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Abstract

Background noise can have a significant impact on the perfor-
mance of speech recognition systems. A range of fast feature-
space and model-based schemes have been investigated to in-
crease robustness. Model-based approaches typically achieve
lower error rates, but at an increased computational load com-
pared to feature-based approaches. This makes their use in
many situations impractical. The uncertainty decoding frame-
work can be considered an elegant compromise between the
two. Here, the uncertainty of features is propagated to the
recogniser in a mathematically consistent fashion. The com-
plexity of the model used to determine the uncertainty may
be decoupled from the recognition model itself, allowing flex-
ibility in the computational load. This paper describes a new
approach within this framework, Joint uncertainty decoding.
This approach is compared with the uncertainty decoding ver-
sion of SPLICE, standard SPLICE, and a new form of front-
end CMLLR. These are evaluated on a medium vocabulary
speech recognition task with artificially added noise.

1. Introduction
It is well known that speech recognition performance degrades
in the presence of environmental noise. When models trained
in clean conditions are used in the real world, the mismatch
between the training conditions and the test causes significant
loss in recognition accuracy. Two approaches to improving
noise robustness are feature-based and model-based compen-
sation schemes. In feature-based schemes an estimate of the
clean speech is made using a noise-model, or representation of
the effects of the noise on the speech. SPLICE [1] is one re-
cent example of this approach. Alternatively in model-based
approaches, the parameters of the system are altered to reflect
speech in the new acoustic environment. Examples in this class
include Parallel Model Combination (PMC) [2] and Vector Tay-
lor Series (VTS) compensation [3]. Model-based approaches
often yield better performance than feature-based compensa-
tion schemes, especially in low SNR conditions, or in complex
recognition tasks. However model-based schemes are usually
more computationally expensive, especially if the acoustic en-
vironment is rapidly changing. Recently an elegant compromise
between the two schemes, uncertainty decoding, has been pro-
posed [4]. This approach allows the uncertainty of features to
be propagated to the recogniser in a mathematically consistent
fashion. The complexity of the model used to determine the un-
certainty may be decoupled from the recognition model itself,
allowing flexibility in the computational load associated with
the scheme. This approach has been used to give a version of
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the SPLICE algorithm incorporating uncertainty [5].
In this paper an alternative implementation within the un-

certainty decoding framework is presented, Joint uncertainty
decoding. This new approach is compared to both the stan-
dard and uncertainty versions of SPLICE. In addition, the ap-
proach is contrasted with constrained MLLR [6] as the resultant
compensation may be viewed as an extended version of a linear
feature-space transformation. These schemes are evaluated on
a medium vocabulary speech recognition task with artificially
added noise.

2. Uncertainty Decoding Framework
The effects of environmental noise can be represented in a dy-
namic Bayesian network as shown in figure 1. Here, the noise
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Figure 1: Uncertainty Decoding DBN

corrupted speech observation yt at time t is assumed to be con-
ditionally independent of all other observations given the clean
speech xt and the noise nt at that time. The clean speech and
noise are assumed to be generated by HMMs with states θn

t for
the noise1 and θt for the clean speech. Under these assumptions
the likelihood of the corrupted observation may be expressed as

p(yt|M,M̌, θt) =

Z

p(yt|xt,M̌)p(xt|M, θt)dxt (1)

where

p(yt|xt, M̌) =

Z

p(yt|xt, nt)p(nt|M̌, θ
n
t )dnt (2)

and M̌ the front-end compensation model. The acoustic model
M consists of Gaussian components each defined by a prior,
cm, mean, µ(m), and variance, Σ

(m). The likelihood calcula-
tion thus has two distinct parts. Only the first, p(yt|xt,M̌), is a
function of the noise. Equation 1 does not depend on the noise
given the form of p(yt|xt,M̌). Uncertainty decoding takes
advantage of this factorisation by using an appropriate form of
approximation for the conditional distribution of the corrupted
speech given the clean speech for a particular noise environ-
ment. As the complexity of this approximation may be inde-
pendent of the complexity of the actual acoustic models, there

1A single state is assumed for the noise model in this paper.



is a large degree of flexibility in choosing the computational
cost of the decoding process.

