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Introduction

This lecture looks at a particular application of statistical pat-
tern processing, speaker identification and verification. These
tasks can be summarised as

• speaker identification: who am I?

• speaker verification: am I who I claim to be?

The first is a multi-class problem (1 of K-classes), the second
a binary classification problem (true/false).

Verification/identification is normally split into:

• text dependent: control over what the speaker will say;

• text independent: no control over what the speaker says

• open/closed set for identification

Example applications are:

• banking/shopping over the phone: text-dependent, speaker
verification;

• forensic/security applications: text-independent, speaker
identification

• speaker tracking in broadcast news transcription: text in-
dependent, speaker identification.



2 Engineering Part IIB: 4F10 Statistical Pattern Processing

Speaker Identification
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A simple system for speaker identification is given above.

• feature extraction: reduce data rate from sampled signal
(16KHz/16 bits)

– 39 dimensional feature vector extracted each 10 ms

• speaker model: normally an Hidden Markov model/GMM

• similarity measure: likelihood measure

• maximum selection: Bayes’ decision rule

This lecture will concentrate on text independent speaker ver-
ification.

12. Speaker Verification and Identification 3

Text Independent Speaker Verification

There are two stages of operation

• Enrolment: each speaker utters a small amount of speech
(supervised training).

• Verification: a speaker claims an identity and utters a
small amount of speech
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Universal Background Model (UBM)

The above diagram shows a standard speaker-verification
system.

• Universal Background Model: a Gaussian mixture model

– trained using all the speaker enrolment data

• Speaker model: one for each speaker

– trained using the speaker-specific enrolment data

Bayes’ decision rule is applied (equal priors)

P (true|O,θ(s)) =
p(O|θ(s))

∑S
i=1 p(O|θ(i))

≈ p(O|θ(s))

p(O|θubm)
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Issues Addressed

This lecture will look at the following issues:

• UBM model training: an application of EM training

• robust speaker model estimation: an application of MAP
estimation

• performance assessment: ROC/DET curves, Equal Error
Rates (EERs)

• SVMs for verification: discriminative classifier

– dynamic kernels to map from variable length data to
a fixed length.

This lecture will not examine:

• details of feature extraction

• how changes in background environment are dealt with

• methods for increasing computational speed

• methods for compact speaker model representations

• HMMs for text-dependent modelling

• etc ...
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Universal Background Model

The first stage is to the train the UBM - this is meant to be a
model of all the speakers.

Gaussian Mixture Models (GMMs) are used

p(O1:T |θubm) =
T
∏

t=1

p(ot|θubm) =
T
∏

t=1

(

M
∑

m=1

cubmm N (ot;µ
ubm
m ,Σubm

m )

)

• the training data is obtained from the enrolment data
from each speaker

• expectation maximisation (EM) can be used to train the
model. For the “new” model mean

µ̂ubm
m =

∑S
s=1

∑T (s)

t=1 P (m|o(s)
t ,θubm)o(s)

t
∑S

s=1

∑T (s)

t=1 P (m|o(s)
t ,θubm)

where P (m|ot,θ
ubm) determined using “old” model pa-

rameters, θubm, and s indicates the speaker.

• diagonal covariance matrices often used

– faster likelihood calculation

– fewer model parameters (d = 39)

• M normally in the range 256-2024
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Speaker Enrolment

To do verification a speaker-specific model is required

• normally about 30 seconds of enrolment data per speaker

– 3000 frames of data (10 ms frame-rate)

– assume 1024 Gaussian components to estimate

• many components will not be seen/rarely seen

Maximum A-Posteriori MAP estimation

• use a prior on the model parameters and maximise

θ̂ = argmax
θ

{log(p(O1:T |θ)) + log(P (θ))}

Form and parameters of the prior, P (θ), required

Would like to use a conjugate prior

• posterior has the same form as the prior distribution

• distribution must have sufficient statistics of a fixed di-
mension

• not possible for a mixture model

In practice a product of (for reference):

• normal-Wishart density for the component parameters
(µm,Σm)

• Dirichlet density for the component priors (cm)

this is a conjugate prior to the complete data-set. Only the
mean update will be considered
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MAP Estimate of the Mean

A normal-Wishart density has the form (reference)

p(µm,Σm|θ̃m) ∝ |Σm|−(αm−d)/2×

exp

(

−τm
2
(µm − µ̃m)

′
Σ

−1
m (µm − µ̃m)−

1

2
tr(Σ−1

m Σ̃m)

)

where θ̃m are the parameters of the prior for component m

• αm > d− 1, τm > 0

• µ̃m is a vector for component m (mean)

• Σ̃m is a positive definite matrix for component m (covari-
ance)

Only considering the mean updates (common in verification)

µ̂(s)
m =

τmµ̃m +
∑T (s)

t=1 P (m|o(s)
t ,θ)o(s)

t

τm +
∑T (s)

t=1 P (m|o(s)
t ,θ)

This is an iterative process where P (m|o(s)
t ,θ) is determined

using the old model parameters, θ.

