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Abstract

Discriminative classifiers are a popular approach to solving
classification problems. However one of the problems with
these approaches, in particular kernel based classifiers such as
Support Vector Machines (SVMs), is that they are hard to adapt
to mismatches between the training and test data. This paper de-
scribes a scheme for overcoming this problem for speech recog-
nition in noise. Generative kernels, defined using generative
models, allow SVMs to handle sequence data. By compensat-
ing the generative models for the noise conditions noise-specific
generative kernels can be obtained. These can be used to train a
noise-independent SVM on a range of noise conditions, which
can then be used with a test-set noise kernel for classification.
Initial experiments using an idealised version of model-based
compensation were run on the AURORA 2.0 continuous digit
task. The proposed scheme yielded large gains in performance
over the compensated models.
Index Terms: speech recognition, noise robustness, support
vector machines.

1. Introduction
Speech recognition is normally based on generative models, in
the form of Hidden Markov Models (HMMs), and class priors,
the language model. These are then combined using Bayes’
decision rule. An alternative approach is to use discrimina-
tive models, or discriminative functions such as Support Vector
Machines (SVMs) [1]. One of the problems with using these
discriminative models and functions is that it is normally hard
to adapt them to changing speakers or acoustic environments.
This is particularly true of kernel based approaches, such as
SVMs, where individual training examples are used to deter-
mine the decision boundaries. One approach to handling SVM-
based adaptation is described in [2]. This involves using the
support vectors from the original, unadapted, model in combi-
nation with the adaptation data.

An obvious application area where there are large mis-
matches between the training and test sets is speech recogni-
tion in noise. Handling changing acoustic conditions has been
an active area of research for many years. Model-based com-
pensation schemes [4, 3, 5] are a powerful approach to han-
dling mismatches between training and test conditions. Well
implemented model-based compensation schemes tend to out-
perform feature-based compensation schemes as it is possible to
more accurately model situations where speech is, for example,
masked by the noise. This paper examines an approach that
allows discriminative classifiers to be combined with model-
based compensation schemes to improve the noise-robustness.
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In this work rather than attempting to modify the SVM itself
the form of the kernel is altered to reflect the changing acoustic
conditions. For the class of kernels that make use of generative
models [6, 7], such as HMMs, this involves performing model-
based compensation to adapt the generative model. This noise-
specific generative kernel is then used by the SVM. Provided
the form of kernel compensates for the effects of the environ-
ment changes, it should be possible to train (and classify with)
a noise-independent SVM on a range of noise conditions with
the appropriate noise dependent kernels. As this work is pri-
marily interested in the feasibility of using noise-independent
SVMs, an idealised version of model-based compensation is
used, single-pass retraining (SPR) [4].

Rather than using discriminative classifiers, discriminative
training of generative models can be implemented. These dis-
criminatively trained generative models can be adapted using,
for example, model-based compensation schemes. However,
the models are still generative so could be used to define an im-
proved generative kernel for use with noise-independent SVMs
as above.

This paper is organised as follows. The next section briefly
reviews model-based compensation schemes and the idealised
form examined in this work. This is followed by a brief discus-
sion of SVMs and the forms of dynamic kernel that can be used
with generative models. Section 4 then describes the complete
scheme for using noise-independent SVMs. Results on the AU-
RORA 2.0 database are then given in section 5.

