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Linear Decision Boundaries

A number of criteria have been presented for training linear
decision boundaries:

• Gaussian class-conditional distributions (tied covariances);

• perceptron algorithm;

• logistic regression/classification

• Fisher’s discriminant analysis.

A linear decision boundary is characterised by

• direction: normally written w;

• bias: normally written b.

For the binary (two class) problem the decision rule is

ω̂ =











1, w′x + b ≥ 0
−1, w′x + b ≤ 0

In the literature it is common to write the dot-product as

w′x = 〈w,x〉

This will be the notation used in the next two lectures.
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Training Data

The linear decision boundaries examined in these lectures
are:

• static: the observations are of fixed length;

• binary: there are only two classes.

Supervised training data will be used. This consists of pairs
training samples of the form

{{x1, y1}, . . . , {xm, ym}}

where

• xi is the observation for the ith sample;

• yi is the class label for the ith sample (yi ∈ {−1, 1})

Correct classification of the training will satisfy

yi (〈w,xi〉 + b) ≥ 0

This form of classification will be use for SVM training.
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Generalisation Revisited

The concept of generalisation and its importance was de-
scribed at the start of the course.

For a classifier, f(x,θ), trained with parameters θ, the ex-
pected test error may be expressed as

R(θ) =
∑

y

∫ 1

2
|y − f(x,θ)| p(x, y)dx

R(θ) is called the expected risk (sometimes called actual risk).

Normally it is not possible to find p(x, y), so the empirical
risk Remp(θ) is used

Remp(θ) =
1

2m

m
∑

i=1

|yi − f(xi,θ)|

We know this is a lower bound, so

R(θ) ≥ Remp(θ)

Though interesting, an upper bound would be more useful.

One famous upper bound is based on the use of the VC di-
mension. With probability 1− η (0 ≤ η ≤ 1)

R(θ) ≤ Remp(θ) +

√

√

√

√

√

√







h(log(2m/h) + 1)− log(η/4)

m







h is the VC dimension. If the empirical error rate is zero then
a classifier is selected that minimises the right-hand expres-
sion.
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VC Dimension

For the binary case the VC dimension is defined as

The VC dimension for a learning machine is defined
as the maximum number of training points that can
be shattered by that learning machine.

The above diagram shows an example of three points in R2

being shattered by a linear decision boundary. The higher
the dimension the higher the number of points that can be
shattered.

The bound on the previous page varies as:

• the number of training examples, m, increases so the bound
is closer to Remp(θ);

• as the VC dimension, h, increases so the RHS of the bound
gets larger.
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Support Vector Machine

The support vector machine is one approach to training lin-
ear decision boundaries.

The training of an SVM aims is related to attempting to min-
imising the RHS of the bound of expected risk.

It has some other attractive properties:

• unique solution (compare to perceptron algorithm);

• possible to kernelise training and classification;

• they work!

The training criterion for SVMs can be summarised as:

find the optimal decision boundary distinguished by
the maximum margin of separation between any point
and the decision boundary.

If you are interested in SVMs, and other related kernel-based
schemes, information is available on the web at

http://www.kernel-machines.org
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Maximum Margin Classifier

An illustration of a maximum margin classifier is below.
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hyperplane

It is simple to see that the unique hyperplane that maximises
the margin is the one shown.

This may be expressed mathematically as

max
w,b

min {||x− xi||; 〈w,x〉 + b = 0, i = 1, . . . ,m}

There are various theoretical arguments why specifying a hy-
perplane in this fashion will yield good generalisation.

In support vector machines the points that lie on the mar-
gin are called support vectors. We will see that the decision
boundary can be specified in terms of only these points. This
yields a sparse representation.
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Simple Example

Consider the following set of points:
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The decision boundary (and margins) are given below:
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There are 2 support vectors (often vectors on the margin which
do not contribute to the decision boundary are ignored). These
lie on the margin and determine the decision boundary.

For this problem one solution is

w =







0
1





 ; b = −0.5
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Size of the Margin

For a linear classifier, the shortest distance from the origin to
the decision hyperplane is

d =
|b|

||w||

There are two margins to consider the x class (+) and the o

class (-). These will be labelled d+ and d− respectively.

