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Introduction

This lecture looks at a particular application of statistical pat-
tern processing, speaker identification and verification. These
tasks can be summarised as

e speaker identification: who am I?
e speaker verification: am I who I claim to be?

The first is a multi-class problem (1 of K-classes), the second
a binary classification problem (true/false).

Verification/identification is normally split into:
e text dependent: control over what the speaker will say;
e text independent: no control over what the speaker says

e open/closed set for identification

Example applications are:

e banking/shopping over the phone: text-dependent, speaker
verification;

e forensic/security applications: text-independent, speaker
identification

e speaker tracking in broadcast news transcription: text in-
dependent, speaker identification.
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A simple system for speaker identification is given above.

e feature extraction: reduce data rate from sampled signal
(16KHz/16 bits)

- 39 dimensional feature vector extracted each 10 ms
e speaker model: normally an Hidden Markov model/GMM
e similarity measure: likelihood measure
e maximum selection: Bayes’ decision rule

This lecture will concentrate on text independent speaker ver-
ification.
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Text Independent Speaker Verification

There are two stages of operation
e Enrolment: each speaker utters a small amount of speech
(supervised training).
e Verification: a speaker claims an identity and utters a
small amount of speech

Universal Background Model (UBM)
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The above diagram shows a standard speaker-verification
system.

Speech Feature

Extraction

e Universal Background Model: a Gaussian mixture model
— trained using all the speaker enrolment data
e Speaker model: one for each speaker
— trained using the speaker-specific enrolment data
Bayes’ decision rule is applied (equal priors)
p(olo™) __ pl0l6")

P(true|0,0%) = — _~ —
S p(0]67)  p(o]e™™)
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Issues Addressed

This lecture will look at the following issues:
e UBM model training: an application of EM training

e robust speaker model estimation: an application of MAP
estimation

e performance assessment: ROC/DET curves, Equal Error
Rates (EERs)

e SVMs for verification: discriminative classifier

— dynamic kernels to map from variable length data to
a fixed length.

This lecture will not examine:

e details of feature extraction

e how changes in background environment are dealt with
e methods for increasing computational speed

e methods for compact speaker model representations

e HMMs for text-dependent modelling

e etc ...
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Universal Background Model

The first stage is to the train the UBM - this is meant to be a
model of all the speakers.

Gaussian Mixture Models (GMMs) are used

T M
P(OL1]6™) = Hp o) =] (Z czfm/v<of,uz$m,2$m>>

t=1 \m=1

e the training data is obtained from the enrolment data
from each speaker

e expectation maximisation (EM) can be used to train the
model. For the “new” model mean

ﬂubm: Zs 1275 1 |Of 70ubm) g
25:1 thl (m|0t aeum)

where P(m|o;,0"™) determined using “old” model pa-
rameters, 0°°", and s indicates the speaker.

e diagonal covariance matrices often used

— faster likelihood calculation

— fewer model parameters (d = 39)

e )M normally in the range 256-2024
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Speaker Enrolment

To do verification a speaker-specific model is required
e normally about 30 seconds of enrolment data per speaker
— 3000 frames of data (10 ms frame-rate)
— assume 1024 Gaussian components to estimate
e many components will not be seen/rarely seen
Maximum A-Posteriori MAP estimation
e use a prior on the model parameters and maximise

0 = arg max {log(p(O1.7|0)) + log(P(0))}

Form and parameters of the prior, P(0), required

Would like to use a conjugate prior

e posterior has the same form as the prior distribution

e distribution must have sufficient statistics of a fixed di-
mension

e not possible for a mixture model
In practice a product of (for reference):

e normal-Wishart density for the component parameters
(B Xim)

e Dirichlet density for the component priors (c;,)

this is a conjugate prior to the complete data-set. Only the
mean update will be considered
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MAP Estimate of the Mean

A normal-Wishart density has the form (reference)

p(p’ma 2m|ém) X |23m|_(”m—d)/2><

Tm ~ _ ~ 1 R
eXp <_?(“’m - I‘l’m)/zml(p’m - l’l’m) - étr(z'rnlznl))

where 0,, are the parameters of the prior for component m
ea, >d—1,7,>0
e /i, is a vector for component m (mean)

e X, is a positive definite matrix for component m (covari-
ance)

Only considering the mean updates (common in verification)
~ T(S) S S
iy (5) — Tk, + thl P(m|o§ )7 9)05‘ )
m T<S> s
T+ iy Plmlo)”, 0)

This is an iterative process where P (m\ois), 0) is determined
using the old model parameters, 6.

