOT rates were 3.63 for eval07, 0.75 for eval08, and

1.44 for dev09sub. Applying the fall-back procedure for unseen OOT tokens

described in section 3.1, this was effectively lowered to 2.77 for eval07, 0.40

for eval08, and 0.51 for dev09sub. To investigate the implications of context

length, three LMs were built – a uni-gram, a bi-gram, and a tri-gram –

and for the actual morpheme-to-word conversion the MARIE N-gram SMT

decoder was used.13 Decoding results for the graphemic MADA-system after

morpheme-to-word back-mapping are presented in Table 7.

For all three test sets, Table 7 shows a reduction in WER of 0.2% abso-

lute when increasing the context length from zero to one (i.e., uni-gram to

bi-gram). However, no further reductions were obtained for a context length

of two (i.e., tri-gram). These results confirm the context dependency of the

MADA process and indicate that it may be covered by a bi-gram LM. How-

ever, for safety, the tri-gram back-mapping LM was applied for morpheme-

to-word conversion of the decoding results in all the tests reported in this

article. In additional tests, the amount of data used to train the bi-lingual

mapping LMs was increased from the original ∼11M words to ∼154M words.

However, although the OOT rates were reduced slightly, no improvements in

system performance were observed.

5.2. Stem Normalisation

In section 2, the stem-normalisation property of MADA together with its

impact on the morpheme-to-word conversion was discussed. The present sec-

tion investigates this property further in order to determine its contribution

13Available from http://gps-tsc.upc.es/veu/soft/soft/marie.
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System Test Set

n-gram eval07ns eval08ns dev09sub

1 13.6 11.9 18.1

2 13.4 11.6 17.9

3 13.4 11.6 17.9

Table 7: Impact of different context length for the MADA-2-word back-mapping LM (in

% WER).

to the system performance. For these tests, graphemic systems were used.

Three systems are compared: the word-based baseline system, a MADA-

based system, and a word-based stem-normalised (‘WordNorm’) system.

The WordNorm system was developed from a post-processed version of the

MADA training data transcriptions. The post-processing involved rejoin-

ing stem-separated proclitics with their corresponding (possibly normalised)

stems, giving a word-based stem-normalised transcript. Starting from these

new transcriptions, corresponding LMs and acoustic models were built and

tested. As the ‘WordNorm’ system is based on stem-normalised transcripts

this system is formally handled in the same way as a MADA-based system. It

includes in particular the MADA-to-word conversion as decribed in chapter

3.1. Table 8 gives the associated test results.

Comparing the word-based system with the MADA-based system, Table

8 shows reductions in absolute WER of 0.8%-1.0% in favour of the MADA-

based systems, which confirms their superiority. Further, comparing the

word-based system with the WordNorm system shows that the latter always

outperforms the former by 0.1%-0.4% in absolute WER. These results show
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System Test Set

eval07ns eval08ns dev09sub

Word 14.3 12.4 18.9

WordNorm 14.2 12.0 18.7

MADA 13.4 11.6 17.9

Table 8: Impact of the stem-normalisation property on the system performance (in

%WER).

that the WER reductions obtained by the MADA-based system are mainly

caused by the morphological decomposition scheme. However, the stem nor-

malisation also contributes to the gains, though to a lesser extent.

5.3. Pronunciation Probabilities

As outlined in section 4.3 and section 2.2, pronunciation probabilities

(PProb) for phonetic MADA-based systems can be obtained in two ways: by

means of counts based on the alignment of the acoustic training data or by

means of pseudo counts based on the rank order information of vowelisation

alternatives provided by MADA.

The alignment-counts-based PProb estimation provided pronunciations

for 210k words of the word-based dictionary and 136k words of the MADA-

based dictionary PProb estimates. For the remaining 40k and 53k words of

the two dictionaries for which Buckwalter vowelisations were available, a flat

distribution was used. The same flat PProb distribution was also used for

the other 90k and 161k words for which rule-based pronunciations had to be

applied.
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The first four lines of Table 9 compare the word-based and the MADA-

based phonetic systems with and without the application of pronunciation

probabilities during P3 decoding. PProbs give absolute reductions in WER

of 0.3%-0.7% for the word-based system. For the MADA-based system, the

WER reductions are generally smaller but reach 0.4% in absolute WER.

