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2 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Generative Model Decision Boundaries

The previous lecture discussed Bayes’ decision rule and how
it may be used with generative models to yield a classifier
and decision boundaries. In generative models the joint dis-
tribution is modelled as

p(x,ω) = p(x|ω)P (ω)

The decision boundary will depend on

• p(x|ω): the class-conditional PDF

• P (ω): the prior distribution

(continuous observation feature vectors, x, are considered)

A large of number of class-conditional PDFs could be used

• univariate Gaussian: parameters µ, σ2

p(x) =
1√
2πσ2

exp





−(x− µ)2

2σ2







• uniform: parameters a, b

p(x) =











1
b−a a ≤ x ≤ b
0 otherwise

• etc etc

This lecture will look at the multivariate Gaussian:

• p(x|ωi) = N (x;µi,Σi)

• nature of the distribution and decision boundaries

• estimating the model parameters
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Multivariate Gaussian Distribution

p (x) =
1

(2π)d/2 |Σ|1/2
exp



−1

2
(x− µ)′Σ−1 (x− µ)





The distribution is characterised by:

• the mean vector µ

• the covariance matrix Σ

Σ =







3 1
1 0.5





 Σ =







1 0
0 1
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4 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Properties

• The mean and covariance matrix are defined as

µ = E {x}
Σ = E {(x− µ)(x− µ)′}

The matrix is clearly symmetric and for d dimensions is
described by d(d + 1)/2 parameters.

• The diagonal elements of the covariance matrix σii are
the variances in the individual dimensions σ2

i , the off-
diagonal elements determine the correlation.

• If all off-diagonal elements are zero, the covariance ma-
trix is uncorrelated, this is equivalent to a univariate Gaus-
sian in each dimension

p(x) =
d
∏

i=1

1
√

2πσ2
i

exp





−(x− µi)2

2σ2
i







• For a full covariance matrix correlations cause the con-
tours of equal probability density, which are ellipses, to
be angled to the axes of the feature space .

• An important property that we will return to is the ef-
fect of a linear transformation on a Gaussian distribution.
Given that the distribution of vectors x is Gaussian and
that y = Ax + b (and A is non-singular) then

µy = Aµx + b

Σy = AΣxA
′
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Binary Decision Boundaries

For a two class problem, what is the form of the decision
boundary when multivariate Gaussian distributions are used
for the class-conditional PDFs?
Here the minimum probability of error decision boundary
will be computed thus

P (ω1|x)
P (ω2|x)

ω1
>
<
ω2

1,
p(x|ω1)

p(x|ω2)

ω1
>
<
ω2

P (ω2)

P (ω1)

Normally logs are taken of both sides, so a point, x, on the
decision boundary satisfies

log(p(x|ω1))− log(p(x|ω2)) = log(P (ω2))− log(P (ω1))

Substituting in

p(x|ω1) = N (x;µ1,Σ1) p(x|ω2) = N (x;µ2,Σ2)

Yields the following quadratic equation

−1

2
(x− µ1)

′
Σ

−1
1 (x− µ1) +

1

2
(x− µ2)

′
Σ

−1
2 (x− µ2)

+
1

2
log







|Σ2|
|Σ1|





 = log







P (ω2)

P (ω1)







Which can be expressed as

x′(Σ−1
1 −Σ

−1
2 )x + 2(Σ−1

2 µ2 −Σ
−1
1 µ1)

′x

+µ′
1Σ

−1
1 µ1 − µ′

2Σ
−1
2 µ2 − log







|Σ2|
|Σ1|





 − 2 log







P (ω1)

P (ω2)





 = 0

i.e. of the form
x′Ax + b′x + c = 0

which gives the equation of the decision boundary.
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Examples of General Case

Arbitrary Gaussian distributions can lead to general hyper-
quadratic boundaries. The following figures (from DHS) in-
dicate this. Note that the boundaries can of course be straight
lines and the regions may not be simply connected.
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Example Decision Boundary

Assume two classes with

µ1 =







3
6





 ; Σ1 =







1/2 0
0 2





 µ2 =







3
−2





 Σ2 =







2 0
0 2







The inverse covariance matrices are then

Σ1
−1 =







2 0
0 1/2





 Σ2
−1 =







1/2 0
0 1/2







Substituting into the general expression for Gaussian bound-
aries yields:

[

x1 x2
]







