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ABSTRACT

In this paper, we present a cartoon face animation system
for multimedia HCI applications. We animate face cartoons
not only from input speech, but also based on emotions de-
rived from speech signal. Using a corpus of over 700 utter-
ances from different speakers, we have trained SVMs (sup-
port vector machines) to recognize four categories of emo-
tions: neutral, happiness, anger and sadness. Given each
input speech phrase, we identify its emotion content as a
mixture of all four emotions, rather than classifying it into a
single emotion. Then, facial expressions are generated from
the recovered emotion for each phrase, by morphing different
cartoon templates that correspond to various emotions. To
ensure smooth transitions in the animation, we apply low-
pass filtering to the recovered (and possibly jumpy) emotion
sequence. Moreover, lip-syncing is applied to produce the
lip movement from speech, by recovering a statistical audio-
visual mapping. Experimental results demonstrate that car-
toon animation sequences generated by our system are of
good and convincing quality.
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1. Introduct ion

Facial animation has been an active research topic for com-

puter graphics and multimedia. In particular, facial anima-
tion can be used as an effective communication channel for
human-computer interface (I-ICl). For instance, MPEG4 has

a face and body animation committee that defines how the
human face and body should be modeled and transmitted.
More and more commercial products have been developed
recently in the forms of talking heads, virtual friends, face
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email, talking shows, virtual announcers, and so on [1, 2, 3,
4]. By animating human faces in cartoon forms, we can add
some artistic styles {10, 24].

Directly animating human faces is challenging because there
are so many parameters to be controlled for realistic fa-
cial expressions. To alleviate such difficulties for animators,
speech-driven animation techniques (e.g., [8, 9]) have been
proposed to learn the mapping between the voice and the
facial motion, and then to drive the facial animation from
the speech signals. However, most previous face animation
systems, to the best of our knowledge, have not considered
explicitly the emotions existing in the speech signal. While
speaking the same content, people may have significantly
different facial expressions depending on whether they are
happy or sad. Emotions must be considered in facial ani-
mation systems [11, 22].

Although much work [15, 19, 20] has been done for emo-
tion analysis in the field of speech recognition, there are
some difficulties in analyzing emotions from speech. It is
not clear how many categories of emotions should be con-
sidered for facial expressions and facial animation. Recogni-
tion of emotions has been shown to be much more difficult
than recognition of phonemes or words. For example, recent
work reports that human subjects can categorize five differ-
ent emotions (normal, happy, angry, sad, and afraid) with
the average accuracy of 63.5% [21]. In comparison, in the
speech recognition field, character accuracy rates for large
vocabulary continuous speech recognition tasks can be well
over 90% [12].

In our work, we simplify emotion analysis in two ways. First,
because our purpose of analyzing emotions is to animate
cartoons, we can afford to classify the speech into only four
different but representative emotions: neutral, sadness, hap-
piness, and anger. Second, instead of classifying the utter-
ance into one of these four emotional categories, we model
the emotion in the utterance as a mixture of all emotions.

For each of the emotions, we generate a series of cartoon

templates corresponding to the intensity of the emotion.
For example, five cartoon templates are used to represent
the emotion from neutral to happy. Given the recovered

emotions from speech signal, facial expressions can be gen-
erated by morphing between these cartoon templates. A
real-time lip-syncing algorithm is also developed in our sys-
tem to make the cartoon animation more lively and believ-
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Figure ]: System overview. The system consists of two parts: emotion-driven cartoon animation and speech-

driven cartoon animation
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Figure 2: Four different levels (25%, 50%, 75% and 100%) of the cartoon face templates for three emotions
(anger, happiness and sadness). The first levels of these three emotions (or 0% intensity) correspond to

neutral emotion.

able. What is novel about our lip-syncing method, com-
pared with conventional phoneme-viseme mapping, is that
it is based on low-level acoustic speech signals. Therefore,
it is language-independent, and applicable to multi-lingual
translation agents.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the framework of the emotion- and speech-
driven cartoon animation system. Section 3 describes the
emotion recognition algorithm. In Section 4, we discuss how
the recognized results are used to drive the cartoon model.
Section 5 explains our real-time lip-syncing algorithm. Some
experimental results will be shown in Section 6. We conclude
in Section 7 with discussion and future work.

