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Dimensionality Reduction

Given some data, the goal is to discover and model the intrinsic dimensions of the data,
and/or to project high dimensional data onto a lower number of dimensions that preserve
the relevant information.

in close second. However, the variance of correlation dimension is much higher
than that of the MLE (the SD is at least 10 times higher for all dimensions). The
regression estimator, on the other hand, has relatively low variance (though always
higher than the MLE) but the largest negative bias. On the balance of bias and
variance, MLE is clearly the best choice.

Figure 3: Two image datasets: hand rotation and Isomap faces (example images).

Table 1: Estimated dimensions for popular manifold datasets. For the Swiss roll,
the table gives mean(SD) over 1000 uniform samples.

Dataset Data dim. Sample size MLE Regression Corr. dim.
Swiss roll 3 1000 2.1(0.02) 1.8(0.03) 2.0(0.24)
Faces 64 × 64 698 4.3 4.0 3.5
Hands 480 × 512 481 3.1 2.5 3.91

Finally, we compare the estimators on three popular manifold datasets (Table 1):
the Swiss roll, and two image datasets shown on Fig. 3: the Isomap face database2,
and the hand rotation sequence3 used in [14]. For the Swiss roll, the MLE again
provides the best combination of bias and variance.

The face database consists of images of an artificial face under three changing con-
ditions: illumination, and vertical and horizontal orientation. Hence the intrinsic
dimension of the dataset should be 3, but only if we had the full 3-d images of the
face. All we have, however, are 2-d projections of the face, and it is clear that one
needs more than one “basis” image to represent different poses (from casual inspec-
tion, front view and profile seem sufficient). The estimated dimension of about 4 is
therefore very reasonable.

The hand image data is a real video sequence of a hand rotating along a 1-d curve in
space, but again several basis 2-d images are needed to represent different poses (in
this case, front, back, and profile seem sufficient). The estimated dimension around
3 therefore seems reasonable. We note that the correlation dimension provides two
completely different answers for this dataset, depending on which linear part of the
curve is used; this is further evidence of its high variance, which makes it a less
reliable estimate that the MLE.

5 Discussion

In this paper, we have derived a maximum likelihood estimator of intrinsic dimen-
sion and some asymptotic approximations to its bias and variance. We have shown

1This estimate is obtained from the range 500...1000. For this dataset, the correlation
dimension curve has two distinct linear parts, with the first part over the range we would
normally use, 10...100, producing dimension 19.7, which is clearly unreasonable.

2http://isomap.stanford.edu/datasets.html
3http://vasc.ri.cmu.edu//idb/html/motion/hand/index.html
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Principal Components Analysis (PCA)

Data Set D = {x1, . . . ,xN} where xn ∈ <D

Assume that the data is zero mean, 1
N

∑
n xn = 0.

Principal Components Analysis (PCA) is a linear dimensionality reduction method which
finds the linear projection(s) of the data which:

• maximise variance

• minimise squared reconstruction error

• have highest mutual information with the data under a Gaussian model

• are maximum likelihood parameters under a linear Gaussian factor model of the data



PCA: Direction of Maximum Variance

Let y = w>x. Find w such that var(y) is maximised for the data set D = {x1, . . . ,xN}.
Since D is assumed zero mean, ED(y) = 0. Using yn = w>xn we optimise:

w∗ = arg max
w

var(y) = arg max
w

ED(y2) = arg max
w
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xnxn
>

)
w = w>Cw

where C = 1
N

∑
n xnxn

> is the data covariance matrix. Clearly arbitrarily increasing the
magnitude of w will increase var(y), so we will restrict outselves to directions w with unit
norm, ‖w‖2 = w>w = 1. Using a Lagrange multiplier λ to enforce this constraint:

w∗ = arg max
w

w>Cw − λ(w>w − 1)

Solution w∗ is the eigenvector with maximal eigenvalue of covariance matrix C.



