
4F10: Statistical Pattern Processing

Autoencoder

h2 h3

x2 x3x1 x4

h1 3

x2 x3x1 x4

x x x x1 2 3 4^ ^ ^ ^

h1 h2 h

Restricted Boltzmann Machine Autoencoder

∑n

i=1
log(p(xi|θ))

∑n

i=1
f(xi, x̂i)

2

4F10: Statistical Pattern Processing

RBM Gibbs Sampling

x1 x2 x3 x4

h1 h2 h3

(0) (0) (0) (0)

(0) (0) (0)

x1 x2 x3 x4

h1 2 h3

(0) (0) (0) (0)

(1) (1) (1)

x1 x2 x3 x4

h1 h2 h3

(1) (1) (1) (1)

(1) (1) (1)h

P (hj = 1|x,θ) =
1

1 + exp(−bj −
∑

i xiwij)

P (xi = 1|h, θ) =
1

1 + exp(−ai −
∑

j hjwij)

14

University of Cambridge
Engineering Part IIB

Module 4F10: Statistical Pattern
Processing

Handout 7: Single Layer Perceptron &
Estimating Linear Classifiers

Σ
1

−1

−1

1

−1

1.5 NAND

Σ
1

−1

1

1

x1

1x2

−0.5 OR

Σ
1

−1

1

1

1

−1.5 AND

Mark Gales
mjfg@eng.cam.ac.uk

Michaelmas 2015

4F10: Statistical Pattern Processing

Universal Approximator

1

4F10: Statistical Pattern Processing

Straight Line

2

7. Single Layer Perceptron & Estimating Linear Classifiers 1

Introduction

In the previous lectures generative models with Gaussian
and Gaussian mixture model class-conditional PDFs were dis-
cussed. For the case of tied covariance matrices and Gaus-
sian PDFs, the resulting decision boundary is linear. The lin-
ear decision boundary from the generative model was briefly
compared with a discriminative model, logistic regression.

An alternative to modelling the class conditional probability
density functions is to decide on some functional form for
a discriminant function and attempt to construct a mapping
from the observation to the class directly.

Here we will concentrate on the construction of linear clas-
sifiers, however it is also possible to construct quadratic or
other non-linear decision boundaries (this is how some types
of neural networks operate).

There are several methods of classifier construction for a lin-
ear discriminant function. The following schemes will be ex-
amined:

• Iterative solution for the weights via the perceptron algo-
rithm which directly minimises the number of misclassi-
fications

• Fisher linear discriminant which aims directly to max-
imise a measure of class separability

2 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Single Layer Perceptron

A single layer perceptron is shown below. The typical form
examined uses a threshold activation function:

b

Σ

wd

1

−1
w2

w1

1

x

x

x

1

2

d

y(x)z

The d-dimensional input vector x and scalar value z are re-
lated by

z = w
′
x + b

z is then fed to the activation function to yield y(x). The pa-
rameters of this system are

• weights: w =

⎡

⎢

⎢

⎢

⎣

w1

...
wd

⎤

⎥

⎥

⎥

⎦

, selects the direction of the decision

boundary

• bias: b, sets the position of the decision boundary.

These parameters are often combined into a single composite
vector, w̃, and the input vector extended, x̃.

w̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w1

...
wd

b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; x̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1

...
xd

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

4F10: Statistical Pattern Processing

Single Layer Perceptron

b

Σ

wd

1

−1
w2

w1

1

x

x

x

1

2

d

y(x)z

26

4F10: Statistical Pattern Processing

Single Layer Perceptron

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

29

7. Single Layer Perceptron & Estimating Linear Classifiers 3

Single Layer Perceptron (cont)

We can then write

z = w̃
′
x̃

The task is to train the set of model parameters w̃. For this
example a decision boundary is placed at z = 0. The decision
rule is

y(x) =

⎧

⎪

⎨

⎪

⎩

1, z ≥ 0
−1, z < 0

If the training data is linearly separable in the d-dimensional
space then using an appropriate training algorithm perfect
classification (on the training data at least!) can be achieved.

Is the solution unique?

