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Graphical Models

Graphical models have their origin in several areas of re-
search. They are a union of graph theory and probability the-
ory. They are a useful framework for representing, reasoning
with and learning complex problems.

The techniques are useful for multivariate (multiple variable)
probabilistic systems and encompass many standard schemes,
for example

• mixture models;

• factor analysis;

• hidden Markov models;

• Kalman filters

This, and the next, lecture will look at the basics of graphi-
cal models. In particular a specific form of graphical model,
Bayesian networks will be examined.
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Basic Probability Revisited (again)

These lectures will make extensive use of the following stan-
dard probability concepts:

• discrete random variables: one of a possible set of events
occurs (e.g. rolling a die). Associated probability mass
function satisfies

∑

A
P (A) = 1; P (A) ≥ 0

• continuous random variables: the RV can take any value
within a, possibly, infinite, range. Associated probability
density function satisfies

∫
p(A)dA = 1; p(A) ≥ 0

• joint probability P (A,B)

• joint independence P (A,B) = P (A)P (B)

• conditional probability P (A|B)

• Bayes’ rule

P (A|B) =
P (A)P (B|A)

P (B)

• marginal probability

P (A) =
∑

B
P (A,B)

where the summation is over all possible values of B.
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Basic Notation

A graph consists of a collection of nodes and edges.

• Nodes, or vertices, are usually associated with the vari-
ables (some of which may not be observed, or latent).

• Edges connect nodes to one another.

The absence of an edge between two nodes indicates condi-
tional independence. The graphical model can be consid-
ered as representing dependencies in the system. This will
discussed in more detail later.

C

E D

F

A B

Here there are 6 nodes, {A,B,C, D,E, F} and 7 edges.
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Further Notation

In this work we will consider collections of nodes. So us-
ing the graph from the previous slide as an example, we can
consider

C1 = {A,B,C,D}; C2 = {A,D, E, F}
Various operations can then be performed. For example

• the union of two sets

S = C1 ∪ C2 = {A,B, C, D,E, F}

• the intersection of the two sets

S = C1 ∩ C2 = {A,D}

• removing elements from a set

C1 \ S = {B, C}
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Conditional Independence

One of the fundamental aspects of graphical models is the
concept of conditional independence.
Consider three variables, A, B and C. We can write

P (A,B, C) = P (A)P (B|A)P (C|B, A)

If C is conditionally independent of A given B, then we can
write

P (A,B, C) = P (A)P (B|A)P (C|B)

The value of A does not affect the distribution of C if B is
known.

Graphically this can be described as

A B C

Conditional independence is very important when modelling
highly complex systems.

Consider the case above where each of A, B and C can take
one of 3 values, {−1, 0, 1}. Modelling the complete joint dis-
tribution requires 33 − 1 = 26 parameters. Using the condi-
tional independence above requires 32 + 32 − 2 = 16 parame-
ters.
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Bayesian Networks

In these lectures only Bayesian networks will be considered.
They are a special case of graphical models, directed acyclic
graphs (DAGs):

• directed: all connections have arrows associated with them;

• acyclic: following the arrows around it is not possible to
complete a loop

The main problems with BNs are:

• inference (from observations ‘‘it’s cloudy’’ infer the
probability of the wet grass).

• training the models;

• determining the structure of the network (i.e. what is
connected to what)

The first two issues will be addressed in these lectures.

The final problem of determining the appropriate structure
is an area of on-going research.
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Observed and Unobserved Variables

In general the variables (nodes) may be split into two groups:

• observed variables are the ones we have knowledge about.

• unobserved variables are ones we don’t know about and
therefore have to infer the probability.

We need to find efficient algorithms that allow rapid infer-
ence to be made. Preferably a very general scheme that will
allow inference over any Bayesian network.

First three basic structures are described and the effects of
observing one of the variables on them are described.
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Standard Structures

• Structure 1

A BA C B C

If C is not observed

P (A,B) =
∑

C
P (A,B, C) = P (A)

∑

C
P (C|A)P (B|C)

then A and B are dependent on each other.

If C is observed (indicated by the shading) then

P (A,B|C) = P (A)P (B|C)

A and B are then independent. The path is sometimes
called blocked.

• Structure 2

C

A B A B

C

If C is not observed

P (A,B) =
∑

C
P (A,B,C) =

∑

C
P (C)P (A|C)P (B|C)

then A and B are dependent on each other.

