
University of Cambridge
Engineering Part IIB

Module 4F10: Statistical Pattern
Processing

Handout 8: Multi-Layer Perceptrons

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

Mark Gales
mjfg@eng.cam.ac.uk

Michaelmas 2013

8. Multi-Layer Perceptrons 1

Introduction

In the next two lectures we will look at Multi-Layer Percep-
trons (MLPs) which are more powerful than the Single-Layer
models which construct linear decision boundaries. It will be
seen that MLPs can be trained as a discriminative model to
yield class posteriors.

MLPs are classified as a type of Artificial Neural Network:
the computation is performed using a set of (many) simple
units with weighted connections between them. Furthermore
there are learning algorithms to set the values of the weights
and the same basic structure (with different weight values) is
able to perform many tasks.

In this and the following lecture we will consider

• Overall structure of multi-layer perceptrons

• Decision boundaries that they can form

• Training Criteria

• Networks as posterior probability estimators

• Basic Error back-propagation training algorithm

• Improved training methods

• Deep Neural networks

2 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Multi-Layer Perceptron

From the previous lecture we need a multi-layer perceptron
to handle the XOR problem. More generally multi-layer per-
ceptrons allow a neural network to perform arbitrary map-
pings.

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

A 2-hidden layer neural network is shown above. The aim
is to map an input vector x into an output y(x). The layers
may be described as:

• Input layer: accepts the data vector or pattern;

• Hidden layers: one or more layers. They accept the out-
put from the previous layer, weight them, and pass through
a, normally, non-linear activation function.

• Output layer: takes the output from the final hidden layer
weights them, and possibly pass through an output non-
linearity, to produce the target values.

8. Multi-Layer Perceptrons 3

Possible Decision Boundaries

The nature of the decision boundaries that may be produced
varies with the network topology. Here only threshold (see
the single layer perceptron) activation functions are used.

(3)(2)(1)

There are three situations to consider

1. Single layer: this is able to position a hyperplane in the
input space (the SLP).

2. Two layers (one hidden layer): this is able to describe a
decision boundary which surrounds a single convex re-
gion of the input space.

3. Three layers (two hidden layers): this is able to to gener-
ate arbitrary decision boundaries

Note: any decision boundary can be approximated arbitrar-
ily closely by a two layer network having sigmoidal activa-
tion functions if there are enough hidden units.

4 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Number of Hidden Units

From the previous slide we can see that the number of hid-
den layers determines the decision boundaries that can be
generated. In choosing the number of layers the following
considerations are made.

• Multi-layer networks are harder to train than single layer
networks.

• A two layer network (one hidden) with sigmoidal activa-
tion functions can model any decision boundary.

Two layer networks are most commonly used in pattern recog-
nition (the hidden layer having sigmoidal activation func-
tions).

How many units to have in each layer?

• The number of output units is often determined by the
number of output classes.

• The number of inputs is determined by the number of
input dimensions

• The number of hidden units is a design issue. The prob-
lems are:

– too few, the network will not model complex decision
boundaries;

– too many, the network will have poor generalisation.

8. Multi-Layer Perceptrons 5

Hidden Layer Perceptron

The form of the hidden, and the output, layer perceptron is
a generalisation of the single layer perceptron from the pre-
vious lecture. Now the weighted input is passed to a general
activation function, rather than a threshold function.

Consider a single perceptron. Assume that there are n units

at the previous level (k − 1) - x(k)j = yj(x(k−1))

Σ

in

wi2

wi1

1

x

x

x

1

2

n

b i

i
zi

function
Activation

y (x)

w

(k)

(k)

(k)

(k)

The output from the perceptron, yi(x) may be written as

yi(x
(k)) = φ(zi) = φ(w′

ix
(k) + bi) = φ(

n
∑

j=1
wijx

(k)
j + bi)

where φ() is the activation function.

We have already seen one example of an activation function
the threshold function. Other forms are also used in multi-
layer perceptrons.

Note: the activation function is not necessarily non-linear.
However, if linear activation functions are used much of the
power of the network is lost.

6 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Activation Functions

There are a variety of non-linear activation functions that
may be used. Consider the general form

yi(x) = φ(w′
ix + bi) = φ(zi)

and there are n units, perceptrons, for the current level.

