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ABSTRACT
Recently there has been significant interest in developing new acous-
tic models for speech recognition. One such model, that allows
complex dependencies to be represented, is the augmented statistical
model. This incorporates additional dependencies by constructing a
local exponential expansion of a standard HMM. Unfortunately, the
resulting model often has an intractable normalisation term, render-
ing training difficult for all but binary classification tasks. In this
paper, conditional augmented (C-Aug) models are proposed as an
attractive alternative. Instead of modelling utterance likelihoods and
inferring decision boundaries, C-Aug models directly model the pos-
terior probability of class labels, conditioned on the utterance. The
resulting model is easy to normalise and can be trained using con-
ditional maximum likelihood estimation. In addition, as a convex
model, the optimisation converges to a global maximum.

1. INTRODUCTION

In recent years, a wide range of acoustic models have been applied
to the speech recognition task; the most popular of these is the hid-
den Markov model (HMM). Unfortunately, HMMs are based upon a
series of assumptions that are known to be poor, in particular, succes-
sive frames of speech are assumed to be independent given the state
that generated them. In order to overcome these limitations, many
extensions, such as: segmental models, switching linear dynamical
systems (S-LDSs) and buried Markov models, have been proposed.
Despite significant differences in structure, these models all share a
common goal: to better model speech by incorporating (or provid-
ing a framework for incorporating) additional (possibly long-range)
dependencies. Unfortunately, none of these techniques provide any
indication as to which dependencies should be modelled.

In [1, 2] augmented statistical models were proposed as a sys-
tematic technique for both specifying and modelling additional de-
pendencies. This is achieved by constructing a local exponential
approximation (using a Taylor series expansion) to a standard – typ-
ically HMM or Gaussian mixture model (GMM) – base, statistical
model. The latent-variable structure of the augmented model is de-
termined by the base model; the sufficient statistics for the expo-
nential model are given by its derivatives, and are dependent on all
observations and states, breaking the conditional independence as-
sumptions of the base model. This allows augmented models to
represent highly complex distributions. Unfortunately, the price for
this flexibility is a statistical model with an intractable normalisation
term. Direct training – maximum likelihood (ML) or maximum mu-
tual information (MMI) [3] – is therefore prohibitively expensive for
practical tasks. Instead a binary maximum-margin (MM) criterion
can be used [2].
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In this paper, conditional augmented (C-Aug) models are pro-
posed. These are defined similarly to standard (generative) aug-
mented models except that, instead of modelling utterance likeli-
hoods, they directly model the posterior probabilities of class labels.
C-Aug models therefore have all the modelling advantages of stan-
dard augmented models with the added benefit that the normalisation
is calculated as the expectation over the class labels instead of over
observation sequences. In addition, as (highly complex) members
of the exponential family, C-Aug models are similar to conditional
random fields (CRFs) [4] (though without the Markov dependency),
allowing CRF training techniques, such as conditional maximum
likelihood (CML), to be used. C-Aug models overcome one of the
greatest drawbacks of standard CRFs: determining which statistics
to include.

In this paper, generative augmented models, their properties and
maximum-margin (MM) training are all briefly reviewed. Then, in
section 3, conditional augmented models are introduced. Basic prop-
erties, maximum likelihood estimation and inference of C-Aug mod-
els are discussed. Finally, preliminary results on a large vocabulary
rescoring task and on the TIMIT [5] phone classification task are
presented.