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

The precise solution selected depends on the training crite-
rion/algorithm used.

4 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Training Criteria

The decision boundary should be constructed to minimise
the number of misclassified training examples. For each train-
ing example x̃i

w̃
′
x̃i > 0 xi ∈ ω1, w̃

′
x̃i < 0 xi ∈ ω2

1

0

True

Perceptron

−1

The above figure shows two criteria that could be used (the
sample is from class ω1)

• True: this is the actual cost a simple 1/0 (incorrect/correct).
Let yi = −1 for class ω2, yi = 1 class ω1, this criterion can
be expressed as (using previous decision rule)

E(w̃) =
1

2

n
∑

i=1
|yi − y(xi)|

This criterion is not useful if gradient descent based al-
gorithms used (though meet again with SVM).

• Perceptron: an approximation to the true cost function,
the loss is the distance that observation is from the deci-
sion boundary.

4F10: Statistical Pattern Processing

Training Criteria

1

0

True

Perceptron

−1

28

4F10: Statistical Pattern Processing

Perceptron Criterion

D = {{x1, y1}, {x2, y2}, . . . , {xN, yN}}

E(w̃) =
n
∑

i=1

[−yi (w
′xi + b)]+ =

n
∑

i=1

[−yiw̃
′x̃i]+

[f(x)]+ =

{

f(x) if f(x) > 0
0 otherwise

4

7. Single Layer Perceptron & Estimating Linear Classifiers 5

Perceptron Criterion

The distance from the decision boundary is given by w̃
′
x̃.

However a problem is that we cannot simply sum the values
of w̃′

x̃ as a cost function since the sign depends on the class.

The perceptron cost-function can be written using the hinge-
loss function defined as

[f(x)]+ =

⎧

⎪

⎨

⎪

⎩

f(x) if f(x) > 0
0 otherwise

Let the class label training example yi again be specified as

yi =

⎧

⎪

⎨

⎪

⎩

1 if xi belongs to class 1
−1 if xi belongs to class 2

The perceptron criterion can be expressed as

E(w̃) =
n
∑

i=1
[−yi (w

′
xi + b)]+ =

n
∑

i=1
[−yiw̃

′
x̃i]+

To simplify the training it is possible to replace the training
observations by a normalised form

xi = yix̃i

This means that for a correctly classified symbol

w̃
′
xi > 0

and for mis-classified training examples

w̃
′
xi < 0

This process is sometimes referred to as normalising the data.

6 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Gradient Descent

Finding the “best” parameters is an optimisation problem.
First a cost function of the set of the weights must be defined,
E(w̃). Some learning process which minimises the cost func-
tion is then used. One basic procedure is gradient descent:

1. Start with some initial estimate w̃[0], τ = 0.

2. Compute the gradient ∇E(w̃)|w̃[τ]

3. Update weight by moving a small distance in the steepest
downhill direction, to give the estimate of the weights at
iteration τ + 1, w̃[τ + 1],

w̃[τ + 1] = w̃[τ]− η∇E(w̃)|w̃[τ]

This can be written for just the ith element

w̃i[τ + 1] = w̃i[τ]− η
∂E(w̃)

∂w̃i

∣

∣

∣

∣

∣

∣

∣

w̃[τ]

Set τ = τ + 1

4. Repeat steps (2) and (3) until convergence, or the optimi-
sation criterion is satisfied

One of the restrictions on using gradient descent is that the
cost function E(w̃) must be differentiable (and hence contin-
uous). We will see that this means mis-classification cannot
be used as the cost function for gradient descent schemes.

Gradient descent is not usually guaranteed to decrease the
cost function (compare to EM).

7. Single Layer Perceptron & Estimating Linear Classifiers 7

Choice of η

In the previous slide the learning rate term η was used in the
optimisation scheme.

Step size too large - divergence

E

Desired minima

slow
descent

η is positive. When setting η we need to consider:

• if η is too small, convergence is slow;

• if η is too large, we may overshoot the solution and di-
verge.

Later in the course we will examine improvements for gra-
dient descent schemes for highly complex schemes. Some of
these give techniques for automatically setting η.