System Test Set

Model PProb eval07ns eval08ns dev09sub

Word none 13.4 11.8 18.1

Word align 13.1 11.1 17.5

MADA none 12.5 10.8 17.6

MADA align 12.5 10.7 17.2

MADA MADA-unseen 12.5 10.7 17.2

MADA MADA-all 12.7 10.9 17.6

Table 9: Impact of alignment count-based PProbs and MADA pseudo count-based PProbs

on the word-based and the MADA-based phonetic system (in % WER).

Next the impact of using MADA pseudo count-based PProbs was investi-

gated. As outlined in section 2.2, MADA-based PProbs have the advantage

that they are available for all words for which MADA provides Buckwalter

vowelisations. Consequently, PProbs were available not only for the 136k

words seen in the acoustic alignment data, but also for the remaining 40k

words with Buckwalter vowelisations. To test the performance of the MADA-

based PProbs, two tests were carried out. First, only the flat PProbs of the

40k ‘unseen’ words in the acoustic alignment data were replaced by MADA-

based PProbs. Next ‘all’ words for which Buckwalter vowelisations were
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available were assigned MADA-based PProbs. The corresponding results

are labelled ‘MADA-unseen’ and ‘MADA-all’ in Table 9. For the ‘MADA-

unseen’ results, no difference to the ‘align’ results can be observed. However,

in the ‘MADA-all’ case, Table 9 reveals a degradation in system performance

of 0.2%-0.4% in absolute WER. For the test sets eval07ns and eval08ns, the

system performance is even worse than if the pronunciation probabilities had

not been applied at all.

The poor performance of the MADA-based PProbs may be due in part to

the fact that the tools implement rules primarily for written MSA Arabic and

therefore they do not specifically attempt to cover the full range of pronun-

ciation variants that are present in conversational and dialectal Arabic. To

explore this further, the probability distributions derived respectively from

the alignment counts and from the MADA pseudo counts were compared by

means of a Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951).

For the alignment based distribution pjk = Palign(pronunciation j|word k)

and the MADA-based distribution qjk = Pmada(pronunciation j|word k) the

word-conditional KLD Dk(pjk||qjk) is given by:

Dk(pjk||qjk) =
J∑

j=1

pjk log
pjk

qjk

(3)

The final joint pronunciation-word KLD D(pjk||qjk) is obtained by weight-

ing the individual word-conditional KLDs of Equation (3) by the word priors

pk = P (word k):

D(pjk||qjk) =

K∑

k=1

pk Dk(pjk||qjk) (4)
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The KLD D(pjk||qjk) was evaluated using the original MADA-based dis-

tribution and a flat distribution for qjk. The flat distribution corresponds to

the case of not applying any pronunciation probabilities. Table 10 shows that

the MADA derived distribution features a larger KLD than the flat distri-

bution. This indicates that even a flat distribution is closer to the alignment

distribution than the MADA-derived one, and this is consistent with the

results of Table 9.

D(pjk||qjk)

MADA 0.411

flat 0.363

Table 10: KLD between the alignment count-based PProb distribution and the MADA

pseudo count-derived PProb distribution and a flat PProb distribution, respectively.

A more detailed analysis was carried out to identify the possible rea-

sons why the MADA-derived pronunciation probabilities are so different to

the pronunciation probabilities obtained by the alignment. Consequently,

the 10000 words with the highest a-priori probabilities within the alignment

data were selected. These words cover 72.2% of the alignment tokens. For

each word, the highest ranking pronunciations from both dictionaries were

compared. It was found that only in 28.2% of the cases were the pronunci-

ations the same. Crucially, in 40.0% of the cases, a systematic difference in

the word-final pronunciations was found. In these cases, the MADA-derived

pronunciations indicated word-final nominal cases (i.e., nominative /u/, ac-

cusative /a/, and genitive /i/) and nunations (i.e., /an/, /un/, and /in/),

whereas these endings were missing in the alignment-derived pronunciations.
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This confirms the claim in Biadsy et al. (2009) that the case-ending vow-

els are either reduced or omitted in conversational and/or dialectal Arabic.

A corollary of this observed mismatch in spoken Arabic and MSA is that,

contra (El-Desoky et al., 2009), a MADA-derived vowelised LM – that is,

a system design which models the short vowels at the graphemic level and

not as pronunciation alternatives by the dictionary – does not improve sys-

tem performance. The use of the pronunciation probabilities corresponds to

a vowelised uni-gram LM, and these probabilities already have an adverse

impact on the WER.

