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Introduction

Various forms of classifiers, such as Gaussian distributions
and logistic regression, have been examined. These start by

assuming the nature of the decision boundary, or class-conditional

PDFs and then estimate the parameters from training data.

An alternative approach is to use the training data to deter-
mine the form of the decision boundary or class-conditional
PDFs. These approaches are called non-parametric. We have
already seen a couple of schemes that are based on the train-
ing examples, support vector machines and Gaussian pro-
cess classification. Gaussian mixtures are sometimes described
as a semi-parametric approach due its ability to approximate
many different functional forms.

In this lecture techniques for calculating class-conditional den-
sity estimates, and building classifiers, without assuming a
particular form for the density in advance will be examined.
First we we will look in more detail at the density estimation
problem and then classification. In particular:

e kernel estimation (Parzen Windows);
e k-nearest neighbour method;

e nearest neighbour classifier.

By default these approaches are not sparse (like Gaussian
processes). A simple scheme for making a nearest neighbour
scheme sparser will be described.
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Histograms

Simplest form of non-parametric estimation is the histogram

Histogram 2 Bins Histogram 25 Bins

$ LS Al

e Histograms (in 1-D) require bin size determination
e Too large bins cause over-smoothing and loss of detail
e Too small bin cause noisy estimation

e Problem rapidly gets worse as dimension increases : num-
ber of bins is each side a constant length rises exponen-
tially with dimension (the curse of dimensionality)

11. Non-Parameteric Techniques 3
Non-Parametric Density Estimation

The histogram can be generalised to other forms of region.
The probability that a new vector  drawn from the unknown
density p(x) will fall into a region R is

P = /R p(@)d@

If n samples are drawn independently from p(x) then

P [k of these will fall in region R| = ( Z > Pr(1—p)nh

e This is a binomial distribution with £ {k} = nP;

e Can use % as an estimate of P

e Variance of this estimate about the “true value” P

(e

e Estimate peaks sharply around the mean as the number
of samples increases (n — 00)

If p(x) is continuous and smooth in the region R, the proba-
bility can be approximated as

where V' is the volume of R and x is some point lying inside
it. Hence
_k/n

p(x) v
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Region Selection

How good is the estimate

p(w)%w—n=

2= jta)

For this estimate, p(x), to be reasonable:

e R large enough so that binomial distribution is sharply
peaked

e R small enough so that using a constant approximation
in a region for p(x) is accurate

There are two basic choices in determining the volume, V' of
the region R:

e use a fixed volume. This is normally achieved by select-
ing a particular window function which is used for all
points.

e allow the volume to vary. The volume depends on the
number of points in a particular region of space

Having obtained an estimate of the class-conditional PDF us-
ing the data from each of the classes and class priors esti-
mated, a generative model has been estimated, so classifica-
tion can be performed using Bayes” decision rule where

plelw)Plw;)  plefw;)P(w;)

S plafu)Pl) Y i) Plu)

Plwjle) =

1=
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Hypercube Regions

Let R be a hypercube of dimension d and edge length /. Then
volume of this is
Vo=

Need to count the number of points that lie within this re-
gion.

The number of points may be specified by defining an appro-
priate kernel, or window, function. One appropriate form is

0 otherwise
where

(x —x;)

h

This is a unit hypercube, with centre at «. If the sample x;
is within this hypercube the value is one and zero otherwise.
The total number of samples contained within the hypercube
can be expressed as

- r — &
k‘ — (4
()
and a corresponding density estimate is
N Tew 1 r — x;
o= 3o ()

Similar to the histogram except cell locations (centres) de-
fined by data points rather than fixed.

u =
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Parzen Windows

The use of hypercubes to estimate PDFs is an example of a
general class called Parzen Window estimates.

It is possible to use any form of window function that satisfy

o(u) > 0; / o(u)du = 1

These constraints ensures that the final density estimate will
be a valid probability density.

One often used window function is the normal distribution.

1 2
Pu) = 2y P <_||21;L|2| )

The density estimate is given by

i) = lz”: #exp ==l _ i:a»k(:c )

n & (2mh?)Y? 2h? A
where o; = 1/n and k(x, z;) = ¢(u). The similarity to the de-
cision boundary in SVMs and prediction mean in Gaussian
processes is clear.

The window width, h, is a free parameter associated with
this estimate and influences the nature of the density esti-
mate (compare to length scale in GPs and kernel width in
SVMs). It is commonly made a function of the number of
samples, n. One form is h,, = h/\/n
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Parzen Window Example

Below are examples of the Parzen Window estimates of a
univariate Gaussian PDF. The window width is set using h
which is defined for each case. The values of the estimate for
different values of n and h are shown below (from DHS).

-2 0 2 2 0 2 2 0 2
n=100 \ /
2 0 2 -2 0 2 2 0 2
N=eo
2 0 2 2 0 2 2 0 2
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Parzen Window Classification

The value of & that results from these forms of density esti-
mation will also affect the decision boundaries in a classifi-
cation task. For the left diagram a small value of % is used, a
larger value for the right diagram (figs from DHS).