8 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Local Minima

θ θ

C
rit

er
io

n

Local Minima

Global Minimum

Another problem with gradient decsent is local minima. At
all maxima and minima

∇E(w̃) = 0

• gradient descent stops at all maxima/minima

• estimated parameters will depend on starting point

• single solution if function convex

Expectation-Maximisation is also only guaranteed to find a
local maximum of the likelihood function for example.

7. Single Layer Perceptron & Estimating Linear Classifiers 9

Perceptron Algorithm

The perceptron criterion may be expressed as

E(w̃) =
n
∑

i=1
[−yiw̃

′
x̃i]+ =

∑

xi∈Y
(−w̃

′
xi)

where Y is the set of mis-classified points. We now want to
minimise the perceptron criterion using gradient descent. It
is simple to show that

∇E(w̃) =
∑

xi∈Y
(−xi)

Hence the gradient descent update rule is

w̃[τ + 1] = w̃[τ] + η
∑

xi∈Y [τ]
xi

where Y [τ] is the set of mis-classified points using w̃[τ]. For
the case when the samples are linearly separable using a value
of η = 1 is guaranteed to converge. The basic algorithm is:

1. Set xi = yix̃i (yi = −1 for class ω2, yi = 1 class ω1).

2. Initialise the weight vector w̃[0], τ = 0.

3. Using w̃[τ] produce the set of mis-classified samples Y [τ].

4. Use update rule

w̃[τ + 1] = w̃[τ] +
∑

xi∈Y [τ]
xi

then set τ = τ + 1.

5. Repeat steps (3) and (4) until the convergence criterion is
satisfied.

4F10: Statistical Pattern Processing

Perceptron Algorithm (update)

E(w̃) =
n
∑

i=1

[−yiw̃
′x̃i]+ =

∑

xi∈Y

(−w̃′xi)

w̃[τ + 1] = w̃[τ] +
∑

xi∈Y[τ]

xi

5

4F10: Statistical Pattern Processing

Possible Solutions

y1

y2

separating plane

solution
region

y1

y2

"separating" plane

solution
region

a
a

24

10 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Perceptron Solution Region

• Each sample x̃i places a constraint on the possible loca-
tion of a solution vector that classifies all samples cor-
rectly.

• w̃
′
x̃i = 0 defines a hyperplane through the origin on the

“weight-space” of w̃ vectors with x̃i as a normal vector.

• For normalised data, the solution vector must be on the
positive side of every such hyperplane.

• The solution vector, if it exists, is not unique and lies any-
where within the solution region

• Figure below (from DHS) shows 4 training points and
the solution region for both un-normalised data and nor-
malised data (note notation swap w̃ = a, x̃ = y).

y1

y2

separating plane

solution
region

y1

y2

"separating" plane

solution
region

a
a

7. Single Layer Perceptron & Estimating Linear Classifiers 11

A Simple Example

Consider a simple example:

Class 1 has points

⎡

⎢

⎣

1
0

⎤

⎥

⎦ ,

⎡

⎢

⎣

1
1

⎤

⎥

⎦ ,

⎡

⎢

⎣

0.6
0.6

⎤

⎥

⎦ ,

⎡

⎢

⎣

0.7
0.4

⎤

⎥

⎦

Class 2 has points

⎡

⎢

⎣

0
0

⎤

⎥

⎦ ,

⎡

⎢

⎣

0
1

⎤

⎥

⎦ ,

⎡

⎢

⎣

0.25
1

⎤

⎥

⎦ ,

⎡

⎢

⎣

0.3
0.4

⎤

⎥

⎦

Initial estimate: w̃[0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
1

−0.5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

This yields the following initial estimate of the decision bound-
ary.

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Given this initial estimate we need to train the decision bound-
ary.

12 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Simple Example (cont)

The first part of the algorithm is to use the current decision
boundary to obtain the set of mis-classified points.