If C is observed then

P (A,B|C) = P (A|C)P (B|C)

A and B are then independent.
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Standard Structures (cont)

• Structure 3

A

C

B A

C

B

If C is not observed

P (A,B) =
∑

C
P (A,B,C)

=
∑

C
P (C|A,B)P (A)P (B)

= P (A)P (B)
∑

C
P (C|A,B)

= P (A)P (B)

A and B are independent of each other.

If C is observed

P (A,B|C) =
P (A,B,C)

P (C)

=
P (C|A,B)P (A)P (B)

P (C)

A and B are not independent of each other if C is ob-
served.

This phenomenom that two varibles are dependent if a
common child is observed is sometimes called explaining
away



10 Engineering Part IIB & EIST Part II: 4F10 Statistical Pattern Processing

Simple Example

Consider the following Bayesian network

Cloudy

Wet Grass

Sprinkler Rain
C  P(S=T)
T     0.1
F     0.5

S  R   P(W=T)
T  T      0.99

F  T      0.90
F  F      0.00

T  F      0.90

C  P(R=T)
T     0.8
F     0.1

P(C=T) = 0.8

Whether the grass is wet, W , depends on whether the sprin-
kler has been used, S, or whether it has rained, R. Whether
the sprinkler is used depends on whether it is cloudy, simi-
larly for whether it has rained.

The probability of the grass being wet is conditionally in-
dependent of it being cloudy, given information about the
sprinklers and whether it has rained. This joint probability
may be expressed as

P (C, S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R)
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Inference Example

The basic task is given some observation infer the probability
of an event. So a question may be

It is cloudy, what’s the probability that the grass

is wet?

- so we want to compute P (W = T|C = T). (Note: for simplic-
ity of notation P (WT|CT) will be used for P (W = T|C = T).)

Re-expressing this request in terms of the joint probability

P (WT|CT) =
P (WT, CT)

P (CT)

The denominator is known (0.8). The numerator may ex-
pressed as a marginal distribution

P (WT, CT) =
∑

S

∑

R
P (WT, S, R, CT)

=
∑

S

∑

R
P (WT|S, R)P (S|CT)P (R|CT)P (CT)

where the summation are over the variable being T, or F.
From the simple example this is (note P (CT) has simply been
cancelled from the numerator and denominator)

P (WT|CT) = 0.99× 0.1× 0.8 + 0.90× 0.1× 0.2

+0.90× 0.9× 0.8 + 0.00× 0.9× 0.2

= 0.7452
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Message Passing for Trees

Rather than using the standard inference for the wet grass

example, it is useful to introduce message passing. The aim is
to convert the standard inference process into:

• local calculation on connected nodes;

• message passing between nodes;

To initially simplify the process only trees will be considered.
Here each node has only one parent.

A B

D

F

E

An example tree is given above.

For this example consider calculating P (F ). This can be writ-
ten as a marginal distribution. First we need to chose the
order to do the summations in. Pick (A,B, E, D).

P (F ) =
∑

D

∑

E

∑

B

∑

A
P (A,B,D, E, F )

=
∑

D
P (F |D)

∑

E
P (E|D)

∑

B
P (D|B)


∑

A
P (A)P (B|A)



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Single Variable Messages

The marginal probability can be calculated in terms of mes-
sages being passed between nodes, where the message con-
sists of information about the parent.

The message from node I to node J is written as φij(J). The
marginal probability can be written as:

P (F ) =
∑

D
P (F |D)

∑

E
P (E|D)


∑

B
P (D|B)φab(B)




=
∑

D
P (F |D)


∑

E
P (E|D)φbd(D)




=
∑

D
P (F |D)φbd(D)


∑

E
P (E|D)




=


∑

D
P (F |D)φbd(D)φed(D)




= φdf(F )

This can be summarised as
φ ab

A

D

E

F

B φbd

ed

φdf

φ

(B)

(D)

(D)

(F)

Note: φed(D) =
∑

E P (E|D) = 1

Inference can now be viewed in terms of local computation
and routing of messages.
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Observed Variable

The message passing has not considered whether observa-
tions are observed or not. What happens if a variable is ob-
served?

If the node is a parent to the node of interest, then blocking
(see structure 1) will occur. If B is observed then the message
is changed to

φbd(D) = P (D|B = T)

(assuming that B was observed to be T).

If the node is a child of the variable of interest this will also
alter the probability. Let E be observed as T. It is necessary
to find

P (F |E = T) = P (F,E = T)/P (E = T)

Thus all propagation the same, except

φed(D) = P (E = T|D)

and a normalisation term is also required to be computed
P (E = T). This can be computed in a similar fashion to find-
ing P (F ).



