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ABSTRACT

This paper describes the development of the CUHTK 2004 Man-
darin conversational telephone speech transcription system. The
paper details all aspects of the system, but concentrates on the de-
velopment of the acoustic models. As there are significant dif-
ferences between the available training corpora, both in terms of
topics of conversation and accents, forms of data normalisation
and adaptive training techniques are investigated. The baseline
discriminatively trained acoustic models are compared to a sys-
tem built with a Gaussianisation front-end, a speaker adaptively
trained system and an adaptively trained structured precision ma-
trix system. The models are finally evaluated within a multi-pass,
mult-branch, system combination framework.

1. INTRODUCTION

This paper presents the development of the CUHTK 2004 Man-
darin conversational telephone speech transcription system. At
Cambridge University HTK has been used to build large vocab-
ulary speech recognition systems particularly for American En-
glish. In this work the techniques that have been developed for
English transcription are applied to Mandarin conversational tele-
phone speech recognition. However, since Mandarin is a tonal
language, it is also necessary to change both the phone set and the
acoustic front-end to incorporate information about tone..

The paper is organised as follows. In the next section the re-
sources that were used are described, including the form of the
phone set. The baseline acoustic model and front-end development
are then described. This gives the baseline acoustic model that is
used as a basis for the more advanced acoustic modelling tech-
niques then discussed. Finally the development framework and
some experimental results are presented.

2. TRAINING DATA

This section briefly describes the resources and data that were used
for the development of the Mandarin system.

Dictionary and Phone Set: The original phone set and dictio-
nary were supplied by the Linguistic Data Consortium (LDC).
The dictionary consists of approximately 44,000 words and as-
sociated phonetic transcriptions. The LDC phone set consists of
60 phones and associated tone markers. It was found that one of
the phones “u:e” occurred very rarely and so was mapped to “ue”.
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This yielded a toneless phone set of 59 phones. In order to fur-
ther reduce the number of phones, an additional mapping where
long final phones were split was examined. Mappings of the form
“[aeiu]n→[aeiu] n” were applied to the dictionary. This yielded a
phone set of 46 phones. In initial experiments this 46 phone set
was found to outperform the original LDC 59 phone set.

As Mandarin is a tonal language, incorporating the tone mark-
ers into the acoustic models should improve the system perfor-
mance. Two ways of incorporating tonal information were inves-
tigated. The first used tonal phones as the basic phonetic unit for
the decision trees. Alternatively, phonetic questions can be asked
in the decision tree generation process. There was little difference
in performance between the two schemes, with both yielding gains
over the toneless phone system. For this work tonal information
was incorporated using the decision tree as this was felt to be more
flexible and robustly handles the rare tonal phones. For all experi-
ments the mapped 46 phone set and associated dictionary derived
from the LDC dictionary were used with tonal decision tree ques-
tions. As there are no natural word boundaries in Mandarin, the
characters may be partitioned into “words” in various ways. In
this work the LDC character to word segmenter was used. This
segmented data was used to generate the language model.

Acoustic Training and Test Data: The training data available
for the 2004 CTS Mandarin task consists of two parts, ldc04 and
swm03, yielding a total of about 72 hours of data. swm03 was
made available for the 2003 RT04 Mandarin CTS task. It com-
prises two parts. The first section of 15.2 hours is part of the LDC
CallHome data (chm). The second part is 16.6 hours of the LDC
CallFriend data (cfm). ldc04 is a new data set for the 2004 sys-
tem. It was collected by the Hong Kong University of Science and
Technology (HKUST). There are 251 conversations (502 sides),
corresponding to approximately 40 hours of training data. The test
data for the 2004 evaluation was also collected by HKUST. Devel-
opment data, dev04, was made available for this task comprising
2 hours of data, 24 conversations. The 2003 evaluation data, taken
from the LDC CallFriend data, eval03, was also used to evaluate
performance. This is a 1 hour test set of 12 conversations. How-
ever the primary development data was dev04.

Word-lists and Language Models: In addition to the 72 hours of
acoustic training, six news corpora were used to train the language
model, Mandarin TDT[2,3,4], China Radio, People’s Daily and
Xinhua. In order to determine the word-lists, all the words that
occur in the acoustic training data were used. The two acoustic
training data sources, and each of the news corpora, were kept as
distinct sources for language model (LM) generation. Trigrams
were generated for each of the sources and then interpolated.