3/2 0
0 0













x1
x2







+2
[

−9/2 −4
]







x1
x2





 +36− 6.5− log 4 = 0

1.5x21 − 9x1 − 8x2 + 28.11 = 0

x2 = 3.514− 1.125x1 + 0.1875x21

which is a parabola with a minimum at (3,1.83). This is illus-
trated (from DHS) below. The graph shows 4 sample points
from each class, the means and the decision boundary. Note
that the boundary does not pass through the mid-point be-
tween the means.
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Constrained Case: Σi = Σ

−4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

Constraining both class-conditional PDF covariance matrices
to be the same simplifies the decision boundary

2(µ2 − µ1)
′
Σ

−1x + µ′
1Σ

−1µ1 − µ′
2Σ

−1µ2 − 2 log







P (ω1)

P (ω2)





 = 0

This is a linear decision boundary

b′x + c = 0

• Here the classifier computes a weighted distance called
the Mahalanobis distance from the input data x to the
mean.
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Posterior for Σi = Σ

Interesting to look at the posteriors

P (ω1|x) =
p(x|ω1)P (ω1)

p(x|ω1)P (ω1) + p(x|ω2)P (ω2)
=

1

1 +
(

p(x|ω2)P (ω2)
p(x|ω1)P (ω1)

)

Simply comparing to the decision working (previous slide)

P (ω1|x) =
1

1 + exp(b′x + c)

b = 2Σ−1(µ2 − µ1)

This looks like multivariate sigmoid 1
1+exp(−ρx)
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From 3F3 this can be compared to logistic regression/classification

P (ω1|x) =
1

1 + exp(−b′x− c)
=

1

1 + exp(−b̃
′
x̃)

• x̃ = [x′ 1]′, b̃ = [b′ c]′,
• one is a generative model, one is discriminative
• training criteria for the two differ
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Training Generative Models

So far the parameters are assumed to be known. In practice
this is seldom the case, need to estimate

• class-conditional PDF, p(x|ω)

• class priors, P (ω)

Supervised training, so all the training examples associated
with a particular class can be extracted and used to train
these models.

The performance of a generative model based classifier is
highly dependent on how good the models are. The classifier
is the minimum error classifier if

• form of the class-conditional PDF is correct

• training sample set is infinite

• training algorithm finds the correct parameters

• correct prior is used

None of these are usually true!, but things still work (some-
times ...)

Priors can be simply estimated using, for example n1
n1+n2

• how to find the parameters of the PDF
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Maximum Likelihood Estimation
We need to estimate the vector parameters of the class con-
ditional PDFs θ from training data. The underlying assump-
tion for ML estimates is that the parameter values are fixed
but unknown. Assume that the parameters are to be esti-
mated from a training/design data set, D, with n example
patterns

D = {x1, · · · ,xn}
and note θ depends on D.
If these training vectors are drawn independently i.e. are in-
dependent and identically distributed or IID, the joint prob-
ability density of the training set is given by

p(D|θ) =
n
∏

i=1
p(xi|θ)

p(D|θ) viewed as a function of θ is called the likelihood of θ
given D.
In ML estimation, the value of θ is chosen which is most
likely to give rise to the observed training data. Often the
log likelihood function, L(θ), is maximised instead for con-
venience i.e.

L(θ) = log p(D|θ) =
n
∑

i=1
log p(xi|θ)

This value can either be maximised by iterative techniques
(e.g. gradient descent and expectation-maximisation algo-
rithms : see later in the course) or in some cases by a direct
closed form solution exists. Either way we need to differen-
tiate the log likelihood function with respect to the unknown
parameters and equate to zero.
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Gaussian Log-Likelihood Functions

As an example consider estimating the parameters of a uni-
variate Gaussian distribution with data generated from a Gaus-
sian distribution with mean=2.0 and variance=0.6.
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The variation of log-likelihood with the mean is shown above
(assuming that the correct variance is known).
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Similarly the variation with the variance (assuming that the
correct mean is known).
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Mean of a Gaussian distribution

Now we would like to obtain an analytical expression for the
estimate of the mean of a Gaussian distribution. Consider a
single dimensional observation (d = 1). Consider estimating
the mean, so

θ = µ

First the log-likelihood may be written as

L(µ) =
n
∑

i=1
log(p(xi|µ)) =

n
∑

i=1





−1

2
log(2πσ2)− (xi − µ)2

2σ2







Differentiating this gives

∇L(µ) = ∂

∂µ
L(µ) =

n
∑

i=1

(xi − µ)

σ2

We now want to find the value of the model parameters that
the gradient is 0. Thus

n
∑

i=1

(xi − µ)