2. Model-Based Noise Compensation
The first stage in producing a noise compensation scheme is
to define the impact of the acoustic environment and channel
on the clean speech data, the mismatch function. In the mel-
cepstral domain used in this work the following approxima-
tion between the static clean speech, noise and noise corrupted
speech observations is used (log(.) and exp(.) indicate element-
wise logarithm or exponential functions)
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where C is the DCT matrix. For a given set of noise conditions,
the observed (static) speech vector ys

t is a highly non-linear
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t and convolutional noise h. Noise compensation schemes
are further complicated by the addition of dynamic parameters.
The observation vector y is often formed of the static param-
eters appended by the delta and delta-delta parameters. Thus
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the parameters can be obtained [4, 8].
The aim of model-based compensation schemes is to ob-

tain the parameters of the noise-corrupted speech model from



the clean speech and noise models. Most model-based compen-
sation methods assume that if the speech and noise models are
Gaussian then the combined noisy model will also be Gaussian.
Thus to compute the expected value of the observation for each
clean speech component (assuming a single noise component)
the following must be computed
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“
E
n
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m

”
(2)

where the expectation is over the clean speech “observations”
from component m and noise “observations” combined us-
ing equation 1. There is no simple closed-form solution to
these equations so various approximations have been proposed.
These include Parallel Model Combination [4] and Vector Tay-
lor Series [3]. An additional problem that must be solved is that
noise models are not normally available. Thus these must be
estimated from the observed data. Schemes that allow all the
model parameters to be estimated have been proposed [3, 9, 5].

In this work an idealised version of these model-based com-
pensation schemes is used, Single-Pass retraining (SPR) [4].
Here it is assumed that stereo data is available of the form
{Y,X} where Y = y1, . . . , yT ,X = x1, . . . , xT . The ex-
pectations in equation 2 are then approximated as

µm ≈
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t=1 γx
m(t)ytPT
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where γx
m(t) is the posterior probability of component m gen-

erating the observation at time t using the clean-speech model
and clean-speech data, X.

3. SVMs and Generative Kernels
Support Vector Machines (SVMs) [1] are an approximate im-
plementation of structural risk minimisation. They have been
found to yield good performance on a wide range of tasks. The
theory behind SVMs has been extensively described in many
papers and is not discussed here. This section concentrates on
how SVMs can be applied to tasks where there is sequence data,
for example speech recognition.

One of the issues with applying SVMs to sequence data,
such as speech, is that the SVM is inherently static in nature;
“observations” (or sequences) are all required to be of the same
dimension. A range of dynamic kernels have been proposed that
handle this problem. Of particular interest in this work are those
kernels that are based on generative models, such as Fisher ker-
nels [6] and generative kernels [7]. In these approaches a gen-
erative model is used to determine the feature-space for the ker-
nel. An example first-order feature-space for a generative kernel
with observation sequence Y may be written as
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1
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where p(Y; λ(ω1)) and p(Y ; λ(ω2)) are the likelihood of the
data using generative models associated with classes ω1 and ω2

respectively. HMMs are used as the generative model in this pa-
per. Considering only the derivative with respect to the means,
the feature-space will have the form

∂
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where γm(t) is the posterior probability that component m gen-
erated the observation at time t given the complete observation
sequence Y. Only the derivatives with respect to the means are
used in this work, though it is possible to use other, and higher-
order, derivatives.

As SVM training is a distance based learning scheme it is
necessary to define an appropriate metric for the distance be-
tween two points. The simplest approach is to use a Euclidean
metric. However, in the same fashion as using the Mahalanobis,
rather than Euclidean, distances for nearest-neighbour training,
an appropriately weighted distance measure may be better. One
such metric which is maximally non-committal is given by

K(Yi,Yj ; λ) = φ(Yi; λ)TG-1φ(Yj ; λ) (6)

where Yi and Yj are two observation sequences and G is re-
lated to the Fisher Information matrix (the log-likelihood ratio is
also included). In common with other work in this area [7, 10],
G is approximated by the diagonalised empirical covariance
matrix of the training data.

Classification with this form of generative kernel with ob-
servation sequence Y and training data Y1, . . . ,Yn is then
based on the SVM score S(Y)

S(Y) =

nX
i=1

αsvm
i ziK(Yi,Y; λ) + b (7)

ω̂ =


ω1, S(Y) ≥ 0
ω2, S(Y) < 0

(8)

where αsvm
i is the Lagrange multiplier for observation sequence

Yi obtained from the SVM maximum margin training, b is the
bias and zi ∈ {1,−1} indicates whether the sequence was a
positive (ω1) or negative (ω2) example.