For linear classifiers w and b can be scaled arbitrarily without
affecting discrimination. To avoid this problem constants are
introduced to fix the scaling. Typically

〈w,xi〉 + b ≥ 1, for yi = +1

〈w,xi〉 + b ≤ −1, for yi = −1

The use of 1 in the constraint is an arbitrary choice. Any pos-
itive real number will do.

Note: the shortest distance from the line w′x+ b to the origin
is given by the dot-product of a point on the line, x, with the
perpendicular unit vector:

| 〈w,x〉 |
||w||

=
|b|
||w||
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Size of the Margin (cont)

d+
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The respective distances to the origin for each of the margins,
which are a unit distance from the hyperplane are

d+ =
|1− b|
||w||

d− =
|− 1− b|
||w||

The margin is therefore

|d+ − d−| =
2

||w||
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SVM Training

The maximum margin optimisation may be rewritten as

min
w,b







E(w) =
1

2
||w||2







subject to

yi (〈w,xi〉 + b) ≥ 1

for all i = 1, . . . ,m.

This is a standard constrained optimisation problem. As usual
introduce a positive Lagrange multiplier, αi, for each of the
m constraints. The Lagrangian to minimise

L(w, b,α) =
1

2
||w||2 −

m
∑

i=1

αi (yi (〈w,xi〉 + b)− 1)

From this primal the following KKT conditions can be stated.

∂

∂b
L(w, b,α) = −

m
∑

i=1

αiyi = 0

∂

∂w
L(w, b,α) = w −

m
∑

i=1

αiyixi = 0

yi (〈w,xi〉 + b) ≥ 1

αi ≥ 0

αi ((yi (〈w,xi〉 + b)− 1)) = 0

The last condition results from αi being non-zero only for
samples that lie exactly on the margin. For the points on the
margin (〈w,xi〉 + b)− 1 = 0.
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SVM Training (cont)

These conditions lead to
m
∑

i=1

αiyi = 0

w =
m
∑

i=1

αiyixi

The KKT conditions are satisfied at the solution. For convex
problems (such as SVM optimisation) finding a solution to
the KKT are necessary and sufficient for w, b and α to be a
solution to the primal.

The dual optimisation problem is commonly solved in prac-
tise. Here the following expression is maximised

max
α

W (α) =
m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyj 〈xi,xj〉

subject to

αi ≥ 0
m
∑

i=1

αiyi = 0

It is interesting that in this dual formulation the b is not ex-
plicitly estimated.
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Determining the Bias
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The bias term b is not explicitly obtained in the optimisation
process. From the previous conditions

αi ((yi (〈w,xi〉 + b)− 1)) = 0

the points may be split into two groups

• correctly classified points that lie beyond the margin

αi = 0

• correctly classified points that lie on the margin (the sup-
port vectors)

αi ≥ 0

Selecting a value of i for which αi is non-zero will simply
yield the value of b. A more accurate estimate is found from
averaging all such values.
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Training

The optimisation of the dual is a quadratic programming
problem. There are a number of approaches that have been
adopted to this.

If the support vectors (SVs) are known then the problem is
quite simple. These can sometimes be obtained by using ar-
guments of symmetry by inspection (see XOR and simple ex-
ample). However in practise it is often not possible (see Iris
data).

One elegant aspects of SVM training is that there is a unique
global solution to the problem. The optimisation is strictly
concave.

There are a number of toolkits for training SVMs. For a list
of software see

http://www.support-vector-machines.org
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SVM Classification

The standard linear classification rule is

ω̂ =











1, 〈w,x〉 + b ≥ 0
−1, 〈w,x〉 + b ≤ 0

From the previous slide the dual form of the decision bound-
ary where

w =
m
∑

i=1

αiyixi

it is possible to write

〈w,x〉 + b =
〈 m

∑

i=1

αiyixi,x
〉

+ b

=
m
∑

i=1

yiαi 〈x,xi〉 + b

Note:

• classification is only a function of the support vectors

• classification requires dot products between the support
vectors and x.

The importance of being able to write the classification and
training in this form will become clear in the next slides.
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Non-Separable Case

The derivation so far has assumed that the data is linearly
separable. In many real-world applications this is not the
case.