2. AUGMENTED STATISTICAL MODELS

2.1. The Exponential Family

Many standard statistical models are based upon the exponential
family. Common examples are the Gaussian, Poisson and Bernoulli
distributions. In terms of observations O = {o1, . . . , oT }, ot ∈
R

d, sufficient statistics T (O) and natural parameters α, these mod-
els can be written in the form,
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where h(O) is a reference distribution and 〈·, ·〉 denotes the inner-
product between two vectors using an appropriate metric. The nor-
malisation constant, τ (α), ensures that the axioms of probability are
satisfied and is calculated as the expectation of (1) over the observa-
tions,
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Unfortunately standard exponential distributions cannot simply model
temporal dependencies or multi-modal distributions. They are there-
fore unsuitable for many ‘real-world’ tasks; instead, latent-variable
extensions, such as GMMs and HMMs, are used. In many cases,
however, the independence and conditional-independence assump-
tions encoded in these latent-variable models are not correct, poten-
tially degrading classification performance. Improved models can
be obtained by adding dependencies through expert-knowledge and
hand-tuning, however it is often not clear which dependencies to
include. Augmented statistical models [2, 1] remove this issue by
incorporating additional dependencies in a systematic fashion.



2.2. Augmented Statistical Models

Augmented statistical models (herein referred to as augmented mod-
els) are composed of two parts: a base statistical model p̂(O; λ) (of-
ten a GMM or HMM), and a local exponential expansion (calculated
using a ρ-th order Taylor expansion1) of that model about each point
λ [6, 1, 2],

p(O; λ, α) =
1

τ (λ,α)
p̂(O; λ) exp
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λ

ln p̂(O; λ)
”

(3)

where α are the augmented parameters and τ (λ,α) is a normal-
isation term (calculated as the expectation over all observation se-
quences). The sufficient statistics of (3) are given by base model
derivatives of orders 1 through ρ [7, 1],
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At this stage, it is interesting to contrast the nature of the depen-
dencies modelled by augmented models to those of the base model.
Since no new statistics are introduced (only new functions of the
base model statistics), independence assumptions of the base model
are retained. This is not the case, however, with the conditional in-
dependence assumptions. In particular, derivatives of latent vari-
able models are a function of the posterior probabilities of the latent
states. Since these are dependent on all observations and all latent
states, conditional independence is broken.

With their additional modelling power, augmented models can
be difficult to train. This is because in general, unlike GMMs and
HMMs, no closed-form solution exists for the normalisation term.
Maximum likelihood (ML) and maximum mutual information (MMI)
estimation of augmented parameters are therefore difficult. Instead
a two-stage training algorithm can be used. First, the base model
parameters, λ, are calculated using standard ML or MMI training.
Next, the augmented parameters, α, are estimated using a distance-
based discriminative training criterion.

2.3. Maximum Margin Estimation

Unlike ML and MMI training which try to model underlying source
distributions, maximum-margin (MM) estimation is a distance-based
technique that tries to directly model the decision surface between
classes. It does this by maximising the geometric margin – the dis-
tance between the decision boundary and the closest training exam-
ples – between classes. This results in a robust classifier that gen-
eralises well even when using high-dimensional spaces or limited
training data. Furthermore, since it attempts to correctly classify
all training examples, it is inherently discriminatory in nature and
thus an obvious alternative to discriminative criteria such as MMI.
The disadvantage of such an approach is that it is limited to binary
classification (although schemes have been proposed to handle the
multi-class case [8]).

Consider a binary task where class-conditional generative mod-
els of the form, p(O; λ(1), α(1)) and p(O; λ(2), α(2)) are estimated
on the training data. The decision boundary that minimises the prob-
ability of training error is given by Bayes’ decision rule,

P (ω1|O; λ(1))

P (ω2|O; λ(2))

ω1
>
<
ω2

1 (5)

1For simplicity, in this paper the natural basis and higher-order deriva-
tives are assumed to yield a set of orthogonal basis. It is therefore not nec-
essary to distinguish between covariant and contravariant basis and compo-
nents [6].

When λ̃ = {λ̃(1), λ̃(2)} are estimated using ML or MMI train-
ing, equation (5) can be rewritten as a linear decision boundary with
weight w and bias, b, [2]
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where P (ω1) and P (ω2) are class priors and φLL(O; λ) is a gen-
erative score-space (an extension of the Fisher score-space [9]), de-
pendent on only the observations and base model parameters λ =
{λ(1), λ(2)},

φ
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The task of estimating augmented parameters α̃ = {α̃(1), α̃(2)}
is therefore reduced to finding a linear decision boundary (6) in the
score-space (7), where α̃ and w are related by w = [1, α̃(1), α̃(2)]T .
Although many techniques exist for estimating linear decision sur-
faces, a popular algorithm for MM training is the Support Vector
Machine (SVM).