1 ‘ | 1 ) D
0.8 c . : 0.8 c 0 o

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

There are a number of issues with this type of approach:

e Requires all data points to be stored, and evaluation of
PDF may be slow (not sparse)

e Need to choose window function and widths.

e Can be shown that window in fact gives a biased esti-
mate of the true PDF (see examples paper)

An alternative approach is to adapt the width of the win-
dows according to the data available.
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k-Nearest Neighbours Density

Rather than fixing the volume, it can be made to vary accord-
ing to the density of points in a particular region of space.
This is the k-nearest neighbour approach.

The basic procedure for estimating the density at a point «

1. Select the value of k.

2. Centre a cell around x and allow it to grow until
it captures k nearest neighbours. (From DHS)

X2

Xy

Compute the volume of the cell, V.

3. Density estimate given by (n total training samples)

o) = L
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Nearest Neighbour Classifier

Rather than using non-parametric techniques to estimate PDFs

which may then be used, if required, for classification, non-
parametric techniques may be directly used for classification.

For nearest neighbour classifier the space is partitioned into
regions with a particular class label. This is sometimes re-
ferred to as the Voronoi tessellation and is illustrated below
for 2D data.

Note that in the above we are assuming a Euclidean distance
measure is used to measure “nearest”, and it may be neces-
sary to pre-process the data to make this appropriate.

e Easy to implement;

e No training of a model required
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k-NN Classification

An extension to NN is to use k-NN for classification

e Assume that there are n; points from class w; in the data
set so ) ., n; = n. Construct a hypersphere of volume V
around z so that k& samples are contained of which k; are
from w;

e The class-conditional density and prior are given by
ki/ni
v
The density estimate for two different values of k for a
simple 1-D example is shown below (fig from DHS)

n;

P(w;) = "

p(x|wi) ~ p(x|w;) =

p(x)

VALY
/\/

e The posterior probability is given by

Plule) ~ plalw;) Plw;) _ kj

> plaf)Plu)
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Computational Cost

Consider n labelled training points in d dimensional space.
For a direct implementation of the NN classifier:

e each distance measure takes O(d);

e each of n stored point is compared to the test sample,
total cost O(nd).

As n get large this becomes impractical, so techniques have
been developed to reduce the load. The set of distances be-
tween training points could be pre-computed and stored -
requires storing n(n — 1)/2 distances. Alternatively:

e partial distances: the distance is computed on some sub-
set r of the parameters, » < d. This distance is used to
reduce the search. For example if the partial distance is

greater than the current closest distance, terminate search.

e search trees: structure the search so that at each level
only a subset of the training samples are evaluated. This
determines which branch of the tree is then searched.
This process typically does not guarantee that the near-
est neighbour is found, but can dramatically reduce the
computational load.

e editing: eliminate “useless” prototypes, samples, during
training. For example remove prototypes that are sur-
rounded by training points of the same category.
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Nearest Neighbour Editing

A simple algorithm for allowing editing is for training data
D:

Initialise j =0;
Construct the full set of neighbours for D :
do j=j+1;
examine the neighbours of x;
if any neighbour is not from the same class as x;
mark x;
until 7 =n Discard all points that are not marked.

This process will leave all the decision boundaries unchanged,
hence the performance of the algorithm will be the same as
that of the original set of complete points. [It’s non-trivial to
get the full set of neighbours in high-dimensional space!]

This algorithm does not guarantee that the minimal set of
points is found. However, it can dramatically reduce the
number of points.

It is possible to combine all 3 schemes for reducing the cost.
Editing may be used to reduce the number of prototypes.
These may then be placed in a search tree. Finally partial
distances may be used in the evaluation.
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Non-Parametric Bayesian Schemes (ref)

In recent years there has also been interest in looking at schemes

where, for example, the number of components in a Gaussian
mixture model (GMM)

M
p(wm) = Z C7nN(w; Fops Zm)

m=1

First consider rather than using a single value of the param-
eters, 8, a Bayesian approach can be adopted. Here for an M
component GMM

lalD.21) = [ plalow(elD, e
where p(0|D, M) determines a GMM parameters
e component prior: ¢y, ..., ¢y, prior for each component
e component distribution: {ge;, X1}, ..., {pr, Znr}
What happens as M — o0?
This is an infinite GMM. The change to the likelihood is:

p(x|D) = / p(x|0)p(6D)d6

where p(0|D) will also specify the number of components.
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Non-Parametric Bayesian Schemes (ref)

Unfortunately not possible to get a parametric form for p(6|D).
How to train the system?

Possible to use a sample-based approach (as with RBM)

p(x|D) = / p(x0)p(6]D)d6

1
7 ZP($|9J‘)
j=1

where 6; is a sample of possible GMM parameters drawn
from p(0|D).

Q

This has modified the problem from training the distribution,
to drawing samples from p(6|D) - this is possible!

It is possible to apply the same sort of approaches to
e mixtures of experts: infinite mixture of experts

e hidden Markov models: infinite HMMs