An example of using uncertainty decoding is the uncer-
tainty version of SPLICE [5]. An N -component Gaussian Mix-
ture Model (GMM) is used to approximate the conditional dis-
tribution. Equation 2 is re-written using Bayes’ rule as
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where the parameters associated with component šn, are the
prior, čn, and µ̌

(n)
i and σ̌

(n)2
i , the mean and variance of di-

mension i of (xt − yt) given the GMM component. Directly
marginalising this form of conditional distribution is highly
complex. Hence the GMM in the denominator is approximated
by a single Gaussian component with the parameters µ̄x and
Σ̄x. This yields the following form of the conditional corrupted
speech posterior for a particular front-end component šn
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where f(yt, šn) is only a function of the corrupted observation
and uncertainty model component [7] and the diagonal matrix
A(n), bias vector b(n) and variance offset Σ(n)

b
are given by
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for dimension i. Due to the approximation for the GMM in the
denominator of equation 3, the denominator in the estimation
of a

(n)
ii can go negative. Flooring the denominator term avoids

this. To improve the efficiency, rather than summing over all
the components, only the most probable component šn∗ is com-
monly used, selected by the component posterior

šn∗ = arg max
šn
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With this simplification, the overall number of Gaussian eval-
uations during decoding remains unchanged, and the term
f(yt, šn) can be ignored since it now does not affect the recog-
nition results. After marginalising over the components, the
noise corrupted speech likelihood of equation 1 for state θt, is
given by

p(yt|M,M̌, θt) ∝ (8)
X

m∈θt
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where the marginalisation of the two Gaussian distributions
simplifies to a single Gaussian. One problem is that the cost
of applying the variance bias is a function of the complexity of
the acoustic model, M, rather than the uncertainty model, M̌.
However for a diagonal variance bias, this cost is small.

3. Joint Uncertainty Decoding
The approach taken in this paper is to again approximate the
conditional distribution in equation 2 with a GMM, but use the
GMM directly. Now

p(yt|xt,M̌) ≈
N
X

n=1

P (šn|xt,M̌)p(yt|xt,M̌, šn) (9)

With this form of the conditional, two main issues arise: the
component posterior P (šn|xt,M̌) is a function of the clean
speech, not the corrupted observation; and the form that the
component compensation parameters p(yt|xt, šn,M̌) should
take.

In this work a simple approximation is used for the compo-
nent posterior given the “clean” speech. Here

P (šn|xt,M̌) ≈ P (šn|yt,M̌) (10)

where the model M̌ is now matched to the test condition rather
than the clean speech. This decouples the front-end distribution
from being dependent on the acoustic model through the clean
speech variable xt. However, the conditional distribution may
change significantly over the clean speech integral. Thus using
the same front-end distribution for every clean acoustic model
Gaussian is not optimal.

The parameters of the conditional distribution given the
front-end model component, šn, are determined from the joint
distribution of the clean and corrupted speech. This joint distri-
bution is assumed to be Gaussian, hence for component šn
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The conditional distribution will therefore also be Gaussian.
When this form is used in the uncertainty decoding framework,
the conditional likelihood of the corrupted speech observation
has the same form as equation 4, but the parameters are now
given by
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and the normalisation term f(yt, šn) is simply |A(n)|. As
the form of the conditional distribution is the same as that of
SPLICE the final decoding likelihood, again using only the
component with the largest posterior, has the same form as
equation 8. However, in contrast to SPLICE where the form
of the bias vector, given in equation 5, means that the variance
bias term and the feature transform are diagonal, the transform
and bias for Joint may be full. Though a full transformation
of the features may be efficiently applied, the resultant covari-
ance matrix for every component in the decoding system will
be full. This will dramatically increase the computational load.
The variance bias, Σ

(n)
b

, may be restricted to be diagonal, or
block-diagonal, by requiring that each block of the joint covari-
ance matrix in equation 11 is diagonal, or block-diagonal.

It is interesting to compare this form of uncertainty decod-
ing with SPLICE. In SPLICE the denominator in equation 3
is approximated by a single Gaussian component. This simpli-
fied the marginalisation, but requires the setting of a floor on the
transform scaling to ensure that the variance was positive def-
inite. In contrast the Joint distribution does not require this
approximation, but assumes that the posteriors of the clean data
can be approximated by the posteriors of the corrupted speech.
It is also possible to relate the two forms of compensation pa-
rameters. For example the variance for the SPLICE scheme
may be expressed in terms of the joint distribution parameters
in equation 11 as

Σ̌
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= Σ
(n)
y + Σ

(n)
x − Σ

(n)
xy −Σ

(n)
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4. Model-based Uncertainty Decoding
It is interesting to note that the final likelihood expression for
both the SPLICE and Joint uncertainty decoding, equation 8,
is similar to constrained MLLR [6]. The standard form of the
CMLLR likelihood calculation is given by

p(yt|θt,M,M̌) = (14)
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where rm indicates the transform-class that acoustic model
component m is assigned to and M̌ now denotes the model
compensation parameters. There are some interesting differ-
ences between the uncertainty decoding, equation 8, and equa-
tion 14. First, the transform is estimated using the differences
between the clean speech and noise corrupted speech, rather
than maximum likelihood training. Second, there is a bias ap-
plied on the variances. This increases the compensation cost,
but can yield improved recognition performance in noise, as
discussed in section 6. The final difference is that the transform
is determined by the component with the greatest posterior in
the front-end. CMLLR is normally implemented by associat-
ing transforms with components of the system. The first two
differences are fundamental to the different forms of compen-
sation. The final difference motivates a modification to both the
CMLLR scheme and the Joint uncertainty decoding scheme.