For the data from Class ω1

Class ω1 1 2 3 4

z -0.5 0.5 0.1 -0.1
Class 2 1 1 2

and for Class ω2

Class ω2 1 2 3 4

z -0.5 0.5 0.5 -0.1
Class 2 1 1 2

The set of mis-classified points, Y [0], is

Y [0] = {1ω1, 4ω1, 2ω2, 3ω2}

From the perceptron update rule this yields the updated vec-
tor

w̃[1] = w̃[0] +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.7
0.4
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
−1
−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.25
−1
−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1.45
−0.6
−0.5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

7. Single Layer Perceptron & Estimating Linear Classifiers 13

Simple Example (cont)

This yields the following decision boundary

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Again applying the decision rule to the data we get for class
ω1

Class 1 1 2 3 4

z 0.95 0.35 0.01 0.275
Class 1 1 1 1

and for class ω2

Class 2 1 2 3 4

z -0.5 -1.1 -0.7375 -0.305
Class 2 2 2 2

All points correctly classified the algorithm has converged.

Is this a good decision boundary?

4F10: Statistical Pattern Processing

Discriminative Language Model

sentence1 = cat sat on the mat

P (sentence1) = w
′

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1(sentence1, aadvark)
...

f1(sentence1, zylophone)
f2(sentence1, aadvark, abacus)
...

f2(sentence1, zylophone, zygon)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

8

4F10: Statistical Pattern Processing

Maximum Likelihood Criterion

D = {{x1, y1}, {x2, y2}, . . . , {xn, yn}}

L(θ) =
n
∑

i=1

log(P (yi|xi,θ))

7

14 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Logistic Regression/Classification

Interesting to contrast the perceptron algorithm with logistic
regression/classification. This is a linear classifier, but a dis-
criminative model not a discriminant function. The training
criterion is

L(w̃) =
n
∑

i=1

⎡

⎢

⎣yi log

⎛

⎜

⎝

1

1 + exp(−w̃
′
x̃i)

⎞

⎟

⎠ + (1− yi) log

⎛

⎜

⎝

1

1 + exp(w̃′
x̃i)

⎞

⎟

⎠

⎤

⎥

⎦

where (note change of label definition)

yi =

⎧

⎪

⎨

⎪

⎩

1, xi generated by class ω1

0, xi generated by class ω2

It is simple to show that (has a nice intuitive feel)

∇L(w̃) =
n
∑

i=1

⎛

⎜

⎝yi −
1

1 + exp(−w̃
′
x̃i)

⎞

⎟

⎠ x̃i

Maximising the log-likelihood is equal to minimising the neg-
ative log-likelihood, E(w̃) = −L(w̃). Update rule then be-
comes

w̃[τ + 1] = w̃[τ] + η∇L(w̃)|w̃[τ]

Compared to the perceptron algorithm:

• need an appropriate method to select η;

• does not necessarily correctly classify training data even
if linearly separable;

• not necessary for data to be linearly separable;

• yields a class posterior (use Bayes’ decision rule to get
hypothesis).

7. Single Layer Perceptron & Estimating Linear Classifiers 15

Fisher’s Discriminant Analysis

A different approach to training the parameters of the per-
ceptron is to use Fisher’s discriminant analysis. The basic
aim here is to choose the projection that maximises the dis-
tance between the class means, whilst minimising the within
class variance. Note only the projection w is determined. The
following cost function is used

E(w) = −
(µ1 − µ2)

2

s1 + s2

where sj and µj are the projected scatter matrix and mean for
class ωj. The projected scatter matrix is defined as

sj =
∑

xi∈ωj
(xi − µj)

2

The cost function may be expressed as

E(w) = −
w′Sbw

w′Sww

where

Sb = (µ1 − µ2)(µ1 − µ2)
′

and

Sw = S1 + S2

where

Sj =
∑

xi∈ωj
(xi − µj)(xi − µj)

′

the mean of the class µj is defined as usual.

4F10: Statistical Pattern Processing

Fisher’s Linear Discriminant

E(w) = −
w′Sbw

w′Sww

8

16 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Fisher’s Discriminant Analysis (cont)

Differerentiating E(w) with respect to the weights, we find
that it is minimised when

(ŵ′
Sbŵ)Swŵ = (ŵ′

Swŵ)Sbŵ

From the definition of Sb

Sbŵ = (µ1 − µ2)(µ1 − µ2)
′
ŵ

= ((µ1 − µ2)
′
ŵ) (µ1 − µ2)

We therefore know that

Swŵ ∝ (µ1 − µ2)

Multiplying both sides by S−1
w yields

ŵ ∝ S
−1
w (µ1 − µ2)

This has given the direction of the decision boundary. How-
ever we still need the bias value b.