5.4. Overall System Performance

Table 11 compares the word-based graphemic and phonetic systems with

their MADA-based counterparts and presents the combination results. The

individual P3 results show that, in the phonetic case, the reduction in ab-

solute WER obtained by introducing MADA ranges between 0.3%-0.6%

compared to 0.8%-1.0% for the graphemic system. After combining the

graphemic and phonetic branches by CNC, the performance improvement

is in the range of 0.6%-0.7% in absolute WER which indicates that the

graphemic modelling captures additional information which cannot be mod-

elled by the phonetic system. Crucially, CNC tends to be more effective in

the MADA case since, when compared to the corresponding phonetic system,

larger reductions in WER are obtained for the MADA setup. Running the

‘Matched Pair Sentence Segment Word Error’ (MAPSSWE) significance test

(Gillick et al., 1989; Pallet et al., 1990) on the CNC test results, it was found

that the 0.6%-0.7% absolute reductions in WER between the word-based

baseline and the MADA-based tests are significant with a 95.0% confidence
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level. Finally, combining all four branches by ROVER produces further re-

ductions in absolute WER by 0.1%-0.4% compared to the MADA CNC sys-

tem. With respect to the best word-based system (CNC) the introduction

of the MADA branches by ROVER gives relative reductions of 5.4%-8.1% in

WER.

System Test Set

eval07ns eval08ns dev09sub

P3 gra Word 14.3 12.4 18.9

P3 gra MADA 13.4 11.6 17.9

P3 pho Word 13.1 11.1 17.5

P3 pho MADA 12.5 10.7 17.2

CNC gra⊕pho Word 12.3 10.6 16.8

CNC gra⊕pho MADA 11.7 9.9 16.2

ROVER 11.3 9.8 15.9

Table 11: MADA-based systems compared to word-based systems on the P3, CNC and

ROVER stage (in % WER).

6. Conclusions

Morphological decomposition for Arabic speech recognition is currently

an active area of research in state-of-the-art ASR systems. This article has

investigated the use of the MADA tools in the construction of graphemic

and phonetic Arabic systems. These tools, which are publicly available for

research purposes, make extensive use of morphological and syntactic rules in

order to provide a rigorous decomposition of input Arabic word-based data.

31



A novel n-gram SMT-based morpheme-to-word conversion approach was

introduced, simultaneously solving the problems of the back-mapping of

stem-normalised morphemes to the word-domain and the concatenation of

split-off prefixes to their associated stems. In the course of investigating

MADA’s stem-normalisation property, it became apparent that written Ara-

bic often lacks orthographic consistency. The MADA stem normalisation

homogenises these inconsistencies and this gives better ASR performance.

Furthermore, the investigation of MADA-based pronunciation probabilities

showed that grammatically correct written Arabic text lacks the variabu-

lity that is present in conversational and/or dialectal spoken Arabic. This

precludes the use of a vowelised LM based on the MADA-processed data.

The experiments reported in this article show that, in terms of relative

WER, the MADA-based systems outperformed the word-based systems by

5.3%-6.3% in the graphemic framework, and by 1.7%-4.6% in the phonetic

framework. CNC gave a relative WER reduction of 3.6%-6.6% compared to

the word-based baseline. Finally, when combining the word-based and the

MADA-based branches using ROVER, a relative WER reduction of 5.4%-

8.1% compared to the best word-based system was obtained.

The results presented in this article open up many avenues for future

research which focuses on the use of the MADA tools in state-of-the-art ASR

systems. In particular, the basic approach described in this article could be

refined and modified in several different ways. For instance, as mentioned

earlier, the MADA tools enable pronominal suffixes to be identified and split

off from their lexical roots, and this is a modelling option would provide a

revealing contrast with the kind of decomposition presented in this article.
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Similarly, decomposition schemes involving the definite article, Al, merit

closer attention. Specifically, it is well-known that the acoustic realisation

of Al varies greatly depending upon the phonological contexts in which it

appears, and it would be possible to try to model this rule-governed variation

more explicitly than we do at present. In addition, it would be interesting to

assess the impact of using pronunciation probabilities that were generated by

a Grapheme-2-Phoneme (G2P) conversion tool. These are all future research

topics that await detailed consideration.
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