Where to get the prior parameters?
e prior mean is taken from the UBM - f,,, = p™
e 7, is fixed for all components (normally set to 10-50)
Standard MAP attributes
e as T1®) — oo tend to ML estimate

e as T'® — 0 tend to prior estimate
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Speaker Verification

From the enrolment stage we have all the models

Universal Background Model (UBM)
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For verification use decisions of the form
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The setting of b may be determined using ROC curves

Error Probabilities Receiver Operating Characteristic Curve
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e b is set high for banking applications!
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DET Curves and EER

Detection Error Trade-off (DET) curve is often used instead
of a ROC curve for verification (and other biometric tasks).
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One problem with ROC is that the desired operating points
are close together in the top left-hand corner. To modify
this plot miss probability to false-alarm probability and use
a mapped axis measured in standard deviates. This converts
the previous plot into a straight line. Same information, but
more clearly presented.

Miss probabilty (in %)

0102 05 1

2 5 10 20 40
12 False Alarm probabilty (in %)

It is also useful to have a single number associated with sys-
tem performance. Equal error rate is sometimes quoted: false-
alarms equals false accepts. EER from sketch about 11%.
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SVM-Based Verification

GMM-based speaker verification works well, but there has
been interest in applying discriminative approaches to verifi-
cation. One popular form is to use a Support Vector Machine

Universal Background Model (UBM)
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Verification (and other speech processing applications) awk-
ward for direct application of SVMs

e the “observation” (O;.r) size will vary from speaker to
speaker

e cannot directly use observations in SVM

e dynamic kernels are one approach to handling this
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Dynamic Kernels

Kernels often used with SVMs

sl T T T T T T 55l

o class one e © L o class one
class two sad & & class two
2r | + support vector 0% Lt 2r | + support vector
~— class one margin o e e e o — class one margin
decision boundary + ® —— decision boundary =
i | @ o + g ~ =l -3
15k class two margin o oo e sk class two margin )

e SVM decision boundary linear in the feature-space
- make non-linear using a non-linear mapping ¢() e.g.

¢([”])_ ﬂ k) = (@), dlx,)

)
€5

e Efficiently implemented using a Kernel: k(z;, ;) = (z;.z;)*
Applying SVMs to speech data awkward

e speech data varies in length

e could sub-sample data, but loses information

e Dynamic Kernels offer a solution

- map variable length data to a fixed length
- standard SVM training can then be used
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Handling Sequence Data

Sequence data has inherent variability in number of samples:
e speech data at a fixed frame rate

e DNA /protein sequences

The | cat | sat | on | the | mat | 1200 frames
O<111>2()0 {01> ceey 01200}
| The | cat |sat |on | the | mat | 900 frames
Og 300 {o1,..., 0000}

Dynamic kernels map these sequences to a fixed length
e allows standard SVM training to be used

e hopefully make use of all the data

The simplest feature-space is to use the log-likelihood

¢(O1.7) = [log(p(O1.7|0))]

How to increase the dimensionality sensibly?
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Fisher Kernels

Fisher kernels are one example of a dynamic kernel. They
make use of a generative model, p(O,.r|0) and are defined as

k(O OijT p) =@ (O( ) ¢ < 1.70) )

where
#(O17) = Vylog (p(O1.70))];

and X! is a positive definite matrix that defines the metric
for the feature-space (this has been taken as an identity ma-
trix so far). More generally it is defined as (assuming zero
mean)

=~ £{#(0)¢(0)'} = [ 6(0)$(0)(0]6)d0
This is the Fisher Information Matrix

Considering just the means of a GMM

Ztl P(1loy, )21 ( — )
$(Orr) = :

Zt  P(M|o,, 0 )2 (01 — fay)
This is a M x d features vector.
This kernel can be trained on large amounts of unlabelled

data, the classifier is then trained on a small amount of la-
belled training data.
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Generative Kernels

A modified version of the Fisher Kernel, the generative ker-
nel, can be used for speaker verification.

One form is

B log(P(Ol;Tla(s))) _ 1og(p(01;T]9‘Ib“‘))
(O.1) = Vglog (p(01.710))] e

e the first term is the standard GMM-based score

e the second term is Fisher score for the speaker model

e only derivatives wrt the mean parameters used

An SVM is trained for each speaker (interestingly only one
positive training example works!). Verification is then based
on

true

>
(w,¢(O11)) = b

false
where w is the decision boundary obtained from training the
SVM.
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Example Task

As an example of speaker verification the NIST 2002 Speaker
Recognition evaluation

e utterances recorded over a cellular network
e 139 male, 191 female speakers
e 1 enrolment utterance/speaker (upto 2 mins)

e 3570 test utterances (90% imposters)

| EER
) _ MAP () | oMM [ svM
; 0 11.94 | 9.54
o N 10 10.43 | 7.75
25 11.37 | 7.31
~ ' 50 12.33 | 7.44

01 02 05 1 2 5 10 20 40
False Alarm probability (in %)

SVM-based verification outperforms GMM-based systems.