Eigenvalues and Eigenvectors

λ is an eigenvalue and z is an eigenvector of A if:

Az = λz

and z is a unit vector (z>z = 1).

Interpretation: the operation of A in direction z is a scaling by λ.

The K Principal Components are the K eigenvectors with the largest eigenvalues of the
data covariance matrix (i.e. K directions with the largest variance).

Note: C can be decomposed:
C = USU>

where S is diag(σ2
1, . . . , σ

2
D) and U is a an orthonormal matrix.



PCA: Minimising Squared Reconstruction Error

Solve the following minimum reconstruction error problem:

min
{αn},w

‖xn − αnw‖2

Solving for αn holding w fixed gives:

αn =
w>xn
w>w

Note if we rescale w to βw and αn to αn/β we get equivalent solutions, so there won’t be
a unique minimum. Let’s constrain ‖w‖ = 1 which implies w>w = 1. Plugging αn into
the original cost we get:

min
w

∑
n

‖xn − (w>xn)w‖2

Expanding the quadratic, and adding the Lagrange multiplier, the solution is again:

w∗ = arg max
w

w>Cw − λ(w>w − 1)



PCA: Maximising Mutual Information

Problem: Given x and assuming that P (x) is zero mean Gaussian, find y = w>x, with w
a unit vector, such that the mutual information I(x; y) is maximised.

I(x; y) = H(x) +H(y)−H(x, y) = H(y)

So we want to maximise the entropy of y. What is the entropy of a Gaussian?

H(z) = −
∫
dz p(z) ln p(z) =

1

2
ln |Σ|+ D

2
(1 + ln 2π)

Therefore we want the distribution of y to have largest variance (in the multidimensional
case, largest volume —i.e. det of covariance matrix).

w∗ = arg max
w

var(y) subject to ‖w‖ = 1



Principal Components Analysis

The full multivariate case of PCA finds a sequence of K orthogonal directions
w1,w2, . . .wK.

Here w1 is the eigenvector with largest eigenvalue of C, w2 is the eigenvector with second
largest eigenvalue, etc.



Example of PCA: Eigenfaces

from www-white.media.mit.edu/vismod/demos/facerec/basic.html



Nonlinear and Kernel PCA

There are many different ways of generalising PCA to find nonlinear directions of variation
in the data.

A simple example (very similar to what we did with regression and classification!) is to
map the data in some nonlinear way,

x→ φ(x)

and then do PCA on the {φ(x1) . . .φ(xN)} vectors.

This is sometimes called “kernel PCA” since it can be completely defined in terms of
the kernel functions K(xn,xm) = φ(xn)>φ(xm), or alternatively in terms of a similarity
metric on the inputs.



Summary

We have covered four key topics in machine learning and pattern recognition:

• Classification

• Regression

• Clustering

• Dimensionality Reduction

In each case, we see that these methods can be viewed as building probabilistic models of
the data. We can start from simple linear models and build up to nonlinear models.



Appendix: Information, Probability and Entropy

Information is the reduction of uncertainty. How do we measure uncertainty?

Some axioms (informal):

• if something is certain its uncertainty = 0

• uncertainty should be maximum if all choices are equally probable

• uncertainty (information) should add for independent sources

This leads to a discrete random variable X having uncertainty equal to the entropy function:

H(X) = −
∑
x∈X

P (X = x) logP (X = x)

measured in bits (binary digits) if the base 2 logarithm is used or nats (natural digits) if
the natural (base e) logarithm is used.



Appendix: Information, Probability and Entropy

• Surprise (for event X = x): − logP (X = x)

• Entropy = average surprise: H(X) = −∑x∈X P (X = x) log2P (X = x)

• Conditional entropy

H(X|Y ) = −
∑
x

∑
y

P (x, y) log2P (x|y)

• Mutual information

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y )

• Independent random variables: P (x, y) = P (x)P (y)∀x ∀y