2.

Figure 1 shows an overview of our system. Our system con-
sists of two parts: speech-driven cartoon animation, and
emotion-driven cartoon animation. First, a speech emotion
recognition system is developed. To train the emotion clas-
sifier, we collected a corpus containing over 1000 utterances

System Overview
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from different speakers appearing in a variety of videos and
movie clips. Support vector machines (SVM’s) are trained to
classify each utterance into four categories: neutral, happi-
ness, sadness and anger. In the recognition process, we seg-
ment the input utterance into phrases automatically. The
trained SVM’s are then applied to each phrase to yield a
continuous emotion curve for every emotion.

The emotion-driven cartoon animation begins with a small
number of hand-drawn sample sketches of annotated faces
(templates), each of which corresponds to a specific facial
expression (Figure 2). We have an artist draw four car-
toons for each emotion. An appropriate cartoon template is
selected from the library according to the recognized emo-
tion intensity. Facial animation is generated by morphing
between different cartoon templates.

The key to speech-driven cartoon animation is a real-time
lip-syncing algorithm. Instead of conventional phoneme-
viseme mapping (e.g., [9, 18, 25]), our algorithm uses the
acoustic feature vector (e.g. MFCC used in speech recogni-
tion) as system input. The advantage of using the acoustic
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Figure 3: An emotion space where the origin is the
neutral expression. Any motion is considered as a
mixture of three emotions (sadness, anger and hap-
piness).

feature vector is that different languages (e.g., Chinese and
English) do not require training different models. In the
training stage, all the lip configurations (training data) are
clustered into a set of templates automatically. For each
template, a generic model is trained to map from acoustic
feature vector to visual feature vector in real time. In the
synthesis stage, we employ Bayesian estimation to obtain
the most probable lip configuration for a given acoustic vec-
tor.

Finally, the cartoon animation sequence is synthesized by
combining morphed cartoon templates with the synchro-
nized lip configurations.

3.  Emotion Analysis

As an important human behavior for conveying psycholog-
ical information, emotion has been studied for centuries.
Many aspects of emotions have been studied for emotion-
antecedent appraisal, emotion induction, physiological reac-
tion and expression of emotion (facial and vocal), and emo-
tional behavior gn autonomous agents [5].

3.1 Emotion Modeling and Evaluation

From the psychological point of view, human emotions are
often described as some subjective perceptions such as hap-
piness, sadness, surprise, etc. From the experimental and
computational perspective, however, we require emotion to
be classified explicitly by some parameters. More specif-
ically, the intensity of an emotion can be measured by a
value, which can be further used to drive the cartoon face
model.

Four emotions are recognized in our system: neutral, hap-
piness, sadness and anger. Although they cannot encom-
pass all emotions present in speech, it has been shown that
humans can recognize them from utterances with less am-
biguity. In addition, these four emotions are representative
enough for a cartoon animation system, especially for appli-
cations such as talking shows, avatars and teleconferencing.

However, it is difficult to accurately recognize these four
emotions. For the purpose of cartoon animation, rather than
assigning a single emotion to an input utterance, we assume
that the input utterance is a mixture of several emotions
with different intensities. As shown in Figure 3, we model

Table 1: Number of training samples for each emo-
tion

Sadness
128

Neutral
242

Anger
215

Happiness
136

human emotion as a point in an emotion space. Neutral
emotion is placed at the origin of this space because it can be
used to describe the relative lack of other emotions. Three
axes represent the intensity of sadness, happiness and anger,
respectively. Note that the three axes do not need to be
orthogonal in the emotion space. Modeling human emotion
in such a three-dimensional continuous space is meant to be
a simplification for recognition and animation, as we later
show.