10 & 11: Bayesian Networks 15

Message Passing

The general expression for a “forward” message is (for trees)

φij(J) =
∑

I
P (J |I)

∏

k∈Ni\j
φki(I)

whereNi\j is the set of nodes that I is connected to excluding
node J .

This can be checked by looking at the message from D to F .
The neighbours of node D are

Nd = {B, E, F}
So

Nd \ F = {B, E}
The message is therefore

φdf(F ) =
∑

D
P (F |D) (φbd(D)φed(D))

This form of message passing is quite general, but only al-
lows single marginal probabilities to be computed. A more
general form would be useful.
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Cliques and Separators

Before defining the algorithm some basic terminology is re-
quired.

• Cliques C: fully connected (every node is connected to
every other node) subset of all the nodes.

• Separators S: the subset of the nodes of a clique that are
connected to nodes outside the clique.

• NeighboursN : the set of neighbours for a particular clique.

Thus given the value of the separators for a clique it is con-
ditionally independent of all other variables.

A simple example illustrates this concept.

A B

D

F

E

C

An additional node C has been added this allows a brief dis-
cussion of moral graphs.

It is possible to use cliques and separators to generalise mes-
sage passing to allow efficient inference with marginal distri-
butions of multiple variables.
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Moral Graphs

The first step in generating the cliques is to convert the DAG
into a moral graph. This process involves the following steps:

1. connect the parents of each node,

2. remove the directions of the graph.

This yields an undirected graph.

An example of this is converting the example into a moral
graph.

A B

D

F

E

C

In step (1) the parents of E, C and D are now connected with
the dotted line. In the second step the directions of the arrow
are then removed.
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Cliques and Separators (cont)

A B B

C

D

C

E

D

D

F

For this example the set of cliques are

C1 = {A,B}
C2 = {B, C, D}
C3 = {C, D, E}
C4 = {D, F}

Each of these are fully connected subsets of all the variables.
The separators are the intersection of the cliques.

S12 = C1 ∩ C2 = {B}
S23 = C2 ∩ C3 = {C,D}
S13 = C1 ∩ C3 = {}
S34 = C3 ∩ C4 = {D}

and

N1 = {2}
N2 = {1, 3}
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Message Passing with Cliques

The previous message passing between nodes is now replaced
by message passing between cliques.

The probability can now be expressed as

P (A,B,C, D,E, F ) = P (A,B)P (C, D|B)P (E|C, D)P (F |D)

= P (C1)P (C2|S12)P (C3|S23)P (C4|S34)

This can now be expressed as function of the Cliques and
separators separately. For example

P (C3|S23) =
P (C3,S23)

P (S23)
=

P (C3)

P (S23)

Hence it is also possible to write

P (A,B,C,D, E, F ) =
∏4

i=1 P (Ci)
∏4

i=1
∏4

j=1 P (Sij)

Note here the probability of the empty separator will be 1.

Using the previous equalities we could for example write

P (C4) = P (C4|S34)
∑

C3\S34

P (C3|S23)
∑

C2\S23

P (C2|S12)
∑

C1\S12

P (C1)

Previously a message was from one node to another with in-
formation about the node. With cliques we get:

• messages from one clique, Ci, to another, Cj;

• information about the the separator Sij.
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General Message Passing

General inference can be performed by using the following
process:

1. Add undirected edges to all co-parents that are not cur-
rently connected (marrying parents).

2. Drop all directions in the graph to form the moral graph.

3. Triangulate the moral graph.

4. Identify the cliques in the triangulated graph.

5. Join the cliques together to form a junction tree.

Steps (1), (2) and (4) have already been illustrated in the sim-
ple example.

For the general process we need to add steps (3) and (5).
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Triangulating a Graph

Triangulating a graph involves the following process

add sufficient additional undirected links between nodes
such that there are no cycles (i.e. closed paths) of
length 4 or more distinct nodes without a shortcut.

The previous example had no such cycles so there was no
need to triangulate the graph. Consider the modified graph:

E

F

C

A

B

D E

F

C

A

B

D

Bayesian Network Moral Graph

The moral graph has a cycle of 4, {A,B,E,D}. It is therefore
necessary to add an additional edge - here B to D. (Note an
edge A to E would also of satisfied the problem).

The associated triangulated graph is

E

F

C

A

B

D
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Junction Tree

In the probability calculation an arbitrary ordering of the cliques
was used. In general the order can affect the computational
cost.