If the data is separable using the Fisher’s discriminant it makes
sense to select the value of b that maximises the margin. Sim-
ply put this means that, given no additional information, the
boundary should be equidistant from the two points either
side of the decision boundary.

7. Single Layer Perceptron & Estimating Linear Classifiers 17

Example

Using the previously described data

µ1 =

⎡

⎢

⎣

0.825
0.500

⎤

⎥

⎦ ; µ2 =

⎡

⎢

⎣

0.1375
0.600

⎤

⎥

⎦

and

Sw =

⎡

⎢

⎣

0.2044 0.0300
0.0300 1.2400

⎤

⎥

⎦

So solving this yields, for the direction, and taking the mid-
point between the observations closest to the decision bound-
ary

ŵ =

⎡

⎢

⎣

3.3878
−0.1626

⎤

⎥

⎦ , w̃[1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3.3878
−0.1626
−1.4432

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

18 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Kesler’s Construct

So far we have only examined binary classifiers. The direct
use of multiple binary classifiers can results in no-decision
regions (see examples paper).

The multi-class problem can be converted to a 2-class prob-
lem. Consider an extended observation x̃ which belongs to
class ω1. Then to be correctly classified

w̃
′
1x̃− w̃

′
jx̃ > 0, j = 2, . . . , K

There are therefore K−1 inequalities requiring that the K(d+
1)-dimensional vector

α =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

w̃1
...

w̃K

⎤

⎥

⎥

⎥

⎥

⎥

⎦

correctly classifies all K − 1 set of K(d+1)-dimensional sam-
ples

γ12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̃

−x̃

0
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, γ13 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̃

0

−x̃
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, . . . , γ1K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̃

0

0
...

−x̃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The multi-class problem has now been transformed to a two-
class problem at the expense of increasing the effective di-
mensionality of the data and increasing the number of train-
ing samples. We now simply optimise for α.

7. Single Layer Perceptron & Estimating Linear Classifiers 19

Limitations of Linear Decision
Boundaries

Perceptrons were very popular until the 1960’s when it was
realised that it couldn’t solve the XOR problem.

We can use perceptrons to solve the binary logic operators
AND, OR, NAND, NOR.

Σ
1

−1

1

1

x1

1x2

−1.5 AND

(a) AND operator

Σ
1

−1

1

1

x1

1x2

−0.5 OR

(b) OR operator

Σ
1

−1

−1

1

x1

−1x2

1.5 NAND

(c) NAND operator

Σ
1

−1

−1

1

x1

−1x2

0.5 NOR

(d) NOR operator

4F10: Statistical Pattern Processing

XOR Logic

Σ
1

−1

−1

1

−1

1.5 NAND

Σ
1

−1

1

1

x1

1x2

−0.5 OR

Σ
1

−1

1

1

1

−1.5 AND

25

20 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

XOR (cont)

But XOR may be written in terms of AND, NAND and OR
gates

Σ
1

−1

−1

1

−1

1.5 NAND

Σ
1

−1

1

1

x1

1x2

−0.5 OR

Σ
1

−1

1

1

1

−1.5 AND

This yields the decision boundaries

So XOR can be solved using a two-layer network. The prob-
lem is how to train multi-layer perceptrons. In the 1980’s
an algorithm for training such networks was proposed, error
back propagation.

7. Single Layer Perceptron & Estimating Linear Classifiers 21

Summary

This lecture has examined:

• single layer perceptrons (SLPs)

• perceptron algorithym

• gradient descent

• Fisher’s discriminant analysis

The next few lectures will extend these concepts:

• multi-layer perceptons (MLPs)

• training MLPs

• improved gradient descent

• support vector machines (SVMs)

• maximum margin training for linear classifiers

• use of kernels for non-linear decision boundaries.