3.2 Training Data

We have collected more than 1000 movie clips and extracted
the acoustic data from the clips as training data, where the
average clip length is about 10 seconds. The utterances are
carefully selected from speakers with different genders and
ages. A trained experimenter classified the utterances into
four categories: neutral, happiness, sadness and anger.

In a separate step, we had five adult subjects listen to each
of the utterances and determine its emotion category. An
utterance is considered to be valid as training data only
when all the subjects agree unanimously with the initial
classification. Table 1 shows the number of training samples
for each category in our experiment.

3.3 Feature Extraction

We extract the acoustic features as used in [15]. For each ut-
terance, a 16 dimensional vector with the following elements
is calculated:

e Statistics related to rhythm: Speaking rate, Average
length between voiced regions, Number of maxima /
number of (minima + maxima), Number of up slopes
/ number of slopes.

s Statistics on the smoothed pitch signal:
Median, Standard deviation.

Min, Max,

e Statistics on the derivative of the smoothed pitch: Min,
Max, Median, Standard deviation.

¢ Statistics over the individual voiced parts: Mean min,
Mean max.

e Statistics over
derivative,

the individual slopes:
Mean negative derivative.

Mean positive

3.4 Continuous Speech Emotion Recog-
nition

In our system, we use continuous input speech to drive a car-

toon face model. We build multidimensional discriminators

to classify each utterance into its proper category. Because

the emotion recognizer is trained from a set of utterances

and the emotion can only be stable within a short period,
we need to segment the continuous speech into phrases. For



each phrase, we apply the recognition algorithm that pro-
duces the proportions of each emotion in that phrase. The
segmentation algorithm is based on the following assump-
tions:

The intensity of an emotion
given phrase.

is unchanging within a

The emotion is neutral when the phrase is silent or
the classifier cannot determine the emotion category
of that phrase.

Because the acoustic features are extracted from pitch, the
phrases can be separated at regions where the pitch value
appears to be zero for a period T. T can be used as a param-
eter to tune the smoothness of the emotion. For instance,
T should be small when speech emotion changes drastically.
On the other hand, a large T is used to generate smooth
emotion transitions. In our experiments, we set 1'=40ms.

For analysis, we process each phrase as a whole. Because dif-
ferent features extracted from the audio data are correlated,
nonlinear classifiers need to be designed. Existing emotion
recognition algorithms are mostly based on K-nearest neigh-
bor (KNN) or neural networks. In our system, we use sup-
port vector machines (SVMs) that can be trained quickly
without considering the correlations between different fea-
tures. Moreover, training data are separated from the recog-
nition process after we obtain the classifiers. We have im-
plemented SVMs using Gaussian kernels:
K(mi,x]‘) — e*Hx,,' A11H2/202,

(1

Four I-v-r (one-versus-rest) SVMs are trained to distinguish
one class from the three others After the training process,
we obtain four two-class classifiers S;(v) (i = 1 .4), where
p is the feature vector. The recognition process can be rep-
resented by

@if S(v) > 0)
(if S,(v) < 0) 2)
Because the discriminative plane tends to approach the class
with more training samples, the performance of SVM will be
influenced by the numbers of positive and negative training
samples. For each discriminator, we select training samples
randomly from data sets and choose the numbers of positive
and negative training samples that are nearly equal. For
example, in order to train an SVM that recognizes the emo-
tion “anger”, we select 150 anger-labeled utterances as posi-
tive samples. The negative samples meanwhile consist of 50
happiness-labeled, 50 neutral-labeled and 50 sadness-labeled
samples. Table 2 shows the performance of the SVMs and
their corresponding training samples. The performance of
the classifier is evaluated by judging whether the automatic
classifications yield the same label as the subjective ones.
In our experiment, the most clearly recognizable emotion is
neutral, and the recognition performance of happiness and
anger is relatively poor. However, what we have found is
that even for human listeners, it is very easy to confuse
between happiness and anger. Our results are comparable
with the state-of-art results recently obtained by other re-
searchers [15, 19].

