
ENGINEERING TRIPOS PART IIA

EXAMPLES PAPER - PATTERN PROCESSING - 2009-2010

1. Consider a data set of pairs of observations D = {(xn, yn)} where n =
1 . . . N and N is the total number of data points. Assume we want to
learn a regression model

yn = axn + εn

where εn is independent zero-mean Gaussian noise with variance σ2.

(a) Write down the log likelihood log p(y1, . . . yN |x1, . . . , xN , a, σ2) in
terms of y1, . . . yN , x1, . . . , xN , a, σ2.

(b) Assume the following data set of N = 4 pairs of points

D = {(0, 1), (1, 2), (2, 0), (3, 4)}.

Solve for the maximum likelihood estimates of a and σ2.

(c) Assume the same data set, but instead a regression model that
predicts x given y:

xn = byn + εn

Is the maximum likehood estimate of b = 1
a
? Explain why or why

not—derive if necessary.

Answer

1. (a)

log p(y1, . . . yN |x1, . . . , xN , a, σ2) =
N∑

n=1

log p(yn|xn, a, σ2)

= −N

2
log(2πσ2)− 1

2σ2

N∑
n=1

(yn − axn)2

(b) Solving for a reduces to minimising

(2− a)2 + (0− 2a)2 + (4− 3a)2

Taking derivatives

−2(2− a)− 4(0− 2a)− 6(4− 3a) = 0
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−4 + 2a + 8a− 24 + 18a = 0

therefore a = 1. Computing the average squared residuals for σ2.

σ2 =
1

4
[1 + 1 + 4 + 1] =

7

4

(c) No the ML estimate of b is not 1/a since errors are being measured
in x now. In fact, minimising (0−b)2+(1−2b)2+(2−0b)2+(3−4b)2

we get 42b = 28, so b = 2/3.

2. Consider the k-means clustering algorithm which seeks to minimise the
cost function

C =
N∑

n=1

K∑
k=1

snk‖xn −mk‖2

where mk is the mean (centre) of cluster k, xn is data point n, snk = 1
signifies that data point n is assigned to cluster k, and there are N
data points and K clusters.

(a) Given all the assignments {snk}, derive the value of mk which
minimises the cost C and give an interpretation in terms of the
k-means algorithm.

Answer

Solve by taking derivatives and setting to zero.

∂C

∂mk

=
N∑

n=1

snk
∂

∂mk

(xn −mk)
>(xn −mk)

=
N∑

n=1

snk(−2xn + 2mk) = 0

mk =

∑N
n=1 snkxn∑N

n=1 snk

This equation can be interpreted as follows: mk is set to the mean
of the data points assigned to cluster k.

(b) Give a probabilistic interpretation of k-means and describe how
it can be generalised to unequal cluster sizes and non-spherical
(elongated) clusters as shown in Fig. 1 below.

Answer

K-means can be interpreted as an algorithm for fitting maximum
likelihood parameters toa mixture of Gaussians where each Gaus-
sian has spherically symmetric (i.e. isotropic) covariance matrix
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Figure 1:

σ2I and the Gaussians have equal proportions of data assigned to
them wk = 1/K for all k (from lecture notes).

To generalise to unequal cluster sizes we allow wk to vary, and to
allow for elongated clusters we allow the covariance matrices for
each Gaussian to vary and potentially be unequal.

(c) In many real-world applications, data points arrive sequentially
and one wants to cluster them as they come in. Devise a se-
quential variant of the k-means algorithm which takes in one data
point at a time and updates the means {m1, . . . ,mK} sequentially
without revisiting previous data points. Describe your sequential
algorithm.

Answer

There are many possible answers, but here is one sequential vari-
ant of k-means:

• Assign the first K data points to the K clusters, and set
mk = xk, and nk = 1 (the number of points in cluster k).

• For each subsequent data point, xn find the closest cluster
centre, say mk. Assign to this cluster and set:

mk ←
nk

nk + 1
mk +

1

nk + 1
xn

nk ← nk + 1

This algorithm has the property that mk will always be the mean
of all the data points assigned to it. One problem with this algo-
rithm is that it is very senstitive to the first K points that arrive.
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OTHER QUESTIONS
These questions are not meant to be in the same format as exam ques-

tions, but they should help you study and understand the material.

1. Is clustering a supervised or unsupervised learning problem? What
about classification?

2. Describe what we mean by overfitting and underfitting in the context
of polynomial regression? How about in the context of clustering?