Two sets of LMs are used in this work. The first two, tgint03



and tgintcat03, were built for the 2003 Mandarin system. As this
LM was built prior to the availability of the ldc04 training, that
acoustic data was not used. Thus the word-list was only based on
the swm03 training data and yielded an 11k word-list. The inter-
polation weights were tuned on the eval03 test data1. As expected
the interpolation weights were dominated by the acoustic training
data, 0.88. The tgincat03 LM additionally used a class-based LM
built on the swm03 data. The second language model, tgint04, was
built with both the acoustic data sources and all the text corpora.
Using all the words that appear in the acoustic training data gave an
16K word-list. Again for interpolation the acoustic sources were
heavily weighted. The differences in the topics was reflected in
the fact that the ldc04 LM component was weighted by 0.73 com-
pared to the swm03 component with 0.15. The total contribution
from all the news corpora was about 0.12, with the majority from
People’s Daily (0.09). In contrast to the 2003 LM a class-based
language model was not generated.

Language Model eval03 dev04
PP OOV PP OOV

tgint03 172.8
1.04

234.1
3.67

tgintcat03 160.4 280.8

tgint04 218.4 0.50 173.2 1.03

Table 1. Perplexity (PP) and out of vocabulary (OOV) rates (ex-
cluding English words).

Table 1 shows the perplexity scores and the OOV rates2. The
two sets of test data are clearly different. Using the 2003 language
models, yields good perplexity scores on the the eval03 data, but
poor scores on the dev04 data. The opposite is true for the 2004
language model. As there is such a large difference between the
two sets of data, the tgint04 LM will be used for all dev04 de-
velopment results and the tgint03 LM for all eval03 development
results. This allows the differences in performance of the various
acoustic models to be concentrated on.

3. INITIAL DEVELOPMENT

This section describes the development of the baseline acoustic
models. The initial models used only the ldc04 acoustic training
data, as this is more closely related to the dev04 test data. A gender
independent decision tree clustered triphone system was built with
approximately 4,000 distinct states with 12 components per state.
For testing a manually partitioned version of the dev04 test set was
initially used (dev04PE) and an automatically segmented version
of eval03 data (eval03).

Front-End Processing: The basic front-end for the Mandarin sys-
tem was set to be similar to the English CTS system [1]. This uses
a reduced bandwidth analysis, 125–3800 Hz, to generate 12 PLP
Cepstra along with the zeroth Cepstra. First and second-order dif-
ferences were appended to give 39 features. Cepstral mean and

1Though the interpolation weights were tuned on the test data this has
been found to yield no significant bias in the recognition results or perplex-
ity, very few parameters are being estimated.

2The calculation of the OOV rates were based on the LDC character to
word segmenter. Though the Mandarin OOV rate can be set to be zero by
adding all single characters to the dictionary in preliminary experiments
this made no difference to the CER.

variance normalisation (CMN/CVN) was also applied per conver-
sation side.

Training Data Front-End CER(%)

ldc04 (S1)

CMN/CVN 47.0
+VTLN 43.2
+HLDA 42.0
+Pitch 41.6

Table 2. Baseline ML performance on dev04PE.

Table 2 shows the performance of the basic acoustic model
with the baseline CMN and CVN front-end. This yielded an error
rate of 47.0% on the dev04PE data. Using VTLN in both train-
ing and testing reduced the error rate by about 3.8% absolute. The
front-end was then expanded to incorporate third-order differences
and projected back to 39-dimensions using heteroscadastic LDA
(HLDA). This gave a further reduction in CER of 1.2%. It is also
common for tonal languages to incorporate pitch into the front-
end. Pitch was extracted using ESPS waves and normalised in a
similar fashion to [2]. The pitch, along with the first and second-
order differences, were then added after the HLDA projection3,
giving a complete feature vector of 42 dimensions. The final un-
adapted performance on the dev04PE test set was 41.6%.

After fixing the front-end, standard model building approaches
used in the CUED evaluation systems were applied. The number
of components per state was made proportional to the amount of
training data for that state, though keeping the average number the
same, and minimum phone error (MPE) training applied [3].

Model Structure: This section describes the initial development
of the acoustic models. For this work both the dev04 and eval03
test sets were used for development. The tgint04 LM was used
for the dev04 test set and the tgint03 LM was used for the eval03
test set. This was felt to be necessary because of the difference in
topics illustrated by the large differences in the perplexity scores
shown in table 1.

Training Data Avg. CER(%)
Comp. dev04PE eval03

swm03 —
12

— 48.6
ldc04 S1 38.2 56.6

ldc04+swm03
S2 12 36.3 48.2
S3 16 36.1 47.9
S4 20 36.0 47.2

Table 3. Baseline MPE model performance.

Table 3 shows the performance of various MPE trained sys-
tems. The first line, swm03, was trained using the 2003 swm03
training data. This is simply to show a baseline number on eval03.
It is clear that in addition to the differences in topic, there are also
accent, possibly channel, differences between the 2003 and 2004
data sets. For the ldc04 trained system the performance on eval03
was 8.0% absolute worse than that of the swm03 trained system.