v € class
i is rejected by classifier
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Table 2: Performance of SVMs and training sample
numbers

Number of| training samples
= T N S Accuracy
Anger 162 46 49 52 77.16%
Happiness 31 102 31 32 65.64%
Neutral 61 68 [ 194 64 83.73%
Sadness 31 34 31 96 70.59%
i
W
|
Wt
Figure 4: Filtering the emotion curve. The solid

lines are the emotion recognition results. The dash
line is the smoothed emotion curve.

One benefit of an SVM discriminator is that it will provide
a recognition confidence, which can be considered as the
proportion of a specific emotion in that phrase. We will
describe in Section 4.2 that the proportion can be used to
morph between different cartoon templates.

4. Animating Facial Expressions

The emotion recognition results are then used to generate
cartoon animation, using cartoon templates drawn for all
four emotions.

4.1 Cartoon Face Templates

As shown in Figure 2, the cartoon face model begins with
a set of hand-drawn images. For each emotion, we have an
artist draw four cartoons that correspond to different emo-
tion levels or intensities ranging evenly from 25% to 100%.
Since neutral emotion is the origin in the emotion space,
we need only one template for it. In other words, the first
level (or 0% intensity) of three emotions (sadness, anger and
happiness) always corresponds to the neutral emotion.

4.2 Facial Expression Animation

Because the emotion discriminators produce a determinis-
tic metric for each emotion in a phrase, the emotion will
change abruptly between neighboring phrases. Directly an-
imating the facial expression from those outputs will result
in frequent face jitter. Therefore, we apply Gaussian filters
to the emotion curves to generate a smooth emotion tran-
sition. For example, Figure 4 shows the emotion curve of
happiness before and after low-pass filtering.

Similarly, we can obtain smooth emotion curves for sadness
and anger. At any time instant, we have three values that
measure the intensity of emotional happiness, sadness, and
anger in a speech phrase, represented by wp, ws and w,. We
only use three emotions here because we assume the emo-
tion is neutral when the phrase is silent or the discriminator
cannot determine the emotion category of that phrase.



In the animation process, we first quantify the emotion in-
tensity into five levels. For each emotion, appropriate car-
toon templates are chosen from the library according to the
emotion level. The final facial expression is generated by
morphing between the cartoon face templates:

7= Wplh +wsls +wala
Wy +ws +wy

(3)

where Iy, I, and [, are cartoon templates for each emotion.

Before creating the animation, we have the artist place con-
trol lines upon key facial features such as the eyes, mouth,
chin and nose. The control lines are placed in the same
order so that we can build the correspondence between dif-
ferent templates. In our system, we use the field morphing
technique proposed in [6] to animate the face templates.
Compared with other morphing techniques, field morphing
has the advantage of easy-control and smooth transition.
Figure 6(A) shows an example sequence generated by our
system. Note that the facial expression changes smoothly.
The lip shape does not change in this sequence because we
only animate the facial expressions in this step.

5.

In order to enhance the realism of facial animation, we have
developed an algorithm that synthesizes lip configurations
from speech [13, 17]. Three problems should be considered
for lip-syncing:

Lip-Syncing

e how to represent the audio and visual signals
e how to define the audio-visual mapping

e how to train optimal model parameters

Generally speaking, speech signals in a speech recognition
system can be represented at three different levels: front end
(or signal level), acoustic model (or phoneme level) and lan-
guage model (or word level). Although each of the three lev-
els can be applied within a lip-syncing system, much consid-
eration should be taken for a specific application. Because
a high-level signal representation is associated to more con-
text cues, better results can be achieved using the latter
two methods. At the same time, a higher input signal level
necessitates a more complex system.