• Heaviside (or step) function:

yi(x) =











0, zi < 0
1, zi ≥ 0

These are sometimes used in threshold units, the output
is binary (gives a discriminant function).

• Sigmoid (or logistic regression) function:

yi(x) =
1

1 + exp(−zi)

The output is continuous, 0 ≤ yi(x) ≤ 1.

• Softmax (or normalised exponential or generalised logis-
tic) function:

yi(x) =
exp(zi)

∑n
j=1 exp(zj)

The output is positive and the sum of all the outputs at
the current level is 1, 0 ≤ yi(x) ≤ 1.

• Hyperbolic tan (or tanh) function:

yi(x) =
exp(zi)− exp(−zi)

exp(zi) + exp(−zi)

The output is continuous, −1 ≤ yi(x) ≤ 1.

8. Multi-Layer Perceptrons 7

Activation Functions (cont)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Graph shows:

• step activation function (green)

• sigmoid activation function (red)

• tanh activation function (blue)

Sigmoid, or softmax, often used at output layers as sum-to-
one constraint is enforced.

8 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Training Criteria

A variety of training criteria may be used. Assuming we
have supervised training examples

{{x1, t1} . . . , {xn, tn}}

Some standard examples are:

• Least squares error: one of the most common training
criteria.

E =
1

2

n
∑

p=1
||y(xp)− tp)||

2

=
1

2

n
∑

p=1

K
∑

i=1
(yi(xp)− tpi)

2

This may be derived from considering the targets as be-
ing corrupted by zero-mean Gaussian distributed noise.

• Cross-Entropy for two classes: consider the case when t

is binary (and softmax output). The expression is

E = −
n
∑

p=1
(tp log(y(xp)) + (1− tp) log(1− y(xp)))

This expression goes to zero with the “perfect” mapping
- compare logistic regression training.

• Cross-Entropy for multiple classes: the above expression
becomes (again softmax output)

E = −
n
∑

p=1

K
∑

i=1
tpi log(yi(xp))

The minimum value is now non-zero, it represents the
entropy of the target values.

8. Multi-Layer Perceptrons 9

Posterior Probabilities

Consider the multi-class classification training problem with

• d-dimensional feature vectors: x;

• K-dimensional output from network: y(x);

• K-dimensional target: t.

We would like the output of the network, y(x), to approxi-
mate the posterior distribution of the set of K classes. So

yi(x) ≈ P (ωi|x)

Consider training a network with:

• 1-out-ofK coding, i.e.

ti =











1 if x ∈ ωi

0 if x '∈ ωi

The network will act as a d-dimensional to K-dimensional
mapping.

Can we interpret the output of the network?

A couple of assumptions will be made

• errors from each output independent (not true of soft-
max)

• error is a function of the magnitude difference of output
and target E =

∑K
i=1 f(|yi(x)− ti|)

10 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Posterior Probabilities (cont)

In the limit of infinite training data,

E{E} =
K
∑

i=1

∫

∑

t
f(|yi(x)− ti|)P (t|x)p(x)dx

As we are using the 1-out-of-K coding

P (t|x) =
K
∏

i=1







K
∑

j=1
δ(ti − δij)P (ωj|x)







where

δij =











1, (i = j)
0, otherwise

This yields

E{E} =
K
∑

i=1

∫

(f(1− yi(x))P (ωi|x) + f(yi(x))(1− P (ωi|x))) p(x)dx

Differentiating and equating to zero, for least squared, cross-
entropy solutions are

yi(x) = P (ωi|x)

- this is a discriminative model.

Some limitations exist for this to be valid:

• an infinite amount of training data, or knowledge of cor-
rect joint distribution for p(x, t);

• the topology of the network is “complex” enough that
final error is small;

• the training algorithm used to optimise the network is
good - it finds the global maximum.

8. Multi-Layer Perceptrons 11

Compensating for Different Priors

The approach described at the start of the course was to use
Bayes’ law to obtain the posterior probability for generative
models.

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)

where the priors class priors, P (ωj), and class conditional
densities, p(x|ωj), are estimated separately. For some tasks
the two use different training data (for example for speech
recognition, the language model and the acoustic model).