A B B

C

D

C

E

D

D

F

Junction trees have the following property

Any node that appears in two different cliques must
also appear in all the cliques along the path that con-
nects the two cliques.

For example D appears in both C2 and C4. To be a valid junc-
tion tree it must also appear in C3, which it does.
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Message Passing Example

Using the sprinkler rain example to illustrate the process.

Cloudy

Wet Grass

Sprinkler Rain

Cloudy

Wet Grass

RainSprinkler

Cloudy

RainSprinkler

Wet Grass

RainSprinkler

Bayesian Network Moral Graph Junction Tree

There are two cliques

C1 = {C, S, R}
C2 = {S, R, W}
S12 = {S, R}

We want the message

φ12(S12) =
∑

C
P (C1)

But it is know to be cloudy, so

φ12(S12) = P (S, R|C = T) = P (S|C = T)P (R|C = T)

The message propagated is
S R P ()

T T 0.08
T F 0.02
F T 0.72
F F 0.18
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Message Passing Example (cont)

The propagated message contains information about the sep-
arator between the two cliques, S12. From the basic layout
there is already the information about the P (C2|S12). The
probability of the clique C2 is given by

W S R P ()

T T T 0.0792
T T F 0.0180
T F T 0.6480
T F F 0.0000
F T T 0.0008
F T F 0.0020
F F T 0.0720
F F F 0.1800

From this complete table of the clique probabilities it is sim-
ple to determine the appropriate marginal probabilities.
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Training

The estimation of a graphical model depends on the problem
defined. They may be partitioned as

Structure Observability Method
Known full Sample statistics
Known partial EM or gradient ascent
Unknown full Search through model space
Unknown partial Structural EM

In this course only the known structure case will be consid-
ered.

For the fully observable case all the values of all the variables
are observed at each time instance. The maximum likelihood
estimate of the parameters are based on counts. For example

P (A|B,C) =
P (A,B,C)

P (B, C)

≈ Count(A,B,C)

Count(B, C)

The approximate sign is required as there are (normally!)
only a finite number of training examples.
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Partially Observable

The approach described here is based on EM (see lectures
3 & 4 of the course). However standard gradient descent
schemes can also be used.
For the partially observable case the unobserved variables
can be treated as latent variables in the EM algorithm. This is
best illustrated by a simple example. Consider the following
Bayesian network (structure 3)

A

C

B

Only C is observed. The overall probability of the observa-
tion may be written as

P (C) =
∑

A

∑

B
P (A,B,C) =

∑

A

∑

B
P (C|A,B)P (A)P (B)

There are 2 latent variables, A and B. Using EM the auxiliary
function for this may be written as

Q(θ(k),θ(k+1)) =
∑

A

∑

B
P (A,B|C, θ(k)) log

(
P (A,B,C|θ(k+1))

)

where θ(k) are the model parameter estimates at the kth itera-
tion.
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Simple Example

Consider the case where C is binary valued, {0, 1}, and an
equal number of zeros and ones are observed. In addition
A and B are also binary valued. The initial parameter esti-
mates, θ(0), for the model are:

P (A1) = 0.4; P (B1) = 0.4,

A B P (C1)

0 0 0.1
0 1 0.9
1 0 0.8
1 1 0.1

Given the observations (value of C) and the current model
parameters the posteriors of the latent variables are needed.
Note these are not independent given C. If C = 1 (C1)

P (A1, B1|C1) =
P (C1|A1, B1)P (B1)P (A1)

P (C1)

From the current model P (C1) = 0.46. So

P (A1, B1|C1) =
0.1× 0.4× 0.4

0.46
= 0.0348

It is possible to generate all the probabilities for θ(0)

C A B P (A,B|C)

0 0 0 0.6000
1 0 0 0.0783
0 0 1 0.0444
1 0 1 0.4696

C A B P (A,B|C)

0 1 0 0.0889
1 1 0 0.4174
0 1 1 0.2667
1 1 1 0.0348
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Simple Example (cont)

The training data is

{0, 1, 1, 0, 0, 1, 0, 1}
The estimate for the new model P (A) is found from getting
the expected counts

P (A1) =
Exp. Count(A1)

Exp. Count(A = 1 or A = 0)

=
4× (0.4522 + 0.3556)

8
= 0.4039

and to get P (C1|A1, B1)

P (C1|A1, B1) =
Exp. Count(C1, A1, B1)

Exp. Count(C = 1 or C = 0, A1, B1)

=
4× 0.0348

4× (0.2667 + 0.0348)
= 0.1154

So the estimates, θ(1), are

P (A1) = 0.4039, P (B1) = 0.4078

A B P (C1)

0 0 0.1154
0 1 0.9136
1 0 0.8244
1 1 0.1154

This now describes the data as

P (C1) = 0.479

EM can then be repeated. Any obvious solutions?
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Continuous and Discrete RVs

It is possible to combine both continuous and discrete ran-
dom variables. In this case it is helpful to distinguish be-
tween discrete and continuous variables in the network. Also
it is helpful to show which variables (if any) are observed
(measured) and which are unobserved (must be inferred).