To allow for training data errors, slack variables, ξi ≥ 0, are
introduced. This relaxes the previous constraint to be

yi (〈w,xi〉 + b) ≥ 1− ξi

ξ

support vector (x−class)
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example of 

correct margin edge (x−class)

margin

hyperplane
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All the points that lie outside the required margin (of +/-1)
will have ξ = 0. For a classification error of the training data
to occur ξ > 1, so a simple upper bound on the training errors
is given by

N error ≤
m
∑

i=1

ξi
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Non-Separable Case (cont)

There are now two aspects of the optimisation

1. maximise the margin;

2. minimise the number of training errors.

The balance of the two is commonly controlled by a variable,
C.

The soft-margin classifier is obtained by minimising

E(w, ξ) =
1

2
||w||2 + C

m
∑

i=1

ξi

subject to

yi (〈w,xi〉 + b) ≥ 1− ξi
ξi ≥ 0

The dual optimisation problem for this may also be set-up,
now

max
α

W (α) =
m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyj 〈xi,xj〉

subject to

0 ≤ αi ≤ C
m
∑

i=1

αiyi = 0

Note the slack variable no longer occurs in the optimisation.
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Determining the Bias

In a similar fashion to the separable case the bias, b has not
been determined. One of the conditions that is satisfied is

αi (yi (〈w,xi〉 + b)− 1 + ξi) = 0

This has a sensible feel about it

• for correctly classified points that lie beyond the margin

αi = 0, ξi = 0

• for correctly classified points that lie on the margin

0 ≤ αi ≤ C, ξi = 0

• points that lie “within” the margin

0 ≤ αi ≤ C, ξi > 0

Thus to determine b select a correctly classified point that lie
on the margin.
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The “Kernel Trick”

Only linear hyperplanes have been considered so far. This
limits the ability of the classifier.

Consider some standard test data, the Iris data.
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A linear decision boundary was trained using an SVM and
the result is shown above. Here C = 5000.

For this data there is clearly no linear decision boundary that
will simply partition the data. One solution to this problem is
to use a classifier with a non-linear decision boundary, for ex-
ample a multi-layer perceptron, or Gaussian mixture model.

An alternative approach is to expand the feature space, so
the the points become separable - use a kernel
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The XOR problem

A classic problem is the XOR problem. The training data for
this is:
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This data is clearly not separable with a linear decision bound-
ary. Consider the following mapping:

x =







x1
x2





 → Φ(x) =
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Each point is now mapped from a 2-dimensional space to a
5-dimensional space. The data is separable in this high di-
mensional space.

The optimisation and constraints may be expressed as

max
α

W (α) =
m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyj 〈Φ(xi),Φ(xj)〉

subject to αi ≥ 0 and
∑m
i=1 αiyi = 0. The direction of the deci-

sion boundary is given by

w =
m
∑

i=1

αiyiΦ(xi)
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Gram Matrix

One way to view the data is use the Gram matrix, K. This is
defined as

kij = 〈Φ(xi),Φ(xj)〉
The optimisation is then

max
α

W (α) =
m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjkij

Producing the Gram matrix for the XOR problem

K =





















9 1 1 1
1 9 1 1
1 1 9 1
1 1 1 9





















, y =





















1
−1
1
−1





















This matrix encapsulates the information about the “points”
required for estimating the SVM decision boundary.

For the XOR example, the solution is

α1 = α2 = α3 = α4 =
1

8
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Gram Matrix (Cont)

This is interesting - it is not necessary to explicitly work in
the feature-space it is only necessary to work with the Gram
matrix.

The process has so far been described in terms of mapping a
point from the input-space to feature-space

x → Φ(x)

and then taking dot-products to form the Gram matrix.

This is not necessary. The Gram matrix can be directly gen-
erated by defining a kernel function, k(). The elements of the
matrix are then found as

kij = k(xi,xj)

We will see that some kernels have an infinite feature-space.

Classification is performed as

ω̂ =











1, 〈w,Φ(x)〉 + b ≥ 0
−1, 〈w,Φ(x)〉 + b ≤ 0

From the previous slide the dual form of the decision bound-
ary is

〈w,Φ(x)〉 + b =
m
∑

i=1

yiαi 〈Φ(x),Φ(xi)〉 + b

=
m
∑

i=1

yiαik(x,xi) + b
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Kernel Functions

feature−space

hyperplane

input space

decision boundary

(non−linear kernel)
mapping

margin

The diagram above summarises the use of Kernels for SVMs.