How can this difference in priors from the training and the
test conditions be built into the neural network framework
where the posterior probability is directly calculated? (This
is applicable to all discriminative models)

Again using Bayes’ law

p(x|ωj) ∝
P (ωj|x)

P (ωj)

Thus if posterior is divided by the training data prior a value
proportional to the class-conditional probability can be ob-
tained. The standard form of Bayes’ rule may now be used
with the appropriate, different, prior.

12 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Error Back Propagation

So far the training of MLPs has not been discussed. Orig-
inally interest in MLPs was limited due to issues in train-
ing. These problems were partly addressed with the devel-
opment of the error back propagation algorithm.

Inputs

xd

x2

x1

Hidden
layer

Output
layer

y (x)K

y (x)2

1y (x)

Outputs

A single hidden layer network is shown above. Using sig-
moidal activation functions arbitrary decision boundaries may
be obtained with this network topology.

The error back propagation algorithm is based on gradient
descent. Hence the activation function must be differentiable.
Thus threshold and step units will not be considered. We
need to be able to compute the derivative of the error func-
tion with respect to the weights of all layers.

All gradients in the next few slides are evaluated at the cur-
rent model parameters.

8. Multi-Layer Perceptrons 13

Single Layer Perceptron
Rather than examine the multi-layer case instantly, consider
the following single layer perceptron.

Σ

wd

w2

w1

1

x

x

x

1

2

d

y(x)z
function

Activationb

We would like to minimise (for example) the square error
between the target of the output, tp, and the current out-
put value y(xp). Assume that the training criterion is least
squares and the activation function is known to be a sigmoid
function. The cost function may be written as

E =
1

2

n
∑

p=1
(y(xp)− tp)

′(y(xp)− tp)) =
n
∑

p=1
E(p)

To simplify notation, we will only consider a single obser-
vation x with associated target values t and current output
from the network y(x). The error with this single observa-
tion is denoted E.

How does the error change as y(x) changes?

∂E

∂y(x)
= y(x)− t

But we are not interested in y(x)

How do we find the effect of varying the weights?

14 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

SLP Training (cont)
Calculate effect of changing z on the error using the chain
rule

∂E

∂z
=







∂E

∂y(x)













∂y(x)

∂z







However what we really want is the change of the error with
respect to the weights (the parameters that we want to learn).

∂E

∂wi
=





∂E

∂z









∂z

∂wi





The error function therefore depends on the weight as

∂E

∂wi
=







∂E

∂y(x)













∂y(x)

∂z











∂z

∂wi





Noting that (the bias term b can be treated as the d+1 element)

∂y(x)

∂z
= y(x)(1− y(x))

∂E

∂wi
= (y(x)− t)y(x)(1− y(x))xi

This has been computed for a single observation. We are in-
terested in terms of the complete training set. We know that
the total errors is the sum of the individual errors, so

∇E =
n
∑

p=1
(y(xp)− tp)y(xp)(1− y(xp))x̃p

So for a single layer we can use gradient descent schemes to
find the “best” weight values. We can also apply the above to
compute the derivatives wrt the weights for the final hidden
to output layer for an MLP.

8. Multi-Layer Perceptrons 15

Error Back Propagation Algorithm

Now consider a particular node, i, of hidden layer k. Using
the previously defined notation, the input to the node is x(k)

and the output y(k)i .

Σwi2

wi1

1

x

x

x

1

2

b i

yi
zi

function
Activation

(k)

(k)

(k) (k)

(k)

(k)

(k)

(k)wiN(k−1)
N(k−1)

(k)

From the previous section it is possible to derive the rate of
change of the error function with the weights of the output
layer. Need to examine the rate of change with the kth hidden
layer weights.

The parameters of the network for layer k can be written as

W̃
(k)

=
[

W(k) b(k)
]

W̃(k) is an N (k) × (N (k−1) + 1) matrix

• output from previous layer is the input to the next layer

Using this fact allows the SLP training expression to be ex-
tended to allow training of an MLP. [The forms of the maths
behind this are given at the end of these notes].

16 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Error Back Propagation Summary

To calculate ∇E(p)
∣

∣

∣

∣θ[τ]
(θ[τ] is the set of “current” (training

epoch τ) values of the weights) we use the following algo-
rithm.