Where to get the prior parameters?

• prior mean is taken from the UBM - µ̃m = µubm
m

• τm is fixed for all components (normally set to 10-50)

Standard MAP attributes

• as T (s) → ∞ tend to ML estimate

• as T (s) → 0 tend to prior estimate
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Speaker Verification

From the enrolment stage we have all the models
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Universal Background Model (UBM)

For verification use decisions of the form

log(p(O|θ(s)))− log(p(O|θubm))

true
>
<

false
b

The setting of b may be determined using ROC curves
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• b is set high for banking applications!
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DET Curves and EER

Detection Error Trade-off (DET) curve is often used instead
of a ROC curve for verification (and other biometric tasks).
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One problem with ROC is that the desired operating points
are close together in the top left-hand corner. To modify
this plot miss probability to false-alarm probability and use
a mapped axis measured in standard deviates. This converts
the previous plot into a straight line. Same information, but
more clearly presented.

It is also useful to have a single number associated with sys-
tem performance. Equal error rate is sometimes quoted: false-
alarms equals false accepts. EER from sketch about 11%.



10 Engineering Part IIB: 4F10 Statistical Pattern Processing

SVM-Based Verification

GMM-based speaker verification works well, but there has
been interest in applying discriminative approaches to verifi-
cation. One popular form is to use a Support Vector Machine
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Verification (and other speech processing applications) awk-
ward for direct application of SVMs

• the “observation” (O1:T ) size will vary from speaker to
speaker

• cannot directly use observations in SVM

• dynamic kernels are one approach to handling this
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Dynamic Kernels

Kernels often used with SVMs
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• SVM decision boundary linear in the feature-space

– make non-linear using a non-linear mapping φ() e.g.

φ

([

x1
x2

])

=





x21√
2x1x2
x22



 , k(xi,xj) = 〈φ(xi),φ(xj)〉

• Efficiently implemented using a Kernel: k(xi,xj) = (xi.xj)2

Applying SVMs to speech data awkward

• speech data varies in length

• could sub-sample data, but loses information

• Dynamic Kernels offer a solution

– map variable length data to a fixed length

– standard SVM training can then be used
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Handling Sequence Data

Sequence data has inherent variability in number of samples:

• speech data at a fixed frame rate

• DNA/protein sequences

cat sat on mattheThe 1200 frames

O
(1)
1:1200 = {o1, . . . ,o1200}

The cat sat on the mat 900 frames

O
(1)
1:900 = {o1, . . . ,o900}

Dynamic kernels map these sequences to a fixed length

• allows standard SVM training to be used

• hopefully make use of all the data

The simplest feature-space is to use the log-likelihood

φ(O1:T ) = [log(p(O1:T |θ))]

How to increase the dimensionality sensibly?
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Fisher Kernels

Fisher kernels are one example of a dynamic kernel. They
make use of a generative model, p(O1:T |θ) and are defined as

k(O(i)

1:T (i),O
(j)

1:T (j)) = φ
(

O
(j)

1:T (j)

)′
Σ

−1φ
(

O
(j)

1:T (j)

)

where

φ(O1:T ) = ∇θ log (p (O1:T |θ))|θ̂
and Σ

−1 is a positive definite matrix that defines the metric
for the feature-space (this has been taken as an identity ma-
trix so far). More generally it is defined as (assuming zero
mean)

Σ = E {φ(O)φ(O)′} =

∫

φ(O)φ(O)′p(O|θ)dO

This is the Fisher Information Matrix

Considering just the means of a GMM

φ(O1:T ) =







∑T
t=1 P (1|ot, θ̂)Σ̂

−1

1 (ot − µ̂1)
...

∑T
t=1 P (M|ot, θ̂)Σ̂

−1

M (ot − µ̂M)







This is a M × d features vector.

This kernel can be trained on large amounts of unlabelled
data, the classifier is then trained on a small amount of la-
belled training data.
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Generative Kernels

A modified version of the Fisher Kernel, the generative ker-
nel, can be used for speaker verification.

One form is

φ(O1:T ) =

[

log(p(O1:T |θ(s)))− log(p(O1:T |θubm))
∇θ log (p (O1:T |θ))

∣

∣

θ(s)

]

• the first term is the standard GMM-based score

• the second term is Fisher score for the speaker model

• only derivatives wrt the mean parameters used

An SVM is trained for each speaker (interestingly only one
positive training example works!). Verification is then based
on

〈w,φ(O1:T )〉
true
>
<

false
b

where w is the decision boundary obtained from training the
SVM.
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Example Task

As an example of speaker verification the NIST 2002 Speaker
Recognition evaluation

• utterances recorded over a cellular network

• 139 male, 191 female speakers

• 1 enrolment utterance/speaker (upto 2 mins)

• 3570 test utterances (90% imposters)
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SVM-based verification outperforms GMM-based systems.