A range of kernel functions are possible - common ones are:

• linear:

k(xi,xj) = 〈xi,xj〉

• polynomial, order d:

k(xi,xj) = (〈xi,xj〉 + 1)d

• Gaussian, width σ:

k(xi,xj) = exp





−
||xi − xj||2

2σ2
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Iris Data

The Iris data is a standard set of data for classification. For
this problem it is split into 2 classes and the original observa-
tions are in 2-dimensional space.

The linear kernel SVM was previously shown.
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2nd order polynomial Gaussian (σ2 = 0.5)

The figures above show the non-linear decision boundaries
resulting from altering the kernel.

Kernel Number SV % Correct

Linear 112 66.7
Polynomial order 2 13 97.3
Gaussian (σ2 = 0.5) 14 98.0

The performance and number of SVs are dramatically altered
by choice of the kernel.
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Dimensionality of the Feature Space

The choice of Kernel dramatically alters the nature of the de-
cision boundary. Consider a order-2 homogeneous (no offset
by 1) polynomial kernel. Thus

k(xi,xj) = (〈xi,xj〉)2

What is the effective dimensionality of the feature space?

For the kernel specified this is easy to find. Consider

Φ(x) =















x21√
2x1x2
x22















This yields the required polynomial kernel. The effective di-
mensionality is 3. Thus the use of the kernel maps the data
from R2 to R3.

The mapping is not unique. For example

Φ(x) =
1√
2















(x21 − x22)
2x1x2

(x21 + x22)















The same kernel can be obtained with different mappings.

9: Support Vector Machines 25

Infinite Feature Spaces

The rank of the Gram matrix, corresponds to the dimension-
ality of the feature space (provided that the number of train-
ing samples is at least greater than the dimensionality of the
feature space).

Consider the class of kernels where

k(x1,x2) → 0

for x1 *= x2 as

||x1 − x2|| → ∞

The dimensionality of the feature space under these condi-
tions will become infinite as the amount the training data be-
comes infinite.

One kernel that can satisfy these constraints is the Gaussian
kernel. This can be achieved by setting the value of σ2 small
enough.
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Mercer’s Condition (reference)

The kernels have been described in two forms Φ(x) and k(xi,xj).
When does there existing a mapping for

kij = k(xi,xj)

The answer is Mercer’s condition.

This states that a mapping exists if and only if, for any g(x)
such that

∫

g(x)2dx is finite

then
∫

k(x,y)g(x)g(y)dxdy ≥ 0

Kernels of any form could be used but if the above condition
is not satisfied then the Hessian may not be positive semi-
definite and the optimisation will have no solution (the dual
can become arbitrarily large).
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Kernelising Classifiers

It is possible to apply the kernel trick to other classifiers. If
the training of the classifier and its use involves dot products
(and linear operations) then it can be simply kernelised.

This trick has been applied (and will be further applied) to
various algorithms have been kernelised, for example Kernel
Principal Component Analysis. Here we will examine the
kernel perceptron algorithm.

In previous lectures the perceptron algorithm was presented.
The training algorithm may be written as

Initialise w = 0, k = 0 and b = 0;
Until all points correctly classified do:

k=k+1;

if xk is misclassified then

w = w + ykxk

b = b + yk

To increase the classification ability of the perceptron algo-
rithm it would be useful to kernelise it.
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Kernelised Perceptron Algorithm

The kernelised version of the algorithm may be described as

Initialise αi = 0, i = 1, . . . ,m, k = 0 and b = 0;
Until all points correctly classified do:

k=k+1;

if xk is misclassified then

αk = αk + 1
b = b + yk

The equivalent of the Lagrange multipliers here represent
the number of times that a particular point has been mis-
recognised.

Classification is then performed based on (as for the SVM)

m
∑

i=1

yiαik(x,xi) + b

This allows the Gram matrix to be used during the classifica-
tion process, so there is no need to work in the, possibly, high
dimensional, feature space.

Just because a training algorithm can be kernelised does not
mean that it will perform well. The number of model pa-
rameters will increase. For the SVM generalisation is good
because of the use of a maximum margin classifier.
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Summary

The last two lectures have examined the use of SVM as a clas-
sifier and the use of kernels. In particular:

• bounds on generalisation;

• maximum margin classifiers;

• SVM training and the use of the dual optimisation;

• SVM classification;

• non-separable data;

• kernels and their dimensionality;

• kernelising the perceptron algorithm.