1. Apply the input vectorxp to the network and use the feed
forward matrix equations to propagate the input forward
through the network. For all layers this yields y(k) and
z(k).

2. Compute ∂E
∂y(x)

∣

∣

∣

∣

∣θ[τ]
(the gradient at the output layer).

3. Using the back-propagation formulae back-propagate the
δs back through the network, layer by layer and hence
the partial derivatives for each weight.

Having obtained the derivatives of the error function with
respect to the weights of the network, we need a scheme to
optimise the value of the weights.

The obvious choice is gradient descent

8. Multi-Layer Perceptrons 17

Gradient Descent

Having found an expression for the gradient, gradient de-
scent may be used to find the values of the weights.

Initially consider a batch update rule. Here

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ]− η

∂E

∂w̃
(k)
i

∣

∣

∣

∣

∣

∣

∣θ[τ]

where θ[τ] = {W̃(1)[τ], . . . ,W̃(L+1)[τ]}, w̃(k)
i [τ] is the ith row of

W̃(k) at training epoch τ and

∂E

∂w̃
(k)
i

∣

∣

∣

∣

∣

∣

∣θ[τ]

=
n
∑

p=1

∂E(p)

∂w̃
(k)
i

∣

∣

∣

∣

∣

∣

∣θ[τ]

If the total number of weights in the system is N then all N
derivatives may be calculated in O(N) operations with mem-
ory requirements O(N).

However in common with other gradient descent schemes
there are problems as:

• we need a value of η that achieves a stable, fast descent;

• the error surface may have local minima, maxima and
saddle points.

This has lead to refinements of gradient descent.

18 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Training Schemes

On the previous slide the weights were updated after all n
training examples have been seen. This is not the only scheme
that may be used.

• Batch update: the weights are updated after all the train-
ing examples have been seen. Thus

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ]− η







n
∑

p=1

∂E(p)

∂w̃
(k)
i

∣

∣

∣

∣

∣

∣

∣θ[τ]









• Sequential update: the weights are updated after every
sample. Now

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ]− η

∂E(p)

∂w̃
(k)
i

∣

∣

∣

∣

∣

∣

∣θ[τ]

and we cycle around the training vectors.
There are some advantages of this form of update.

– It is not necessary to store the whole training database.
Samples may be used only once if desired.

– They may be used for online learning

– In dynamic systems the values of the weights can be
updated to “track” the system.

In practice forms of batch training or an intermediate be-
tween batch and sequential training are often used.

8. Multi-Layer Perceptrons 19

Refining Gradient Descent

There are some simple techniques to refine standard gradient
descent. First consider the learning rate η. We can make this
vary with each iteration. One of the simplest rules is to use

η[τ + 1] =











1.1η[τ]; if E(θ[τ]) < E(θ[τ − 1])
0.5η[τ]; if E(θ[τ]) > E(θ[τ − 1])

In words: if the previous value of η[τ] decreased the value of
the cost function, then increase η[τ]. If the previous value of
η[τ] increased the cost function (η[τ] too large) then decrease
η[τ].

It is also possible to add a momentum term to the optimisa-
tion (common in MLP estimation). The update formula is

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ] +∆w̃

(k)
i [τ]

where

∆w̃
(k)
i [τ] = −η[τ + 1]

∂E

∂w̃
(k)
i

∣

∣

∣

∣

∣

∣

∣θ[τ]

+ α[τ]∆w̃
(k)
i [τ − 1]

The use of the momentum term, α[τ]:

• smooths successive updates;

• helps avoid small local minima.

Unfortunately it introduces an additional tunable parameter
to set. Also if we are lucky and hit the minimum solution we
will overshoot.

20 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Iris Data

Again using the Iris data (only petal information) with:

• least squared error training

• tanh hidden, softmax output layer activation functions

• data transformed - zero mean +/-5 range

• gradient descent (with momentum)

• batch update, η = 0.1, (momentum α = 0.8)

0 5 10 15 20 25 30
0

5

10

15

20

25
training error (epoch size = 75)

epoch

er
ro

r

0 2 4 6 8 10 12 14 16 18 20
10

15

20

25

30

35

40
training error (epoch size = 75)

epoch

er
ro

r

3 hidden units 100 hidden units

Plots show stability issues, in this case as the number of hid-
den units is increased.