4. SVMs for Noise Robustness
The previous two sections have described model-based com-
pensation and support vector machines with generative kernels.
This section describes how these schemes can be combined to-
gether to allow noise-specific generative kernels to be used with
a noise-independent SVM for speech recognition.

One of the problems with using SVMs for speech recogni-
tion is that standard SVMs are binary classifiers whereas speech
is a multi-class task; for large vocabulary systems there are a
vast number of classes. One approach to handling this problem
is acoustic code-breaking [11]. Here confusable pairs in the
training data are obtained by finding the most confusable word
with each of the reference words. This provides a set of training
examples for a binary classifier. In this work a slightly modi-
fied version of acoustic code-breaking is used. During training
rather than just selecting the data from the specific confusable
pairs all the data from each of the words is used during training.
This yields a far larger number of training examples.

The procedure for training the noise-independent SVMs is:

1. For each training noise condition perform model-based
compensation

2. Align all the training utterances Y1, . . . ,Yn using ref-
erence, r = r1, . . . , rK to give the word-segmented data
sequence Ỹ1, . . . , ỸK

3. For each confusable pair (ωl, ωj) set λ =

{λ(ωl), λ(ωj)}
(a) obtain φ(Ỹi; λ) for all training examples of ωl us-

ing the appropriate noise compensated λ



(b) obtain φ(Ỹi; λ) for all training examples of ωj

using the appropriate noise compensated λ

(c) train a noise-independent SVM for pair (ωl, ωj)
using all positive (b) and negative (c) examples.

In this work only the log-likelihood ratio and derivatives
with respect to the means are used. There is an issue with
using equation 5. Model-based compensation schemes nor-
mally modify the variances of the acoustic models. To keep
the dynamic ranges of each set of features consistent standard-
deviation normalisation, rather than the variance normalisation
in equation 5, is used. Note this is not usually a problem as
the same covariance matrices are used for all sequences and the
dynamic-range effects handled by the metric G.

During recognition the following procedure is used:
1. Compensate the acoustic models for the test noise con-

dition
2. Recognise the test utterance Y to obtain 1-best hypoth-

esis, h = h1, . . . , hK and align to give the word-
segmented data sequence Ỹ1, . . . , ỸK

3. For each segment Ỹi and for each confusable pair
(ωl, ωj) set λ = {λ(ωl), λ(ωj)} and

(a) If (hi = ωl) or (hi = ωj) then obtain S(Ỹi)
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p(Ỹi;λ

(ωl))
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β and ε are empirically set values. They control two different
aspects of the recognition stage:

• β determines the number of pairs that are rescored. If the
magnitude of the log-likelihood ratio is above the thresh-
old β the HMM classification is considered to be suf-
ficiently “confident” that rescoring is unnecessary. As
β → 0 the performance will become the same as the
standard HMM classification.

• ε is used to scale the contribution of the log-likelihood
ratio to the SVM score. The log-likelihood ratio is the
most discriminatory of the dimensions of the score-space
is the log-likelihood ratio. However using a maximally
non-committal metric, G, all dimensions are treated
equally. Thus ε is used to reflect the usefulness of the
log-likelihood ratio. As ε → ∞ the performance of the
system will tend to the HMM performance.

For all the experiments in this paper they were roughly set using
a single confusable-pair at a single SNR. They were then fixed
for all pairs. Thus there is minimal bias as no extensive tuning
on the test data was performed.

