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Introduction

In the previous lectures generative models with Gaussian
and Gaussian mixture model class-conditional PDFs were dis-
cussed. For the case of tied covariance matrices and Gaus-
sian PDFs, the resulting decision boundary is linear. The lin-
ear decision boundary from the generative model was briefly
compared with a discriminative model, logistic regression.

An alternative to modelling the class conditional probability
density functions is to decide on some functional form for
a discriminant function and attempt to construct a mapping
from the observation to the class directly.

Here we will concentrate on the construction of linear clas-
sifiers, however it is also possible to construct quadratic or
other non-linear decision boundaries (this is how some types
of neural networks operate).

There are several methods of classifier construction for a lin-
ear discriminant function. The following schemes will be ex-
amined:

e Iterative solution for the weights via the perceptron algo-
rithm which directly minimises the number of misclassi-
fications

e Fisher linear discriminant which aims directly to max-
imise a measure of class separability
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Single Layer Perceptron

A single layer perceptron is shown below. The typical form
examined uses a threshold activation function:

The d-dimensional input vector  and scalar value z are re-

lated by
z=w'zr+b
z is then fed to the activation function to yield y(x). The pa-

rameters of this system are

w1

e weights: w = , selects the direction of the decision

W
boundary
e bias: b, sets the position of the decision boundary.

These parameters are often combined into a single composite
vector, w, and the input vector extended, x.

w1 L1

&
I
ok
I

Wq Ld

b 1
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1.5

Single Layer Perceptron
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Single Layer Perceptron (cont)

We can then write

z=w'a

The task is to train the set of model parameters w. For this
example a decision boundary is placed at z = 0. The decision
rule is

(z) = 1, 220
L= —1, 2<0

If the training data is linearly separable in the d-dimensional
space then using an appropriate training algorithm perfect
classification (on the training data at least!) can be achieved.

Is the solution unique?

0.5

| | |
0.5 0 0.5 1 1.5

The precise solution selected depends on the training crite-
rion/algorithm used.
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Training Criteria

The decision boundary should be constructed to minimise
the number of misclassified training examples. For each train-
ing example x;

wx; >0 x € w, wax, <0 x € wy

"\,,\Perce ptron

True 1

1 0
The above figure shows two criteria that could be used (the
sample is from class w;)

e True: thisis the actual cost a simple 1/0 (incorrect/correct).
Let y; = —1 for class wy, y; = 1 class wy, this criterion can
be expressed as (using previous decision rule)

. I n
E(w) = 5= yi — y(x;)]
This criterion is not useful if gradient descent based al-
gorithms used (though meet again with SVM).

e Perceptron: an approximation to the true cost function,
the loss is the distance that observation is from the deci-
sion boundary.
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Training Criteria
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Perceptron Criterion

D = {{5131, y1}, {5132, yz}a JORI {CL’N, yN}}

n n

E(w) = Z —Yi (wlmi + b)]+ — Z [_yir‘b/ii]Jr

1=1 1=1

0O otherwise
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Perceptron Criterion

The distance from the decision boundary is given by w'z.
However a problem is that we cannot simply sum the values
of w'x as a cost function since the sign depends on the class.

The perceptron cost-function can be written using the hinge-
loss function defined as

f(x)], = { f(@) if f(x) >0

0 otherwise
Let the class label training example y; again be specified as

| 1 ifx; belongs to class 1
(O TP belongs to class 2

The perceptron criterion can be expressed as
Blw) = 3 [~y (wle, ), = 3 [~y
To simplify the training it is possible to replace the training
observations by a normalised form
T; = Yi%;
This means that for a correctly classified symbol
w'z; >0
and for mis-classified training examples
w'z; <0

This process is sometimes referred to as normalising the data.
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Gradient Descent

Finding the “best” parameters is an optimisation problem.
First a cost function of the set of the weights must be defined,
E(w). Some learning process which minimises the cost func-
tion is then used. One basic procedure is gradient descent:

1. Start with some initial estimate w][0], 7 = 0.
2. Compute the gradient VE(w) |y,

3. Update weight by moving a small distance in the steepest
downhill direction, to give the estimate of the weights at
iteration 7 + 1, w|r + 1],

w|r +1] = wlr] = NV E(W)|q|,
This can be written for just the i'" element

OB ()
OB |

UN}Z’[T—F 1] = UNJZ[T] —1

Sett=7+1

4. Repeat steps (2) and (3) until convergence, or the optimi-
sation criterion is satisfied

One of the restrictions on using gradient descent is that the
cost function E(w) must be differentiable (and hence contin-
uous). We will see that this means mis-classification cannot
be used as the cost function for gradient descent schemes.

Gradient descent is not usually guaranteed to decrease the
cost function (compare to EM).
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Choice of

In the previous slide the learning rate term 7 was used in the
optimisation scheme.