How to set learning rates to get stable training?

8. Multi-Layer Perceptrons 21

Quadratic Approximation

Gradient descent makes use of first-order derivatives of the
error function. What about higher order techniques?

Consider the vector form of the Taylor series

E(θ) = E(θ[τ]) + (θ − θ[τ])′g

+
1

2
(θ − θ[τ])′H(θ − θ[τ]) +O(θ3)

where

g = ∇E(θ)|θ[τ]

and

(H)ij = hij =
∂2E(θ)

∂wi∂wj

∣

∣

∣

∣

∣

∣

∣θ[τ]

Ignoring higher order terms we find

∇E(θ) = g +H(θ − θ[τ])

Equating this to zero we find that the value of θ at this point
θ[τ + 1] is

θ[τ + 1] = θ[τ]−H−1g

This gives us a simple update rule. The direction H−1g is
known as the Newton direction.

22 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Problems with the Hessian

In practice the use of the Hessian is limited.

1. The evaluation of the Hessian may be computationally
expensive as O(N2) parameters must be accumulated for
each of the n training samples.

2. The Hessian must be inverted to find the direction, O(N3).
This gets very expensive as N gets large.

3. The direction given need not head towards a minimum -
it could head towards a maximum or saddle point. This
occurs if the Hessian is not positive-definite i.e.

v′Hv > 0

for all v.

4. If the surface is highly non-quadratic the step sizes may
be too large and the optimisation becomes unstable.

Approximations to the Hessian are commonly used.

The simplest approximation is to assume that the Hessian is
diagonal. This ensures that the Hessian is invertible and only
requires N parameters.

The Hessian may be made positive definite using

H̃ = H + λI

If λ is large enough then H̃ is positive definite.

8. Multi-Layer Perceptrons 23

QuickProp

An interesting approximate second-order optimisation ap-
proach is quickprop. This makes some assumptions about
the nature of the problem

• error surface is quadratic in nature

• the change of slope of error function wrt to a weight may
be treated independently of all other weights (diagonal
Hessian)

This yields an interesting update rule. Consider the surface
for a single weight denoted by θ

E(θ) ≈ E(θ[τ]) + b(θ − θ[τ]) + a(θ − θ[τ])2

∂E(θ)

∂θ
≈ b + 2a(θ − θ[τ])

The following information is then used to find a and b

• the update difference, ∆θ[τ − 1], and gradient, g[τ − 1], at
iteration τ − 1

• the gradient at iteration τ is g[τ]

• after applying the unknown offset∆θ[τ] the gradient should
be zero (a minimum)

The following equalities are obtained

g[τ − 1] = b− 2a∆θ[τ − 1], 0 = b + 2a∆θ[τ], g[τ] = b

and solving gives

∆θ[τ] =
g[τ]

g[τ − 1]− g[τ]
∆θ[τ − 1]

24 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

QuickProp (cont)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4

4.5

5

5.5

6

6.5

7

θ[τ−1] θ[τ]

The operation of quick-prop is illustrated above.

• The assumed quadratic error surface is shown in blue

• The statistics for quickprop are shown in red

The new-estimate will lie exactly at the minimum of the quadratic
approximation

θ[τ + 1] = 1

8. Multi-Layer Perceptrons 25

Regularisation

One of the major issues with training neural networks is how
to ensure generalisation. One commonly used technique is
weight decay. A regulariser may be used. Here

Ω =
1

2

N
∑

i=1
w2

i

where N is the total number of weights in the network. A
new error function is defined

Ẽ = E + νΩ

Using gradient descent on this gives

∇Ẽ = ∇E + νw

The effect of this regularisation term Ω penalises very large
weight terms. From empirical results this has resulted in im-
proved performance.

Rather than using an explicit regularisation term, the “com-
plexity” of the network can be controlled by training with
noise.

For batch training we replicate each of the samples multiple
times and add a different noise vector to each of the sam-
ples. If we use least squares training with a zero mean noise
source (equal variance ν in all the dimensions) the error func-
tion may be shown to have the form

Ẽ = E + νΩ

This is a another form of regularisation.