σ2
= 0

So (much as expected!) the ML estimate of the mean µ̂ is

µ̂ =
1

n

n
∑

i=1
xi

Similarly the ML estimate of the variance can be derived.
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Multivariate Gaussian Case

For the general case the set of model parameters associated
with a Gaussian distribution are

θ =







µ

vec(Σ)







We will not go into the details of the derivation here (do this
as an exercise), but it can be shown that the ML solutions for
the mean (µ̂) and the covariance matrix (Σ̂) are

µ̂ =
1

n

n
∑

i=1
xi

and

Σ̂ =
1

n

n
∑

i=1
(xi − µ̂)(xi − µ̂)′

Note that when deriving ML estimates for multivariate dis-
tributions, the following matrix calculus equalities are useful
(given for reference only):

∂

∂A
(b′

Ac) = bc
′

∂

∂a
(a′Ba) = 2Ba

∂

∂a
(a′Bc) = Bc

∂

∂A
(log(|A|)) = A

−1
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Biased Estimators

You will previously have found that the unbiased estimate
of the covariance matrix, Σ̂, with an unknown value of the
mean is

Σ̂ =
1

n− 1

n
∑

i=1
(xi − µ̂)(xi − µ̂)′

There is a difference between this and the ML solution ( 1n and
1

n−1). In the limit as n → ∞ the two values are the same.

So which is correct/wrong? Neither - they’re just different.

There are two important statistical properties illustrated here.

1. Unbiased estimators: the expected value over a large num-
ber of estimates of the parameters is the “true” parame-
ter.

2. Consistent estimators: in the limit as the number of points
tends to infinity the estimate is the “true” estimate.

It can be shown that the ML estimate of the mean is unbiased,
the variance is only consistent.
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Iris data

Famous (standard) database from machine learning/pattern
recognition literature. Measurements taken from three forms
of iris

• sepal length and width

• petal length and width

Only petal information considered here.
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Use multivariate Gaussians to model each class. Plots show

• data points

• lines at 1 and 2 standard deviations from the mean

• regions assigned using Bayes’ decision rule

– all priors are assumed to be equal
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Logistic Regression/Classification

When the covariance matrices of the class-condition Gaus-
sian PDFs are constrained to be the same, the posteriors look
like logistic regression - but very different training.

The criterion for training the logistic regression parameters b̃
aims to maximise the likelihood of producing the class labels
rather than the observations.

L(b̃) =
N
∑

i=1
log(P (yi|xi, b̃))

=
N
∑

i=1









yi log









1

1 + exp(−b̃
′
x̃i)









+ (1− yi) log









1

1 + exp(b̃
′
x̃i)

















where

yi =











1, xi generated by class ω1

0, xi generated by class ω2

where (noting P (ω1|x) + P (ω2|x) = 1)

P (ω1|x) =
1

1 + exp(−b̃
′
x̃)

P (ω2|x) =
1

1 + exp(b̃
′
x̃)

Optimised using gradient descent, Newton’s method etc (dis-
cussed later in the course).
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MAP Estimation

It is sometimes useful to use a prior over the model parame-
ters

• high dimensional observation feature space

• limited training data

Both related to curse of dimensionality and how well the
classifier will generalise.

Consider a prior on the multivariate Gaussian mean, µ, of
the form

p(µ) =
1

(2π)
d
2 |Σp|

1
2

exp
(

−(µ− µp)
′
Σ

−1
p (µ− µp)

)

where µp and Σp are the parameters of the prior.
The MAP criterion for the mean is

F(µ) = L(µ) + log(p(µ))

Differentiating and equating ∇F(µ) = 0

µ̂ =
(

nΣ−1 +Σ
−1
p

)−1


Σ
−1
p µp +Σ

−1
n
∑

i=1
xi





• as Σp → ∞ tends to ML solution

• as n → ∞ tends to ML solution

• as n → 0 tends to prior mean
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Curse of dimensionality

Given a powerful-enough classifier, or high-enough dimen-
sional observation feature-space, the training data can always
be perfectly classified

• think of a look-up-table

BUT we care about performance on held-out data
(we know the labels of the training data!)

Classification of previously unseen data is generalisation.

Number of Parameters

Er
ro

r R
at

e 
(%

)

Future "test" data

Training data

Often, when designing classifiers, it is convenient to have set
of held-out training data that can be used to determine the
appropriate complexity of the classifier. This is often called a
holdout or validation set.