This routine is known to be suboptimal in a number of
ways. A simple scheme is used to combine classifier outputs
so the results will depend on the order that the confusable pairs
are applied in. Thus the performance is expected to be a slight
underestimate of the possible gains. This issue will be investi-
gated in future work. The alignment associated with each word-
segment is not updated if the hypothesis sequence changes. It is
possible to repeat the alignment if the hypothesis changes. The
computational load associated with this scheme increases ap-
proximately linearly with the number of confusable pairs. How-
ever the number of confusable pairs will increase roughly as the

square of the vocabulary. Thus the scheme is suited for small
vocabulary tasks, such as digit string recognition.

5. Results
The performance of the proposed scheme was evaluated on the
AURORA 2.0 task. AURORA 2.0 is a small vocabulary digit
string recognition task. As the vocabulary size (excluding si-
lence) is only eleven (one to nine, plus zero and oh) the number
of possibly confusable pairs is limited making it suitable for the
proposed scheme. The utterances in this task are one to seven
digits long based on the TIDIGITS database with noise artifi-
cially added. The clean training data comprises 8440 utterances
from 55 male and 55 female speakers. For the idealised model-
based compensation scheme, SPR, stereo data from 422 sen-
tences (a subset of all the training data) are provided for each
of 16 conditions: 4 different SNRs ranging from 20 to 5 dB,
combined with the 4 different additive noise sources N1 to N4,
subway, babble, car and exhibition hall. Each of the 16 condi-
tions also has a test set of a 1001 sentences with 52 male and
52 female speakers. Only these 16 noise conditions are exam-
ined in this work as stereo data is not provided for any of the
other noise conditions. A 39 dimensional feature vector con-
sisting of 12 MFCCs appended with the zeroth cepstrum, delta
and delta-delta coefficients was used. This differs from the stan-
dard parameterisation and performs slightly worse. However it
is the form of frontend that can be easily used with practical
model-based compensation schemes such as VTS. The acoustic
models are 16 emitting state whole word digit models, with 3
mixtures per state and silence and inter-word pause models.

SNR Noise Avg
(dB) N1 N2 N3 N4
20 1.60 1.81 1.76 2.01 1.79
15 2.67 3.17 2.48 2.90 2.80
10 5.22 6.77 4.86 4.75 5.40
05 12.28 18.83 10.62 9.81 12.90

Avg 5.44 7.65 4.93 4.87 5.72

Table 1: SPR WER (%) on AURORA 2.0 test set A.

Table 1 shows the performance of the single-pass retrained
system on each of the noise conditions. As expected, as the
SNR decreases the word error rate (WER) increases. Note the
word error rate for the clean, uncompensated, model set on the
5dB SNR system was 66.75%. There is an 80% relative reduc-
tion in error rate by using this idealised model-based compensa-
tion at 5dB. It is possible to achieve greater performance gains
than this “idealised” set-up. The noise models can be estimated
at a file-by-file level where a level of speaker-adaptation is ef-
fectively performed, see for example [5] where an error rate of
10.22% was obtained using VTS at 5dB SNR. It is expected that
improvements in the model-based compensation scheme will be
reflected in gains after the SVM rescoring stage.

A set of 20 confusable digit-pairs were selected based on
the overall confusion matrix for the 16 noise conditions. In ad-
dition all insertion/deletion confusable pairs were selected (i.e.
silence against each of the vocabulary words). A total of 31 con-
fusable pairs were thus trained and used for rescoring. These
covered approximately 80% of the total number of substitutions
and all insertions/deletions. In order to check that the SVM can
operate in a noise-independent fashion the N1 noise condition
and the 5dB SNR condition were removed from the SVM train-



ing configuration. This means that there are 9 noise conditions
to train the SVM. Note the model-based compensation is still
run in an SPR fashion for the N1 and 5dB conditions to get the
generative models for the noise-specific kernels. For these ex-
periments SVMs were built using the top 1500 dimensions of
φ(Ỹi; λ) ranked using the Fisher ratio.