For example, phoneme-viseme mapping has been used to
generate very exciting results in the “Video Rewrite” system
[8]. But there are some drawbacks for phoneme-viseme map-
ping. First, there is no standard definition for a phoneme
set, and a variety of phoneme definitions have been adopted
for different languages. Second, to obtain a correct segmen-
tation of phonemes for an individual’s speech, many param-
eters need to be tuned to maximize the performance of the
acoustic model according to the speaker’s gender, dialect or
co-articulation. Last, in order to obtain a phoneme sequence
for a given speech, we have to incorporate a speech engine
in the lip-syncing system — a severe hindrance for real-time
implementation.

In our lip-syncing system, we propose a new algorithm that
directly maps low-level acoustic signals to visual signals. It
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Figure 5: More than 1200 training frames are clus-
tered into 15 classes. The value below each proto-lip
represents its relative proportion.

is a very important design decision to use low-level acoustic
signals. Because the low-level acoustic signals come from the
front-end output, our approach has the benefits of real-time
processing and simple and language-independent audio-visual
mapping relations. Details of the lip-syncing system are de-
scribed in this section.

5.1 Audio and Visual Signal Represent-
ing

In our system, we calculate the Mel-Frequency Cepstrum
Coefficients (MFCC) and the delta coefficients [23]. These
coefficients are commonly used for speech recognition and
are robust and reliable to variations according to speakers
and recording conditions. In our system, we also use these
coefficients as features to find the mapping between audio
and visual signals. To simplify the synthesis process, we
have also adjusted some parameters that are typically used
in speech recognition systems to produce a more intuitive
mapping.

Specifically in our system, PAL video (25fps) sequences are
used as training data. The sampling rate of speech is 44.1
KHz with 16-bit resolution. Under this configuration, the
speech signal is blocked into windows of 40ms each that
correspond to a 25-Hz sampling rate in the visual domain.
For each audio frame, an 18-dimensional feature vector (with
9 MFCC and 9 delta MFCC values), a = (a1, az,...,ais)’
is calculated to represent the speech signal.

In our 2D animation system, the lip of the cartoon character
is modeled by a closed Catmull-Rom spline [16] determined
by ten control points. The lip can then be animated by
manipulating the control points to different positions.

5.2 Model Training

Since each control point is a 2D point, we model the lip con-
figuration as a 20-dimensional random vector v = (v, va, ...,
v20)T. The random vector is assumed to have a distribu-
tion formed by a mixture of n Gaussian distributions. Each
cluster, or component of the mixture distribution, is param-
eterized by its relative proportion m;, its mean p; and its
covariance R;. In order to find the mapping between the
audio and visual feature vectors, we assume the following:



e All the lip configurations of a cartoon character can
be clustered into several classes called, proto-lips.

e Any given
linear

lip configuration can be represented by a
combination of these proto-lips.

From the above assumptions, the first step in the training
process is to obtain the key lip templates and their weights
(or relative proportions). Although the training data can
be obtained by some vision-based techniques such as eigen
points [14], creating more artistic work for cartoon face an-
imation is more important than depicting the character re-
alistically; so training data can also be derived from manual
labeling results by an artist.

After we have obtained the training data, an unsupervised
algorithm is adopted to model the Gaussian mixtures [7].
The training data is finally clustered into 71 classes (n:15 in
our case). Figure 5 shows the mean (proto-lip) and relative
proportion for each class. Note that (u1, pa,.. . fin) is not
the linear decomposition in vector space because v may not
lie in the span of (yy, po,. , fn). Since these templates
represent the lip configuration well, any new configuration
can be approximated by a linear combination of the proto-
lips.