3. CONDITIONAL AUGMENTED MODELS

In the previous section, a MM algorithm was described for training
augmented models, allowing the problem of an intractable normal-
isation term to be mitigated. Unfortunately, this technique is lim-
ited to binary tasks. Alternatively, a conditional augmented (C-Aug)
model can be defined. Here, instead of modelling the observation
likelihood, C-Aug models directly model the posterior probability
of the class labels, ω,

P (ω|O; λ, α) = (8)

1

Z(λ, α)
p̂(O; λ(ω)) exp
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λ
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where λ = {λ(ω)} and α = {α(ω)}, ∀ω ∈ Ω, the set of all class la-
bels. Although, superficially, this appears identical to the augmented
model in (3), it is, in fact, very different. This difference arises from
the way that the normalisation term2, Z(λ, α), is calculated. Since
conditional augmented models directly model posteriors, the nor-
malisation is calculated as the expectation of (8) over the class la-
bels, ω ∈ Ω,

Z(λ, α)=
X

ω∈Ω

p̂(O; λ(ω)) exp
“
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(9)

As this is typically a small number, the summation in (9) is feasible.
Direct training of model parameters is therefore possible. It is useful
to note that although the conditional distribution is always valid, the
generative model associated with it is not necessarily valid.

Although it may seem strange to embed a generative model within
a conditional model, this is a perfectly valid operation since the gen-
erative model is used only to generate a set of sufficient statistics.
Compared to arbitrary statistics (such as o and o2), statistics from
generative models are advantageous since they are tuned to match
the distribution of the source data, thus providing a better represen-
tation of the data [9]. When large feature-vectors are required, the
computational cost of considering these features can be mitigated by
considering kernelised C-Aug models [10]. These use an implicit
mapping to a high-dimensional feature-space whilst performing cal-
culations in the original, lower-dimensional, space.

2For clarity, the normalisation term of a conditional augmented model is
denoted Z(·) instead of τ(·) to emphasise that the expectation is calculated
over the classes instead of over the observation-space.



It is important to note that C-Aug models do not inherit the con-
ditional independence assumptions of the base model since, sim-
ilarly to generative augmented models, the posterior terms in the
derivatives break conditional independence.

3.1. Relationship with CRFs and HCRFs

Before discussing training algorithms, it is helpful to contrast C-Aug
models with conditional random fields (CRFs) [4] and hidden condi-
tional random fields (HCRFs) [11]. Consider the case when the base
model parameters, λ, are fixed (such as when the two-stage estima-
tion is used). Equation (8) can be re-expressed in terms of constant
sufficient statistics (features), T (ω, O; λ), as,

P (ω|O; λ, α)=
1

Z(α)
exp

“

α
T
T (ω,O; λ)

”

(10)

where T (ω,O; λ) has elements,

T
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In this form, it is clear that (10) is simply an exponential model3 with
sufficient statistics T (ω, O; λ) and natural parameters α. Although
the similarity to CRFs allows C-Aug models to be regarded as a
systematic method for defining CRF feature-vectors, much of the
power of both C-Aug models and HCRFs is obtained through the
use of latent variables.

HCRFs introduce latent-variables directly into the exponential
model resulting in a flexible HMM-style model. Unfortunately there
are three main draw-backs to this approach: first, the independence
and conditional-independence assumptions are identical to those of
HMMs4. Second, like CRFs, there is no indication as to which fea-
tures to include. Third, and perhaps most important, is that by in-
troducing latent-variables directly into the exponential model, the
model convexity (and hence global maximum) is lost. This makes
HCRFs sensitive to both initialisation and the parameter update al-
gorithm (c.f. L-BFGS versus SGD in [11]).