SNR Noise Avg
(dB) N1 N2 N3 N4
20 1.38 1.51 1.55 1.79 1.56
15 2.00 2.42 2.18 2.68 2.32
10 3.56 4.41 4.21 4.13 4.08
05 7.22 11.09 8.35 8.52 8.80

Avg 3.54 4.86 4.07 4.28 4.19

Table 2: SVM rescoring WER (%) on AURORA 2.0 test set A,
SVM trained on N2-N4 10-20dB SNR.

Table 2 shows the performance of the SVM rescoring for
the 16 noise conditions. For the average of all the noise condi-
tions the SVM rescoring has reduced the WER rate by 1.53%
absolute, a 27% relative reduction in WER. If only the noise
condition (N1) that the SVMs were not trained in are consid-
ered then the reduction is 1.90% absolute, a 35% relative, re-
duction. For the unseen SNR condition (SNR05) a 4.10% abso-
lute, 32% relative, reduction in WER was obtained. From these
preliminary results the noise-dependent kernels appear to allow
a noise-independent SVM to be reliably used. It is interesting
to note that the SVM rescoring reduced the error rate for all of
the 16 noise conditions. Only two of the individual SVMs made
the WER worse overall, and in these cases only by one-or-two
errors (individual SVMs did increase the WER for particular
noise conditions). The single fixed values for β and ε that were
only crudely tuned on a single pairing appear to be fairly robust.

Test System Errors (%) Tot
Condition Sub Del Ins (%)

N1 SPR 2.56 0.45 2.43 5.44
+SVM 2.15 0.58 0.81 3.54

SNR05 SPR 5.79 1.09 6.01 12.90
+SVM 4.90 1.67 2.23 8.80

All SPR 2.74 0.60 2.39 5.72
+SVM 2.30 0.76 1.13 4.19

Table 3: SPR and SVM rescoring WER (%) on AURORA 2.0
test set A, SVM trained on N2-N4 10-20dB SNR.

Table 3 shows the breakdown of the errors for the held out
conditions N1 noise and 5dB SNR as well as the overall per-
formance. The most interesting condition is the 5dB SNR one.
This has more insertions than substitutions for the SPR HMM
system. On the insertion/deletion errors, SVM rescoring re-
duced the insertions from 6.01% to 2.23% whilst only increas-
ing the deletions by 0.58%. This illustrates one of the aspects of
the AURORA 2.0 task, for the lower SNR conditions handling
insertions yields larger gains than substitutions.

6. Conclusions
This paper has described a new approach to noise-robust speech
recognition. The scheme combines model-based noise compen-

sation schemes with a discriminative classifier, in this case an
SVM. Rather than adapting the discriminative classifier, chang-
ing noise conditions are handled by the modifying the kernel.
As generative kernels are used, model-based compensation can
be used to adapt the generative models used to obtain the kernel
features to the specific noise environment. To handle the multi-
class issue (the SVM is inherently binary) a modified version
of acoustic code-breaking is used. Thus the scheme allows a
noise-independent SVM with noise-dependent generative ker-
nels to be used to rescore the recognition output from a stan-
dard HMM-based speech recognition systems. Initial experi-
ments on the AURORA 2.0 task using an “ideal” model-based
compensation scheme, single-pass retraining, are presented. To
ensure that the SVMs could handle unseen noise conditions and
SNRs, no data from the N1 noise condition and 5 dB SNR were
used to train the SVMs. Compared to the SPR trained system
large reductions in WER were observed with SVM rescoring
for all noise conditions, including the ones on which the SVMs
were not trained.

The results presented in this paper are preliminary for a
number of reasons. Single-pass retraining has been used as the
model-based noise compensation scheme. However, well im-
plemented schemes yield both performance and parameters that
are very close to these SPR systems. Discriminatively trained,
or more complex, acoustic models can be used for this task. The
proposed scheme can be applied using these improved genera-
tive models. Finally SVMs were used as the discriminative clas-
sifier. For larger vocabulary tasks other discriminative classi-
fiers, such as conditional augmented models [10], may be more
appropriate.
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