3In initial experiments there was little difference between using HLDA
on the complete feature vector and projecting just the PLP features. As the
final P1 model is a non-Pitch model, using an HLDA projection of just the
PLPs simplifies the system build.



ldc04 and swm03 were then combined together, though keep-
ing the decision tree and HLDA projection from the ldc04 data.
This is the S2 system in table 3. Not surprisingly using the 2003
training data significantly reduced the error rate on the eval03 test
data. The performance of the S2 system is better than the swm03
trained system. In addition the error rate on the dev04PE test set
was also improved, though to a lesser extent than the eval03 data.
With the additional training data, additional components may be
robustly trained. Using 16 components, the S3 system, gave an
additional 0.2% absolute reduction in CER on dev04PE. An addi-
tional 4 components, the S4 system, gave minimal difference on
dev04PE, but did decrease the error rate on the eval03 data. Since
the primary test was the dev04 data, the S3 system was selected as
the starting point for further comparisons.

Decision Tree/HLDA CER(%)
generation data dev04PE eval03

ldc04 S3 36.1 47.9
ldc04+swm03 S5 36.4 47.2

Table 4. Performance varying the decision tree and HLDA training
data, all models MPE trained.

All the ldc04 and ldc04+swm03 trained systems shown in ta-
ble 3 used the same decision tree and HLDA projection. Table 4
shows a comparison of the S3 system with training the decision
tree and HLDA projection on all the training data. The effects of
tuning the projection and decision tree to a particular task are clear.
Training a tree and projection on all the data yielded lower error
rates on the eval03 data, but higher error rates on the dev04 data
than the S3 system.

Segmentation: For the actual evaluation the segmentation for each
side of the conversation is not given. In order to segment the data
a simple GMM classifier was used. Table 5 shows the effect of the
use of an automatic segmenter on the dev04 test data. The MPE
trained S3 system was run on the automatically segmented data.
The increase in error rate from using the automatic segmentation
was about 1.2% absolute.

Segmentation Diarisation Scores CER
MS FA DER (%)

Manual (dev04PE) — — — 36.1
Automatic (dev04) 3.6 5.7 9.3 37.3

Table 5. Effect on dev04 performance using manual versus auto-
matic segmentation with the S3 MPE unadapted acoustic model,
including diarisation results for missed speech (MS), false alarm
(FA) and diarisation error rate (DER).

4. ACOUSTIC MODELS

In the previous section the development of the baseline acoustic
models was described. For the 2004 CTS English system [4] a
variety of more advanced acoustic models were investigated. This
section briefly describes some of these models. As in the English
CTS development these advanced models were used to rescore lat-
tices generated within the 10xRT framework described in section 5

As the three corpora, chm, cfm and ldc04, differ in terms of dom-
inant accents and topics, it is particularly useful to examine forms
of normalisation for this training data.

Gaussianisation: The use of CMN and CVN transforms the fea-
ture vector so that the mean of each dimension for each side is 0
and the variance is 1. There is no matching of the higher-order
statistics. Histogram normalisation is one approach that has been
used to further normalise data for CTS-English on a per-speaker
basis [5]. A modified version of this using a smoothed form based
on a per-dimension GMM is used in this work. It was found that
there was little difference in performance between the histogram
approach and the use of GMMs, however the GMM yields a more
compact, smoother estimate, of the histogram. The feature-vector
transformation for elementi of the observationo, oi, is

õi = φ−1

ÃZ oi

−∞

MX
m=1

c
(sm)
i N (x; µ

(sm)
i , σ

(sm)2
i )dx

!
(1)

whereφ−1() is the standard Gaussian inverse cumulative density
function,c(sm)

i , µ(sm)
i andσ

(sm)2
i are the prior, mean and variance

for theith dimension for sides of componentm. The components
of the GMM are trained on a per-side basis, indicated bys, after the
application of the HLDA projection. All elements of the feature
vector, including pitch, were normalised.

Speaker Adaptive Training: An alternative approach to normal-
ising the features is to use a linear transformation. One standard
approach is to use constrained MLLR, where the linear feature
transformation is estimated by maximising the likelihood of the
data. This is speaker adaptive training (SAT). The form of the
transformation for vectoro is

õ = A(s)o + b(s) (2)

The linear transformation parameters,A(s) andb(s) are trained
for each sides. One of the disadvantages of SAT is that in or-
der to estimate the test speaker transformation either supervised
adaptation data, or some initial hypothesis, is required. This is
not the case for Gaussianisation as a GMM is simply estimated on
all the data from one-side. To ease this problem a corpus-based
form of adaptive training was examined. Here a linear transform
was estimated for each corpus and the models adaptively trained.
However, this only gave slight improvements in performance, ap-
proximately 0.2%, over the baseline system, so was not considered
further.