3. Prove that P (X = x, Y = y) ≤ P (X = x).

4. Prove that the entropy H(X) ≥ 0. Describe distributions for which
H(X) = 0.

5. For each of the distribtions in lecture 1, what is the mean, variance,
and entropy?

6. If x is multivariate Gaussian with mean µ and covariance matrix Σ
and y is independent of x and multivariate Gaussian with mean m and
covariance matrix S, what is distribution of z = x− y ?

7. Prove that multivariate Gaussians are closed under linear transforma-
tions. That is, if x is a D-dimensional Gaussian, then so is y = Ax
where A is a K ×D matrix. Comment on what happens depending on
the rank of A.

8. Show that the contours of equal probability for a multivariate Gaussian
are ellipses.

9. Derive the maximum likelihood equations presented in Lecture 2 for
linear regression.

10. Consider polynomial regression with parameters β. Assume a prior
p(β) is Gaussian with mean 0 and variance λI where I is the identity
matrix. How does the maximum likelihood estimate of β compare to
the MAP estimate, and what is the effect of λ on the MAP estimate?

11. Consider classification as described in Lecture 3, but with the following
model

y(n) = H
(
β>x̃(n) + εn

)
where εn is Gaussian with mean 0 and variance σ2. Compute the prob-
ability

P (y(n) = 1|x̃(n), β, σ)

in terms of the Gaussian cumulative distribution.
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12. Consider the function y = x2 +sin(4x)+ log(1+x2). Plot this function
in Matlab or Octave for values of x in the interval (−3, 3). Write
an iterative algorithm for finding the value of x which minimizes y.
Starting at any point x0 this algorithm takes small steps in the direction
which decreases y:

xt+1 = xt − η
dy

dxt

Discuss what happens for very small η and very large η. Comment
on what we might mean by the concept of local optimum and global
optimum.

13. Implement the online logistic classification learning rule in Matlab/Octave
and play with it to see who it works. How does the learning rate affect
the algorithm.

14. Implement the K-means algorithm. Play with different ways of initial-
izing the means, and different values of K.

15. Prove that each step of K-means decreases the step the cost function
C described in Lecture 4.

16. How would you choose K?

17. What happens if you run K means with K = 2 on data from two clusters
of very unequal size (e.g. 10 points and 100 points)? How would you
generalize the K-means algorithm to handle clusters of unequal size?

18. What happens if you run K means on data from two very elongated
elliptical clusters as shown below? How would you generalize the K-
means algorithm to handle elongated clusters?
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SHORT ANSWERS TO SELECTED OTHER QUESTIONS

1. Clustering is unsupervised because cluster labels are not given to the
algorithm. Classification is supervised since labels are given.

2. Overfitting: fitting a polynomial which is higher order than warranted,
for example if the data came from a quadratic, fitting a 5th order
polynomial. In general generalisation will be poor because details of
the noise will be fit assuming it’s real structure in the data. Underfitting
is the opposite: for example if the algorithm fits a linear function when
a quadratic would give better predictions. For clustering this might
correspond to fitting too many (overfitting) or too few (underfitting)
clusters.

3. P (X = x) =
∑

y′ P (X = x, Y = y′) ≥ P (X = x, Y = y) since all terms
are non-negative.

4. H(X) = −
∑

x P (x) log P (x). Since P (x) ≤ 1 for all x then each log
term in the average is non-positive, averaging and negating we get a
non-negative entropy for discrete variables. If H(X) = 0 then there is
no uncertainty in the distribution of X therefore one value has all the
probability mass.

5. answers can be found online.

6. Gaussian with mean µ−m and covariance Σ + S.

7. Proof follows from plugging into expression for multivariate Gaussian,
rearraging terms, and finding that the result is also multivariate Gaus-
sian. Results from the rules of transformation of variables. The rank
of A will affect whether the resulting covariance of y is singular or not.

8. Follows from general definition of ellipses.

9. This was done in lectures.

10.

11.

12.

13.

14.
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15.

16. How to appropriately choose K is in general a tricky questions debated
by researchers. Perhaps the most elegant coherent answer is to consider
K-means a form of mixture modelling and to do Bayesian inference on
K given the data.

17. In general you might find the small cluster “stealing” points from the
bigger one so they are more equal in size. The solution is to model the
cluster size explicitly which can be done in a mixture model (with EM
– discussed in greater detail in 4F10 and 4F13).

18. The clusters might split the data horizontally instead of the desired
vertical split. Again the solution is to model the cluster covariance
matrix explicitly in a mixture model. See also the discussion of K-
means in David MacKay’s textbook.
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