Conversely, although conditional augmented models also have
an HMM-style latent-variable structure, the latent variables are con-
tained solely within the sufficient statistics. When the base model
parameters are fixed (such as during two-stage training – section 2),
these statistics are constant; model convexity and the existence of a
global solution are therefore preserved. A disadvantage of this ap-
proach is that, unlike HCRFs, the state-segmentation of utterances
is fixed by the base model and cannot be updated during training.
However, despite a greater number of segmentation constraints, the
complex statistics of C-Aug models (c.f. Gaussian-based statistics
of the HCRF) allow highly complex, non-Gaussian, output distribu-
tions to be modelled. These distributions need not satisfy the condi-
tional independence assumptions of the base HMM.

3.2. Conditional Maximum Likelihood Estimation and Inference

As discussed above, a significant advantage of C-Aug models over
generative augmented models is that the normalisation can be calcu-
lated simply. Direct training of model parameters is therefore possi-
ble. A practical choice of training criterion is conditional maximum
likelihood (CML) estimation. This is a good criterion to use since,

3It is tempting to claim that C-Aug models are forms of CRF. This is
not, however, true since the CRF definition requires a Markov dependency
between ωt and ωt−1 [4] which C-Aug models do not have.

4Although the HCRF framework makes it relatively easy to increase the
number of dependencies modelled, there is no guidance on which dependen-
cies (features) are useful.

in addition to strong theoretical motivations, it is inherently discrim-
inatory in nature.

Consider the set of training examples {Oi} with labels yi ∈ Ω,
i ∈ {1, . . . , n}. The objective of CML estimation is to find λ̃ and
α̃ such that the likelihood of the class labels, conditioned on the
observations, is maximised,

{λ̃, α̃} = arg max
λ,α

n
X

i=1

ln P (yi|Oi; λ,α) (11)

Unfortunately, simultaneous optimisation of both λ and α is diffi-
cult since the objective function has many local maxima. Instead, λ̃

is first estimated using standard ML or MMI estimation. This sim-
plifies training by allowing the model to be written as in (10). The
optimisation thus becomes,

α̃ = arg max
α

n
X

i=1

“

α
T
T (yi, Oi; λ̃) − ln Zi(λ̃, α)

”

(12)

This is convex in α and so has a single, global, maximum. Since
there is no closed-form solution, a gradient-based iterative update
must be used. For this paper, scaled conjugate gradient (SCG) [12]
was chosen. Like all conjugate gradient methods, this updates model
parameters by taking a step, not in the direction of the gradient,

∇αln p(yi|Oi; λ̃, α) =

T (yi, Oi; λ̃) −
X

ω∈Ω

P (ω|Oi; λ̃, α)T (ω,Oi; λ̃) (13)

but in a direction that, as far as possible, is conjugate to all previous
steps taken. However, unlike many standard algorithms, the step-
size is selected using a model-trust region based approach instead of
a line search (which is extremely expensive for objective functions
such as (11)).

Given an utterance Oi and a ML C-Aug model, {λ̃, α̃}, infer-
ence simply requires selecting the label, yi, with the largest poste-
rior,

yi = arg max
ω∈Ω

P (ω|Oi; λ̃, α̃) (14)

This can be efficiently implemented by comparing unnormalised
posteriors (Zi is constant across all classes).

4. EXPERIMENTAL RESULTS

In this paper, conditional augmented models are applied to two tasks.
The first uses the code-breaking approach of [13] to convert a large
vocabulary speech recognition task into a series of binary problems,
allowing comparison with MM augmented models. The second is
based upon the TIMIT phone classification task [5]. Preliminary
results are presented. Feature-spaces of all augmented and C-Aug
models in this section consist of derivatives with respect to the means,
variances and mixture-component priors of the base HMMs.

4.1. Code-breaking: binary classifiers

This is a multi-pass approach that first uses standard Viterbi decod-
ing to generate a word lattice of the most likely word sequences.
The lattice is then converted into a confusion network and pruned so
that, at each point in time, a maximum of two words appear. These
pairs of words are known as confusions. If sufficiently many occur-
rences of a confusion exist in the training set, a binary classifier can
be trained to separate them.