Structured Precision Matrices: The baseline acoustic models are
based on states with output distributions using GMMs with diag-
onal covariance matrices. Recently there has been work on using
structured forms of precision matrix models. The form of model
used in this paper is based on SPAM [6, 7]. Here the precision,
inverse covariance, matrix can be written as

Σ(m)−1 =

RX
i=1

λ
(m)
i S(i) (3)

whereλ
(m)
i are the basis co-efficients for each component in the

systemm andS(i) is theith basis matrix. For this workR was
set to be 39. For details of the basis matrix initialisation and MPE
training of these models see [7]. As there is significant variability
in the training corpora a SAT-SPAM system was built, where a
discriminative SPAM system was estimated in the space defined
by a SAT trained system [8].



5. DEVELOPMENT FRAMEWORK

The system used for the experiments was based on the 2003 CUHTK
CTS English Rich Transcription evaluation system. A multi-branch,
multi-pass approach is used along with system-combination. For
details of the English versions of this framework see [1].

Segmentation

P1

tgint04 Lattices

P2

P3xP3a

CMLLR/LatMLLR CMLLR/LatMLLR

MPE triphones, non−pitch, 16k, tgint04

CNC
Alignment

1−best

CN

Lattice

MPE triphones, HLDA, 16k, tgint04

GI

GI

VTLN
Pitch

LSLR, 1 speech transform

Fig. 1. System structure (note tgint03 LM used for eval03).

Figure 1 shows the basic structure of the system. P1 is used to
provide an initial transcription for VTLN estimation. After VTLN
estimation, pitch is added to the features and the P2 models are
adapted using least squares regression mean transforms to the P1
hypothesis. This adapted P2 model is then used to generate lattices
for rescoring in the P3 stage. For the P3 stage, all models are
adapted using speech and silence constrained MLLR transforms
and the P2 hypothesis. They are then further adapted using lattice
MLLR to estimate mean and diagonal variance transforms.

The final system output was derived by combining the confu-
sion networks generated by the P3a to P3x passes using Confusion
Network Combination (CNC). Finally, a forced alignment of the
final word-level output was used to obtain accurate word times be-
fore scoring. For this initial development work, no note was taken
of the run-times, though the evaluation has real-time constraints.

Table 6 shows the results for the acoustic models within the
development framework. All the P3 numbers are given after con-
fusion network (CN) decoding. The performance of the baseline
MPE model (HLDA) in the P3 stage was disappointing compared
to the SAT system. Using SAT the error rate on both dev04 and
eval03 was decreased by 0.8% absolute. This shows the large vari-
ability of the acoustic training data. This error rate was further
decreased using the SAT-SPAM system to 34.2% on dev04. The
use of the Gaussianisation front-end further improved the perfor-
mance of all the systems by about 1% absolute on dev04. The best
single system, 33.2% on dev04, was obtained using HLDA with
Gaussianisation, SAT and SPAM covariance modelling. Combin-
ing the GAUSS-SAT-SPAM system with a GAUSS-SAT system
gave an additional 0.4% absolute reduction in CER, to give 32.8%
CER on dev04.

System S3 CER (%)
dev04 eval03

P2 HLDA 37.1 46.9

P3a-cn HLDA 35.8 45.0
P3b-cn SAT 35.0 44.2
P3s-cn SAT-SPAM 34.2 43.7

P3d-cn GAUSS 34.6 43.3
P3e-cn GAUSS-SAT 33.8 42.6
P3t-cn GAUSS-SAT-SPAM 33.2 41.8

P3e+P3t CNC 32.8 41.4

Table 6. CER on dev04 and eval03.

6. CONCLUSIONS

This paper has described the development of the CUHTK 2004
Mandarin conversational speech transcription system. The paper
has concentrated on the possible forms of acoustic model that could
be used. In particular, as there are significant differences in the
acoustic training data, two forms of data normalisation were in-
vestigated, Gaussianisation and speaker adaptive training. In addi-
tion, the use of structured precision matrices was investigated. In
contrast to the English CTS system [4], the use of normalisation
techniques, especially Gaussianisation, gave significant gains over
the standard HLDA front-end. This is felt to be at least partly due
to the greater variability and reduced size of the available training
data rather than an inherent attribute of Mandarin. The final evalu-
ation system using these acoustic modelling approaches achieved
one of the lowest CER on the evaluation task.
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