Step size too large - divergence

slow
descent

Desired minima

n is positive. When setting  we need to consider:
e if 1 is too small, convergence is slow;

e if 7 is too large, we may overshoot the solution and di-
verge.

Later in the course we will examine improvements for gra-
dient descent schemes for highly complex schemes. Some of
these give techniques for automatically setting 7.
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Local Minima

Local Minima

Criterion

Global Minimum

@)

Another problem with gradient decsent is local minima. At
all maxima and minima

VEw)=0
e gradient descent stops at all maxima/minima
e estimated parameters will depend on starting point
e single solution if function convex

Expectation-Maximisation is also only guaranteed to find a
local maximum of the likelihood function for example.
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Perceptron Algorithm

The perceptron criterion may be expressed as
E(w) =Y [~yw'z], = 3 (—0'T)
=1 €Ly
where ) is the set of mis-classified points. We now want to

minimise the perceptron criterion using gradient descent. It
is simple to show that

VEw)= > (—x)

TZ’EJJ

Hence the gradient descent update rule is

w|t + 1] =wlr]+n ¥ =
Tyl

where Y|[7] is the set of mis-classified points using w|7|. For

the case when the samples are linearly separable using a value
of n = 1 is guaranteed to converge. The basic algorithm is:

1. Set®; = y;x; (y; = —1 for class w», y; = 1 class wy).

2. Initialise the weight vector w|0], 7 = 0.

3. Using w|7| produce the set of mis-classified samples V|7].
+

. Use update rule

thenset =7 + 1.

5. Repeat steps (3) and (4) until the convergence criterion is
satisfied.
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Perceptron Algorithm (update)
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Perceptron Solution Region

e Each sample ; places a constraint on the possible loca-
tion of a solution vector that classitfies all samples cor-
rectly.

e w'x; = 0 defines a hyperplane through the origin on the
“weight-space” of w vectors with z; as a normal vector.

e For normalised data, the solution vector must be on the
positive side of every such hyperplane.

e The solution vector, if it exists, is not unique and lies any-
where within the solution region

e Figure below (from DHS) shows 4 training points and
the solution region for both un-normalised data and nor-
malised data (note notation swap w = a,x = y).

solution y solution
region  4° region 2
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A Simple Example

Consider a simple example:

Class 1 has points !

1] [06] [0.7
0"[1]7]06]"|04
Class 2 has points 8 : (1) : ! 5},{03}

0

1 0.4

Initial estimate: w[0] = | 1
—0.5

This yields the following initial estimate of the decision bound-
ary.

1.5

1 9 (o) X
X
05
(o) x
0 '®) X
_05 | | |
-05 0 05 1 15

Given this initial estimate we need to train the decision bound-

ary.
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Simple Example (cont)

The first part of the algorithm is to use the current decision
boundary to obtain the set of mis-classified points.

For the data from Class w;

|Classwi || 1 | 2 [ 3 ] 4 |
z -05105]0.1|-01
Class 2 1 1 2

and for Class ws

|Classw, || 1 | 2 | 3 | 4 |
z -05105]05]-01
Class 2 1 1 2

The set of mis-classified points, V|0], is

y[O] - {1w174w172WQ73w2}

From the perceptron update rule this yields the updated vec-
tor

1 0.7 0 —0.25 1.45
w[l|=w[0]+ |0+ [04 |+ |-1|+] -1 |=]-06
1 1 —1 —1 —0.5
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Simple Example (cont)

This yields the following decision boundary

1.5

1 (o)
0.5F
0 o
-0.5 : ‘ ‘
-0.5 0 0.5 1 1.5

Again applying the decision rule to the data we get for class
!

[Class1] 1 | 2 | 3 | 4 |
z 0951|035 0.01 | 0.275
Class 1 1 1 1

and for class w»

|Class2| 1 | 2 | 3 | 4 |
z -0.51-1.1 | -0.7375 | -0.305
Class 2 2 2 2

All points correctly classified the algorithm has converged.

Is this a good decision boundary?
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Discriminative Language Model

sentence;q

P(sentence;) = w

/

cat sat on the mat

fi(sentenceq, aadvark)

fi(sentence;, zylophone)
fg(sentencel, aadvark, abacus)

fo(sentence;, zylophone, zygon)
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Maximum Likelihood Criterion

D= {{z1,y1}, {xo, yo}, ..., {x0,yn}}
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Logistic Regression/Classification

Interesting to contrast the perceptron algorithm with logistic
regression/classification. This is a linear classifier, but a dis-
criminative model not a discriminant function. The training

criterion is

1 1

n

Llw) = 3

1=1

yz'log( )+(1—y¢)10g(

where (note change of label definition)

1+ exp(—w'x;)

N generated by class w;
Yi = 0, x; generated by class w,

It is simple to show that (has a nice intuitive feel)

n

VL) = 3 (y _ 1+exp% >) %,

i=1 —W I;

Maximising the log-likelihood is equal to minimising the neg-
ative log-likelihood, E(w) = —L(w). Update rule then be-
comes

W[t + 1] = w[r] + NV L(W)|
Compared to the perceptron algorithm:

e need an appropriate method to select 7;

e does not necessarily correctly classify training data even
it linearly separable;

e not necessary for data to be linearly separable;

e yields a class posterior (use Bayes” decision rule to get
hypothesis).