The corpus used for experiments was a 400 hour subset of the
Fisher LDC data. Training examples for highly confusable pairs



were extracted from the confusion networks and the number of pos-
itive and negative examples equalised by sampling: random selec-
tion therefore yields an accuracy of 50%. Performance was evalu-
ated using 8-fold cross-validation on the training data. Although a
number of classifiers were trained, only the pair CAN/CAN’T (with
an ASR baseline of 21.5%) is described in this paper. All classi-
fiers were trained using 3-state, 4-mixture-component HMMs. Aug-
mented models were constructed using a 640-dimensional feature-
space of derivatives with respect to selected means, variances and
component priors.

Classifier
Criterion

Train (%) Test (%)
λ α

HMM ML – 10.4 11.0
HMM MMI – 9.0 10.4
Aug ML MM 7.1 9.2

C-Aug ML CML 7.3 9.1

Table 1. Training and test error rates for CAN/CAN’T

Table 1 shows clearly that both generative and conditional aug-
mented models outperform the ML and MMI baselines. Both MM
and CML classifiers perform similarly, yielding an absolute improve-
ment of 1.2%. As the number of augmented parameters increased,
MM training was found to be more robust to over-training than CML.
For a 1897-dimensional score-space, MM models achieved test error
of 9.1% compared to CML’s 10.5%. Training errors were 6.1% and
5.0% respectively.

One of the issues with applying binary classifiers to multi-class
problems is that separate classifiers must be built for all possible
pairs of words. In practice, this is not possible. For example, in
[2], 15 binary classifiers were used for rescoring a large vocabulary
task. Although each classifier achieved reasonable gains, the small
number of classifiers led to only a small improvement overall.

4.2. TIMIT

The multi-class performance of C-Aug models was evaluated us-
ing the standard TIMIT phone classification task. The experimental
setup described in [11] was used. Models were trained with three
states and either ten or twenty mixture-components. Acoustic model
decoding was performed without the use of a language model. No
data or feature whitening was performed.

Classifier
Criterion Components
λ α 10 20

HMM ML – 29.4 27.3
C-Aug ML CML 24.2 –

HMM MMI – 25.3 24.8
C-Aug MMI CML 23.4 –

Table 2. Classification error on the TIMIT core test set

The TIMIT results show a similar pattern to the pairwise exper-
iments. In particular, it is clear from Table 2 that C-Aug models
outperform both ML and MMI HMMs. Although one could argue
that this is due to the extra parameters (C-Aug models have twice
as many parameters as a standard HMM), this was not found to be
the case: 10-component C-Aug models outperform 20-component
HMMs. A point of particular interest is that despite poorer state
segmentation—the sufficient statistics fix the state segmentation—
C-Aug models with ML statistics outperformed the 20-component
MMI HMM (24.2% versus 24.8% test error).

Despite good performance compared to standard HMMs, C-Aug
models do not quite attain the performance of HCRFs [11]. This is
believed to be due to three main factors: the fixed state segmentation
from the base model, over-training (training error falls to 15.1% for
MMI statistics) and lack of a language model (tests on MMI HMMs
suggest that this may yield a gain of up to 0.5% absolute). Further
research into segment optimisation techniques and regularisation is
therefore required.

5. CONCLUSIONS

In this paper, conditional augmented models are proposed as a pow-
erful acoustic model for speech recognition. C-Aug models share all
of the benefits of generative augmented models but have the added
advantage of a tractable normalisation term. The convex structure
and global maxima make direct CML training simple. Initial re-
sults demonstrate that C-Aug models outperform both ML and MMI
trained HMMs. Future work will examine higher-order dependen-
cies [7], techniques for updating the base model (to allow state seg-
mentation to vary), kernelisation of C-Aug models, and algorithms
for performing recognition.
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