26 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Iris Data Example

Again using the Iris data (only petal data) with:

• 3-unit hidden-layer

• tanh hidden, softmax output layer activation functions

• data transformed - zero mean +/-5 range

• batch update, η = 0.1, α = 0.8

Data split into 75 training samples, 75 test samples.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Class 1
Class 2
Class 3
Errors

0 5 10 15 20 25 30
0

5

10

15

20

25
training error (epoch size = 75)

epoch

er
ro

r

Performance: training data above (1/75) test error below (4/75)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Class 1
Class 2
Class 3
Errors

8. Multi-Layer Perceptrons 27

Deep Neural Networks

For many years research into neural networks typically ex-
amined configurations with few (typically one or two) hid-
den layers and relatively small number of parameters. The
reasons for this were:

1. a small number of layers with sufficient units could ap-
proximate any decision boundary;

2. computational issues with using large numbers of model
parameters (and layers);

3. initialisation of the network parameters (and optimisa-
tion approaches).

Recent research typically uses larger numbers of hidden lay-
ers - for this reason the MLPs are sometimes refered to as
Deep Neural Networks.

28 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Network Initialisation

For the optimisation approaches described, the network pa-
rameters for each layer must be initialised. Three approaches
that are used are:

1. random: the parameters are randomly distributed, usu-
ally samples drawn from a zero mean Gaussian distribu-
tion. This was the standard approach for many years;

2. restricted Boltzmann machine: this initialises the network
parameters using the generative RBM. This involves the
layer-by-layer generation of an RBM where the number
of elements matches the number required in the final net-
work.

x3x1 x4 x2 x3x1 x4

h1 h2 h3 h3

h1 h2 h3h1 h2 h3

x2

This is sometimes refered to as generative pre-training. If
the hidden layers are not further trained, so only the out-
put layer is discrimanitively trained (single layer train-
ing), the network is sometimes referred to as a deep belief
network.

8. Multi-Layer Perceptrons 29

3. layer-by-layer training: rather than initialising all the pa-
rameters in one go, hidden layers of the network are in-
crementally added. After each new layer is added (using
random initial values) the network is then trained.

h1 h2 h3

h1 h2 h3

h1 h2 h3

x2 x3x1 x4

t 1 t 2 t 3 t 4

t 1 t 2 t 3 t

x

4

2 x3x1 x4

The number of iterations when each layer is added is of-
ten limited to reduce training time. This is sometimes
called discriminative pre-training.

After the network has been initialised standard error-back
propagation can be used. In the context of deep neural net-
works this is called fine-tuning.

30 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Hidden Layer Configurations &
Training

The arguments for larger numbers of layers are:

• though a single layer in theory (with a sigmoid activa-
tion function) allows any form of decision boundary to
be modelled, in practice there is only finite training data,
thus the number of single layer units is bounded;

• appropriate network initialisation should allow many lay-
ers to be trained without gradients “vanishing”.

For Deep Neural Networks many hidden layers (often > 5)
are used. These have been shown to yield better performance
having a large number of hidden units in one or two layers.

In addition for training large systems stochastic gradient de-
scent is used. Here a sequential (example-by-example), or
mini-batch (small number of samples), update is used. How-
ever rather than using observations in a fixed order the data
is randomly ordered after updates using all the data has been
completed.

8. Multi-Layer Perceptrons 31

Graphical Processor Units

Compute power (based on CPUs) has continued to improve
over the last decade. This has enabled more complicated net-
works to be examined. Recently Graphical Processor Units
(GPUs) have also been applied to training MLPs.

GPUs were originally designed for manipulating and creat-
ing images. They have a highly parallelized architecture (ma-
nipulate pixels in parallel). Training neural networks also
maps well to this sort of architecture - these are increasingly
used in many large-scale training of deep neural networks.

32 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Reference - Error Back Propagation

Consider a multi-layer perceptron with:

• d-dimensional input data;

• L hidden layers (L + 1 layer including the output layer);

• N (k) units in the kth level;

• K-dimensional output.