1+ exp(w'a;)

|
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Fisher’s Discriminant Analysis

A different approach to training the parameters of the per-
ceptron is to use Fisher’s discriminant analysis. The basic
aim here is to choose the projection that maximises the dis-
tance between the class means, whilst minimising the within
class variance. Note only the projection w is determined. The
following cost function is used

(711 — 15)°

S1 + 59

E(w) = —

where 5; and i, are the projected scatter matrix and mean for
class w;. The projected scatter matrix is defined as

5i= Y (Ti—m)°

Ti€W;

The cost function may be expressed as

w'Syw
Elw) = _w’S:w
where
Sb = (k1 — Ho)(py — 1)
and
Sy =S1+ S,
where

Sj= X (x; — H’j)(mi - Hj)/

:Bie@uj

the mean of the class p; is defined as usual.
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Fisher’s Linear Discriminant

w'S,w

E(w) = w'S.,w
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Fisher’s Discriminant Analysis (cont)

Differerentiating F'(w) with respect to the weights, we find
that it is minimised when

(W'Spw)S,w = (W'S,;w)S,w
From the definition of S,
Sew = (Hy — Ho)(py — o)W
= ((m — N2)l7b> (py — po)
We therefore know that
Swvw o< (1 — Ho)
Multiplying both sides by S ' yields
w oc S (py — po)

This has given the direction of the decision boundary. How-
ever we still need the bias value b.

If the data is separable using the Fisher’s discriminant it makes
sense to select the value of b that maximises the margin. Sim-
ply put this means that, given no additional information, the
boundary should be equidistant from the two points either
side of the decision boundary.
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Example

Using the previously described data

0.825 ]

My = {0.500 ;o Mo =

0.600

0.1375 ]

and

0.2044 0.0300
0.0300 1.2400

So solving this yields, for the direction, and taking the mid-
point between the observations closest to the decision bound-

ary

Sy =

. 3.3878 . 39878
W= e | w(l] = | —0.1626
' —1.4432
1 (o) (o] x

0.5

_05 1 1 1
-0.5 0 0.5 1 1.5



18 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Kesler’s Construct

So far we have only examined binary classifiers. The direct
use of multiple binary classifiers can results in no-decision
regions (see examples paper).

The multi-class problem can be converted to a 2-class prob-
lem. Consider an extended observation & which belongs to
class w;. Then to be correctly classitied

wE —wiaE >0, j=2,..., K

There are therefore K —1 inequalities requiring that the K (d+
1)-dimensional vector

w1

Wwg
correctly classifies all K — 1 set of K (d + 1)-dimensional sam-
ples

T T ]
—x 0 0
Yo=1 0 |, y3=|—x|, ..., Yig=| 0
0 | 0 | |~ |

The multi-class problem has now been transformed to a two-
class problem at the expense of increasing the effective di-
mensionality of the data and increasing the number of train-
ing samples. We now simply optimise for o.
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Limitations of Linear Decision
Boundaries

Perceptrons were very popular until the 1960’s when it was
realised that it couldn’t solve the XOR problem.

O @

We can use perceptrons to solve the binary logic operators
AND, OR, NAND, NOR.

1 1

AND OR
x1—[ N x—[ N
(a) AND operator (b) OR operator
1 NAND 1 NOR

'
L

“ \ “ \

X2
(c) NAND operator (d) NOR operator
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XOR Logic

-

25
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XOR (cont)

But XOR may be written in terms of AND, NAND and OR
gates

) L_j OR
TrE = .
» H-

Lﬂ NAND

This yields the decision boundaries

So XOR can be solved using a two-layer network. The prob-
lem is how to train multi-layer perceptrons. In the 1980’s
an algorithm for training such networks was proposed, error
back propagation.
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Summary

This lecture has examined:
e single layer perceptrons (SLPs)
e perceptron algorithym
e gradient descent
e Fisher’s discriminant analysis
The next few lectures will extend these concepts:
e multi-layer perceptons (MLPs)
e training MLPs
e improved gradient descent
e support vector machines (SVMs)
e maximum margin training for linear classifiers

e use of kernels for non-linear decision boundaries.