The notation used here is:

• discrete random variables are represented as a square;

• continuous random variables are represented as a circle;

• observed variables will be indicated by shading the asso-
ciated circle or square.

• unobserved variables will be indicated by not shading
the associated circle or square.

In this module you have already come across two forms of
Bayesian network, Gaussian mixture models and factor analysis.
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GMMs and FA

o

w z

o

Gaussian Mixture Model Factor Analysis

• Gaussian mixture models: these have the form

p(o) =
M∑

m=1
cmN (o; µ(m),Σ(m))

this may be though as selecting a component from the
PMF (formed of the component priors). Given the se-
lected component w the observation is generated from
the specified Gaussian component.

• Factor analysis: this is best described in terms of a gener-
ative model

z ∼ N (0; I)

o = Cz + w, w ∼ N (0,Σ(w))

Here ∼ N (0,Σ) means distributed according to a multi-
variate Gaussian distribution of mean 0 and covariance
matrix Σ. The overall covariance matrix is given by

Σ = CC′ + Σ(w)
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Hidden Markov Models

Some sources of data, such as speech, have a variable amount
of data associated with each training (and test) sample. One
method to handle this form of data is to use hidden Markov
models.

2 3 4 5

o o o3 4 T2

12a

a a33

a a34 a

a22

23

44

45

oo1

b b
3 4() ()b2

1

()

ot ot+1

t+1qqt

HMM Structure Dynamic BN

The structure of a HMM is shown above. The basic process
may be described as

1. Perform a transition from the current state i to some state
j determined by the transition matrix A.

2. On entering a state an observation is generated. The prob-
ability of the observation depends only on the current
state.

The HMM can be represented as a dynamic Bayesian net-
work (DBN). The probability of the observation only depends
on the current state. This indicates a form of conditional in-
dependence.
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Precision Matrices

Another application of Graphical models is describing preci-
sion matrices (inverse covariance matrix modelling).

Consider a simple generative model

x1 = w1, w1 ∼ N (0, 1)

x2 = w2, w2 ∼ N (x1, 1)

x3 = w3, w3 ∼ N (x2, 1)

Here ∼ N (0, 1) means distributed according to a Gaussian
distribution of mean 0 and variance 1.

What are the covariance matrix and precision matrix for x?

The covariance matrix is simple to obtain using the standard
formulae and noting that each of the noise sources are inde-
pendent of one another

Σ =




1 1 1

1 2 2

1 2 3




Inverting this to get the precision matrix yields

Σ−1 =




2 −1 0

−1 2 −1

0 −1 1




It is simple to obtain the elements of the covariance matrix,
what does the precision matrix tell us?
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Some Matrix Equalities

Consider the partitioned covariance matrix

Σ =



Σ11 Σ12

Σ21 Σ22




The following equalities apply (for reference):

• the covariance matrix of the conditional distribution

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21

• the precision matrix of the partitioned matrix may be given
by

Σ−1 =




E−1 −E−1G

−FE−1 D−1 + FE−1G




where

E = Σ11 −Σ12Σ
−1
22 Σ21

F = Σ−1
22 Σ21

G = Σ12Σ
−1
22
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Conditional Independence (again)

From the generative model for this process it is clear that x1

and x3 are conditionally independent given x2. This yield a
graphical model of the form

x xx1 2 3

It is interesting to compute the covariance matrix for vari-
ables x1 and x3 given x3. Using the previous equality and the
covariance matrix (partitioned that matrix 1 has variables 1
and 3, 2 has 2)

Σ1|2 =




1 1

1 3


−




1

2




1

2

[
1 2

]

=




1
2 0

0 1




The precision matrix can be represented as a graphical model.
The lack of a connection (a zero in the precision matrix) indi-
cates conditional independence.
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Summary

The last two lectures have examined the use of Bayesian Net-
works. In particular:

• graphical models and conditional independence;

• Bayesian networks;

• inference in trees;

• cliques, separators and neighbours;

• general inference;

• training for fully and partially observed networks;

• examples of standard networks.