Σwi2

wi1

1

x

x

x

1

2

b i

yi
zi

function
Activation

(k)

(k)

(k) (k)

(k)

(k)

(k)

(k)wiN(k−1)
N(k−1)

(k)

The following notation will be used

• x(k) is the input to the kth layer

• x̃(k) is the extended input to the kth layer

x̃(k) =







x(k)

1







• W(k) is the weight matrix of the kth layer. By definition
this is a N (k) ×N (k−1) matrix.

8. Multi-Layer Perceptrons 33

Notation (cont)

• W̃(k) is the weight matrix including the bias weight of the
kth layer. By definition this is a N (k) × (N (k−1)+ 1) matrix.

W̃(k) =
[

W(k) b(k)
]

• z(k) is the N (k)-dimensional vector defined as

z(k) = W̃(k)x̃(k)

• y(k) is the output from the kth layer, so

y
(k)
j = φ(z(k)j)

All the hidden layer activation functions are assumed to be
the same φ(). Initially we shall also assume that the output
activation function is also φ().

The following matrix notation feed forward equations may
then used for a multi-layer perceptron with input x and out-
put y(x).

x(1) = x

x(k) = y(k−1)

z(k) = W̃(k)x̃(k)

y(k) = φ(z(k))

y(x) = y(L+1)

where 1 ≤ k ≤ L + 1.

The target values for the training of the networks will be de-
noted as t for training example x.

34 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Error Back Propagation Algorithm

Need to calculate ∂E

∂w̃
(k)
ij

for all layers, k, and all rows and columns

of W̃(k). Applying the chain rule

∂E

∂w̃
(k)
ij

=
∂E

∂z
(k)
i

∂z
(k)
i

∂w̃
(k)
ij

= δ
(k)
i x̃

(k)
j

where

∂E

∂z
(k)
i

= δ
(k)
i

and the δ’s are sometimes known as the individual “errors”
(that are back-propagated).
For the output nodes the evaluation of δi is straightforward
as we saw for the single layer perceptron.
To evaluate the δi’s for hidden layers

δ
(k)
i =

∑

m







∂E

∂z
(k+1)
m

∂z(k+1)
m

∂z
(k)
i







where it is assumed that only the units in layer k + 1 are con-
nected to units in layer k, or

δ
(k)
i = y

(k)
i (1− y

(k)
i)

∑

m
w̃

(k+1)
mi δ(k+1)

m

Note that all that is being done here is evaluating the differ-
entials of the error at the output with respect to the weights
throughout the network by using the chain rule for partial
derivatives.

8. Multi-Layer Perceptrons 35

Matrix Formulation

In matrix notation we can write

∂E

∂W̃(k)
= δ(k)x̃(k)′

We need to find a recursion for δ(k).

δ(k) =




∂E

∂z(k)





=







∂z(k+1)

∂z(k)











∂E

∂z(k+1)





=







∂y(k)

∂z(k)













∂z(k+1)

∂y(k)





 δ(k+1)

But we know from the forward recursions

∂z(k+1)

∂y(k)
=

∂z(k+1)

∂x(k+1)
= W(k+1)′

This yields the recursion

δ(k) = Λ(k)W(k+1)′δ(k+1)

36 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Matrix Formulation (cont)

Define the activation derivative matrix for layer k as

Λ(k) =
∂y(k)

∂z(k)
=











































∂y
(k)
1

∂z
(k)
1

∂y
(k)
2

∂z
(k)
1

. . .
∂y

(k)

N(k)

∂z
(k)
1

∂y
(k)
1

∂z
(k)
2

∂y
(k)
2

∂z
(k)
2

. . .
∂y

(k)

N(k)

∂z
(k)
2...

∂y
(k)
1

∂z
(k)

N(k)

∂y
(k)
2

∂z
(k)

N(k)

. . .
∂y

(k)

N(k)

∂z
(k)

N(k)











































This has given a matrix form of the backward recursion for
the error back propagation algorithm.

We need to have an initialisation of the backward recursion.
This will be from the output layer (layer L + 1)

δ(L+1) =
∂E

∂z(L+1)

=







∂y(L+1)

∂z(L+1)











∂E

∂y(L+1)





= Λ(L+1)







∂E

∂y(x)







Λ(L+1) is the activation derivative matrix for the output layer.