Given the proto-lips, the next step is to classify each lip
configuration in the training data into different classes. Here
we use the Mahalanobis distance as the similarity measure,
ie.,

v; € class
if
k= argmin(v — ) R v ) (k=1 n). ()
Because each lip configuration corresponds to an 18-dimen-
sional acoustic feature vector g = (al, az,. , alg)T, all the

samples in the audio vector space are also classified into n
classes, each of which is associated with a proto-lip template.
We further assume that the random vector a, for class i has
a Gaussian distribution and each dimension in the vector
distributes independently. By regression, we can compute
the mean a;; and covariance ¢y; for each Gaussian model
(for class i, dimension ]) After the training process, we
have the following model parameters:

e Proto-lip templates p; and their relative proportion m;

n)

e Mean &;; and covariance 0;; for the j-th dimension of
i-th class for the acoustic feature wvector (i = 1. n,
j=1...18).

5.3 Audio to Visual Mapping

Given a new audio clip, we first segment the audio signal
into frames of 40ms each. Then the acoustic feature wvector
a for each frame is calculated as the system input. Since
we do not have any information about the lip configuration
when the speaker is silent, we assume that the mouth is
closed when the speech energy is below a predefined thresh-
old. Otherwise, we approximate the lip configuration by a
linear combination of the proto-lips. Since we assume each

& = 1
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dimension of the acoustic feature wvector distributes indepen-
dently, the likelihood p(a|p;) can be represented by:
18 = N2
1 (a5 —aiy)
plaips) = exp(— . 5
According to Bayesian estimation, the posterior probability
ppila) is
plaju:)p(p:)
pluila) =———"——— (6)

;p(a!m)p(m)

where p(us) = m; is the prior. Then the mapping result
becomes

n

v=Y pipluila). )

i=1
Due to mapping error and the existence of noise, the syn-
chronized sequence will appear to flutter open and closed
inappropriately. Thus, we apply a Gaussian filter to the
synthesized sequence to achieve a smooth transition between
neighboring frames.

6. Animation Results

After we obtain the facial expression and lip-syncing results,
the two components are combined to generate the final an-
imation. Figure 6 shows three animation sequences gen-
erated by our system: emotion-driven cartoon animation
(A), speech-driven cartoon animation (B) and combination
of both (C). It can be seen that convincing facial expression
can be generated according to the emotion recognition re-
sults. In addition, lip configuration is synchronized with the
character’s  speech.

7. Conclusions and Future Work

In this paper, we have proposed a system to animate car-
toon faces from speech with emotions. Our system consists
of two components: emotion-driven cartoon animation, and
speech-driven cartoon animation. First, a speech emotion
recognition system is developed. Using a corpus of over 1000
utterances from different speakers, we have trained SVM’s
to recognize four categories of emotions: neutral, happiness,
anger and sadness. Given an input speech, the emotion
recognizer can generate a smooth transition curve for ev-
ery emotion, which is further used to drive a cartoon face
model. The cartoon face model consists of a small num-
ber of hand-drawn templates. Facial expressions are then
animated by morphing between these templates. Moreover,
the lip shape of each cartoon frame is synthesized from the

input audio. Our lip-syncing algorithm wuses acoustic sig-
nals rather than conventional phoneme-viseme mapping and
therefore is language-independent and can run in real-time.

The lip shapes are then composed with the morphed facial
expression images to form the final cartoon animation. We
believe our emotion and speech-driven cartoon animation
system will be very useful for HCI applications on desktop
PCs and on the Internet.

While our cartoon results are encouraging, there remain a
number of areas to be further explored. First, the emotion
recognition can be improved. And more emotions such as



Figure 6: An example animation sequence. A. Facia expressons without

lip-syncing (emotion-driven cartoon

animation). B. Lip-syncing without facial expressions (speech-driven cartoon animation). C. Combination of

A. and B.

surprise, disgust and fear can be used to enhance the real-
ism of the cartoon animation. Currently, our system can
only deal with frontal faces. We plan to investigate cartoon
animation with different head poses. Both image-based and
model-based techniques will be considered.

8.

We would like to thank Jianlai Zhou for providing the pitch
extraction code, and Chao Huang for helpful discussions on
the lip-syncing algorithm.
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