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Classification

We will represent data by vectors in some vector space.

Let x denote a data point with elements x = (21, x2,...,Zp)

The elements of x, e.g. x4, represent measured (observed) features of the data point; D
denotes the number of measured features of each point.

The data set D consists of N pairs of data points and corresponding discrete class labels:
D ={(xW,yW)..., (x"N), y")}

where y(™ € {1,...,C} and C is the number of classes.
The goal is to classify new inputs correctly (i.e. to generalize).

! X Examples:
X X ® spam VS non-spam
X XX
X e normal vs disease
X XX
e Ovslvs2vs3..vsO




3 classes, 4 numeric attributes, 150 instances
A data set with 150 points and 3 classes. Each point is a random sample of \
measurements of flowers from one of three iris species—setosa, versicolor,

and virginica—collected by Anderson (1935). Used by Fisher (1936) for 7’

linear discrimant function technique.

Classification: Example lris Dataset

The measurements are sepal length, sepal
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Linear Classification

Data set D:
D= {(x",yM) ..., (xM, y "))}

(1)
Assume y(™) € {0,1} (i.e. two classes) and x(™) € RP, and let x(") = ( Xl )

Linear Classification (Deterministic)
g™ = [ <5T)~{<n>)

1 fz>0

. is known as the Heaviside, threshold, or step function.
0 ifz<0

where H (z) = {



Linear Classification

Data set D:
D= {(x",yM) ..., (xM, y "))}

(1)
Assume y(™) € {0,1} (i.e. two classes) and x(™) € RP, and let x(") = ( Xl )

Linear Classification (Probabilistic)

P = 180, 5) = o (575)

Logistic Function

where o(-) is a monotonic increasing function
o: R —10,1].

For example if o(z) is o(z) = 1+6X;(_Z), the

sigmoid or logistic function, this is called logistic
regression. Compare this to...

Linear Regression

™ = gTx(m L ¢



Logistic Classification’

Data set: D = {(xM),yM) .. (x(NV) 4N}

P(y(n) — 1’5((71)75) — (5T}~((n)>
Py™ =0%™.8) = 1-Pu™ =1%x™,8) =0 (_ﬁri(n))
Since o(z) = 1+ex§)(_z), note that 1 — o(2) = o(—2).

This defines a Bernoulli distribution over y at each point x. (cf 8Y(1 — 9)(1_y))

The likelihood for S is:

P(y|X,p) = HP(y(”)\fi(”),ﬁ) = ngT}z(n))y(")(l _ O.(ﬁ—ri(n)))(l—y(n))

n

Given the data, this is just some function of 5 which we can optimize...

I This is usually called “Logistic Regression” but it's really solving a classification problem, so I'm going to correct this misnomer.



Logistic Classification

Maximum Likelihood learning:

L(B) = WmPyX,5)=> InPy™x",p)

_ Z {y(n) Ino(8T%™) + (1 — y™) lng(_BTi(n))}

0ln O'(z)
0z

Taking derivatives, using = 0(—=2), and defining z, det BT we get:

oL i - -
# - Z _y(n)a(_zn)x(n) —(1- y(n))a(zn)x(m}

n

— Z y<”)0(—zn)>~c<”)—|—y(”>a(z) (n)_o.( ) (n)j|

n

= Z( ) — o (z,))x™

n

Intuition?



Logistic Classification

The gradient: OL(SB) o n
W:;(y( )_U( )) ()

A learning rule (steepest gradient ascent in the likelihood):

0L (")

[t+1] _ gli]
B _5'+"am]

where 1) is a learning rate
Which gives: gl — gl 4 772 (n) o (M)
This is a batch learning rule, since all N pomts are considered at once.
An online learning rule, can consider one data point at a time...
B = g 4 n(y™ — o ()%
This is useful for real-time learning and adaptation applications.

One can also use any standard optimizer (e.g. conjugate gradients, Newton's method).



Logistic Classification

Demo of the online logistic classification learning rule:

gl = gl 4 (y® — 5(2,))x®
where 2z, = Bl Tx(®).

lrdemo



Maximum a Posteriori (MAP) and Bayesian Learning

MAP: Assume we define a prior on 3, for example a Gaussian prior with variance \:

1
V2m AP+l

The instead of maximizing the likelihood we can maximize the posterior probability of 5

P(B) =

eXp{—%ﬁTﬁ}

In P(5|D) In P(D|B) + In P(3) 4 const

= L(B) — %ﬁTﬁ + const’

The second term penalizes the length of 5.

Why would we want to do this?

Bayesian Learning: We can also do Bayesian learning of 5 by trying to compute or
approximate P(3|D) rather than optimize it.



Nonlinear Logistic Classification

Easy: just map the inputs into a higher dimensional space by computing some nonlinear
functions of the inputs. For example:

(371, C132) — (xla L2y L1L2, x%? x%)

Then do logistic classification using these new inputs.

3

nlrdemo



Multinomial Classification

How do we do multiple classes?

yed{l,...,C}

Answer: Use a softmax function which generalizes the logistic function:

Each class ¢ has a vector (3.

exp{ 3. x}
> exp{B]x}

Py =c|x,8) =



Some exercises

. show how using the softmax function is equivalent to doing logistic classification when

C =2
. implement the online logistic classification rule in Matlab/Octave.
. implement the nonlinear extension.

. Investigate what happens when the classes are well separated, and what role the prior
has in MAP learning.