Instead of estimating joint distributions and transforms per
region of the acoustic space partitioned by a front-end GMM,
they could be trained for each transform class in a similar fash-
ion to CMLLR. For example, rather than estimate Σxy for a
component šn, it is found for each transform class rm

Σ
(rm)
xy =

P

m∈rm
γm(t)xty

T

t
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m∈rm
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− µ
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x µ

(rm)T
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where γm(t) is the component posterior at time instance t. The
joint mean, [µ(rm)T

x µ(rm)T
y ]T, and other covariance terms can

be similarly obtained. It is now possible to estimate a Joint
uncertainty decoding transform for each transform class. This
has the advantage that the posterior approximation in equa-
tion 10 is unnecessary. Also, for standard uncertainty decod-
ing, as the front-end component changes, a new variance bias
must be applied to each acoustic model component. This is not
necessary in this transform class approach. However the dis-
advantage, in the same fashion as CMLLR, is that at each time
instance multiple transformed feature-spaces are required, each
with a different normalisation term |A(rm)|. This approach will
be referred to as model-based Joint uncertainty decoding.

5. Front-end CMLLR
As it is useful to compare the uncertainty decoding schemes to
approaches such as CMLLR, CMLLR can be modified to use
a GMM front-end selection process. This is simply achieved
by associating a single CMLLR transform with each front-end
component šn. These transforms can be estimated using a
slightly modified version of the training algorithm described
in [6]. For example, to accumulate the sufficient statistic G

(in)

the accumulation is modified to

G
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t,m
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where ζt is the extended observation vector [1 yT

t ]T. A similar
expression can be obtained for k

(in). Compared to standard

CMLLR this has the advantage that only a single transform is
active at each time instance. This form of transform will be
referred to as Front-end CMLLR (FE-CMLLR).

6. Results
This section describes preliminary results comparing the vari-
ous schemes described in this paper. For this work, noise was
artificially added to a medium vocabulary speech recognition
task, the 1000 word Resource Management (RM) database. Op-
erations Room noise from the NOISEX-92 database was added
at the waveform level. Though this task is artificial and is ex-
pected to yield better performance than would be obtained on
realistic data, it allows a comparison of the various techniques
in a highly controlled fashion. RM was used as a speaker in-
dependent task which consists of 109 training speakers reading
3990 sentences of prompted script totalling 3.8 hours. All re-
sults are quoted as an average of three of the four available test
sets, Feb’89, Oct’89 and Feb’91. This gives a total of 30
test speakers and 900 utterances. State-clustered triphone mod-
els were built using the standard RM recipe in the alpha version
of HTK 3.3. The standard front-end, MFCC plus normalised
energy with delta and delta-delta parameters, were used for all
experiments. A range of noise SNRs from 32 dB to 8dB were
examined, however the results are only quoted at 20dB SNR.
For further details of other SNRs see [7].

The RM database was selected for evaluation, rather than,
for example, the small vocabulary AURORA digit string recog-
nition task, because uncertainty decoding is expected to be more
important on more complex tasks. To verify the performance
of the SPLICE implementations, both standard and with un-
certainty, the code was run on AURORA giving similar per-
formance to that in [5], where only relatively small gains from
uncertainty decoding were obtained.

The GMMs for the front-end uncertainty models were
trained using iterative mixture splitting on the clean speech data.
The compensation parameters, either those associated with un-
certainty decoding or the CMLLR transforms, were estimated
using stereo data for the specific noise condition. This allows
the techniques to be assessed without having to consider inaccu-
racies that result from the noise estimation process, or approx-
imations in the mismatch function. In practical situations the
compensation parameters can be estimated using PMC or VTS
style schemes. This is discussed in more detail in [7].

6.1. Feature-based Compensation

Initially feature-based compensation was evaluated. All these
schemes use a GMM in the front-end to determine the appro-
priate component for the compensation scheme. Only diagonal
versions of the FE-CMLLR and Joint schemes were assessed.

System
With # Front-end Components

Uncertainty 1 4 16 256

Clean — 33.2

SPLICE
No

24.6 20.7 17.0 12.3
FE-CMLLR 16.3 15.3 12.8 13.5

SPLICE
Yes

11.4 12.4 12.2 9.9
Joint 10.7 9.2 9.8 8.2

Matched — 7.2

Table 1: Feature-based compensation WER (%) at 20dB SNR



Table 1 shows the performance of the various schemes
against the number of components in the front-end GMM. As
expected the matched scheme, generated using single-pass re-
training [2], significantly out-performed the standard clean sys-
tem. This matched system, the “perfect” model-based ap-
proach2, is the baseline number for experiments. For reference,
the error rate on clean uncorrupted data was 3.3%, demonstrat-
ing the considerable confusability that results from the addi-
tion of noise where the error rate was more than doubled to
7.2%. The two schemes with no uncertainty decoding, standard
SPLICE and FE-CMLLR, both gave reasonable gains over the
baseline, clean, system. However further large reductions in
WER are achieved by using SPLICE with uncertainty or the
Joint approach. Using a single component front-end with ei-
ther scheme was better than the best non-uncertainty decoding
approach. This is interesting since it illustrates the importance
of incorporating the variance bias term to allow some frames
to be effectively de-weighted. Comparing the SPLICE and
Joint uncertainty schemes, Joint appears to be better with
fewer components, but with 256 components the performance
of the two is approximately the same. This may be explained
by the very simple posterior approximation used in the Joint
scheme. The overall performance of the best scheme was still
about 2.0% absolute worse than the matched approach.

6.2. Model-based Joint Compensation

The Joint and CMLLR forms can also be applied in a model-
based manner. For these experiments the complexity of the
transforms was also varied to determine what effect the more
complex Joint transforms will yield.

System
Transform # Transform Classes
Structure 1 4 16

Clean — 33.2

CMLLR
Diagonal 16.3 14.6 10.3

Full 17.8 14.9 9.2

Model-Based Diagonal 10.7 9.8 8.4
Joint Full 10.4 8.0 7.4

Matched — 7.2

Table 2: Model-based compensation WER (%) at 20dB SNR

As expected, when using more complex, or additional trans-
forms the performance of the system generally improves. In
table 2 using 16 full CMLLR transforms yields an error rate
of 9.2%, the performance of the best front-end uncertainty
scheme. Note the performance of the standard model-based
CMLLR was generally better than the FE-CMLLR, though at
the additional computational expense of multiple input trans-
forms. Comparing the diagonal model-based Joint approach
with the front-end Joint scheme results in table 1, shows that
the model-based approach is better as the number of compo-
nents/transforms increases. This is not really surprising given
the posterior approximation used. Interestingly, using a full
model-based Joint approach consistently yielded the best per-
formance over all the schemes. Unfortunately, this scheme is
computationally very expensive for decoding as the variance
bias is a full matrix, bearing an overall computational cost of
a full covariance matrix system. The performance of the 16
transform full Joint system gave an error rate, 7.4%, that is
approximately the same as the matched system.

2This matched scheme can be improved upon, for example see [2].

One approach to reducing the computational load of the full
scheme would be to diagonalise the variance bias term. This
still gives a full transform, A, but an approximate diagonal vari-
ance bias, Σb. Unfortunately, using this simple approach pro-
duced poor performance with error rates of about 30%.

7. Conclusions
This paper has discussed the application of uncertainty decod-
ing to noise robust speech recognition. The framework allows
the uncertainty to be propagated from the front-end process into
the recognition search. Two forms of uncertainty decoding were
compared, the SPLICE formulation and a new Joint one.
Both schemes are based on the use of a GMM in the front-
end, though making very different approximations to allow for
efficient operation. In addition, a model-based version of the
Joint algorithm was briefly discussed along with a modified
version of CMLLR, FE-CMLLR. The performance of the var-
ious schemes was evaluated on an artificially noise corrupted
version of RM. As expected, the maximum likelihood trained
FE-CMLLR transforms performed better than MMSE SPLICE
at fewer numbers of front-end components. Uncertainty decod-
ing was found to be far more accurate than the front-end com-
pensation schemes SPLICE and FE-CMLLR. However, even
with a 256-component GMM in the front-end the best system
was still 2% worse than the matched system. The performance
of the model-based compensation schemes, where transforms
were associated with sets of recogniser components rather than
front-end components, were generally better than the equiva-
lent front-end scheme. Furthermore, using a full model-based
Joint transform gave an error rate approximately the same as
the matched scheme.

The experiments presented in this paper were artificial in
two ways: corrupted speech was simulated by adding noise to
clean speech and the compensation parameters were estimated
on stereo data. Future work will examine real found data, such
as broadcast news, and the application of schemes such as VTS
to determine the compensation parameters.
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