
University of Cambridge

MPhil in Computer Speech Text &
Internet Technology

Module: Speech Processing II

Lecture 15: Neural Network
Introduction

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

Lent 2003

Neural Network Introduction 1

Introduction

So far in this module we have considered a variety of options

for describing the observations generated by an HMM. These

include:

• continuous density HMMs with Gaussian mixture mod-

els;

• discrete HMMs with multiple codebooks;

• semi-Continuous HMMs.

An alternative approach is to use a neural network. This

lecture will introduce the most commonly used form of Neu-

ral Network, the multi-layer perceptron. Other forms of

network are possible. These include:

• Radial basis functions;

• Kohonen networks.

If you are interested in these schemes see the I10 lecture

notes at

http://svr-www.eng.cam.ac.uk/ mjfg/local/i10.html

This lecture will look at multi-layer perceptrons for

classification.

2 MPhil CSTIT: Speech Processing II

Single Layer Perceptron

The simplest form of network is the single layer perceptron.

The typical form uses a threshold activation function, as

shown below.

w0

Σ

wd

1

−1
w2

w1

1

x

x

x

1

2

d

y(x)z

The d-dimensional input vector x and scalar value z are

related by

z = w′x + w0

z is then fed to the activation function to yield y(x). The

parameters of this system are

• weights: w =




w1
...

wd


 , selects the direction of the deci-

sion boundary

• bias: w0, determines the position of the decision bound-

ary.

We have already seen this form when examining linear deci-

sion boundaries.

Neural Network Introduction 3

Single Layer Perceptron (cont)

The parameters are often combined into a single composite
vector, w̃, and the input vector extended, x̃.

w̃ =




w0

w1
...

wd



; x̃ =




1
x1
...

xd




We can then write

z = w̃′x̃

The task is to train the set of model parameters w̃. For

this example a decision boundary is placed at z = 0. The

decision rule is

y(x) =





1, z ≥ 0

−1, z < 0

In the Speech Processing I module the percepton training

algorithm and least squares estimation were described for

training this form of model.

4 MPhil CSTIT: Speech Processing II

Limitations of SLPs

Perceptrons were very popular until the 1960’s when it was

realised that it couldn’t solve the XOR problem.

We can use perceptrons to solve the binary logic operators

AND, OR, NAND, NOR.

Σ 1

−1

1

1

x1

1x2

−1.5
AND

(a) AND operator

Σ 1

−1

1

1

x1

1x2

−0.5
OR

(b) OR operator

Σ 1

−1

−1

1

x1

−1x2

1.5
NAND

(c) NAND operator

Σ 1

−1

−1

1

x1

−1x2

0.5
NOR

(d) NOR operator

Neural Network Introduction 5

XOR (cont)

But XOR may be written in terms of AND, NAND and OR

gates

Σ 1

−1

−1

1

−1

1.5
NAND

Σ 1

−1

1

1

x1

1x2

−0.5
OR

Σ 1

−1

1

1

1

−1.5
AND

This yields the decision boundaries

So XOR can be solved using a two-layer network. The prob-

lem is how to train multi-layer perceptrons. In the 1980’s

an algorithm for training such networks was proposed, error

back propagation.

6 MPhil CSTIT: Speech Processing II

Multi-Layer Perceptron

From the previous slide we need a multi-layer perceptron to

handle the XOR problem. More generally multi-layer per-

ceptrons allow a neural network to perform arbitrary map-

pings.

Inputs

First
Second

Output
layer

layer
layer

xd y (x)K

y (x)2

1

x2

x1 y (x)

Outputs

A 2-hidden layer neural network is shown above. The aim is

to map an input vector x into an output y(x). The layers

may be described as:

• Input layer: accepts the data vector or pattern;

• Hidden layers: one or more layers. They accept the

output from the previous layer, weight them, and pass

through a, normally non-linear, activation function.

• Output layer: takes the output from the final hidden

layer weights them, and possibly pass through an output

non-linearity, to produce the target values.

Neural Network Introduction 7

Possible Decision Boundaries
The nature of the decision boundaries that may be produced

varies with the network topology. Here only threshold (see

the single layer perceptron) activation functions are used.

(3)(2)(1)

There are three situations to consider

1. Single layer: this is able to position a hyperplane in

the input space.

2. Two layers (one hidden layer): this is able to describe

a decision boundary which surrounds a single convex

region of the input space.

3. Three layers (two hidden layers): this is able to to

generate arbitrary decision boundaries

Note: any decision boundary can be approximated arbitrar-

ily closely by a two layer network having sigmoidal activation

functions.

8 MPhil CSTIT: Speech Processing II

Number of Hidden Units

From the previous slide we can see that the number of hid-

den layers determines the decision boundaries that can be

generated. In choosing the number of layers the following

considerations are made.

• Multi-layer networks are harder to train than single layer

networks.

• A two layer network (one hidden) with sigmoidal acti-

vation functions can model any decision boundary.

Two layer networks are most commonly used in pattern

recognition (the hidden layer having sigmoidal activation

functions).

How many units to have in each layer?

• The number of output units is determined by the num-

ber of output classes.

• The number of inputs is determined by the number of

input dimensions

• The number of hidden units is a design issue. The prob-

lems are:

– too few, the network will not model complex decision

boundaries;

– too many, the network will have poor generalisa-

tion.

Neural Network Introduction 9

Hidden Layer Perceptron

The form of the hidden, and the output, layer perceptron

is a generalisation of the single layer perceptron. Now the

weighted input is passed to a general activation function,

rather than a threshold function.

Consider a single perceptron. Assume that there are n units

at the previous level.

Σ

win

wi2

wi1

1

x

x

x

1

2

n

wi0

yi
zi

function
Activation

The output from the perceptron, yi may be written as

yi = φ(zi) = φ(wi0 +
n∑

j=1
wijxj)

where φ() is the activation function.

We have already seen one example of an activation function

the threshold function. Other forms are also used in multi-

layer perceptrons.

10 MPhil CSTIT: Speech Processing II

Activation Functions

There are a variety of non-linear activation functions that

may be used. Consider the general form

yj = φ(zj)

and there are n units, perceptrons, for the current level.

• Heaviside (or step) function:

yj =





0, zj < 0

1, zj ≥ 0

These are sometimes used in threshold units, the output

is binary.

• Sigmoid (or logistic regression) function:

yj =
1

1 + exp(−zj)

The output is continuous, 0 ≤ yj ≤ 1.

• Softmax (or normalised exponential or generalised lo-

gistic) function:

yj =
exp(zj)

∑n
i=1 exp(zi)

The output is positive and the sum of all the outputs at

the current level is 1, 0 ≤ yj ≤ 1.

• Hyperbolic tan (or tanh) function:

yj =
exp(zj)− exp(−zj)

exp(zj) + exp(−zj)

The output is continuous, −1 ≤ yj ≤ 1.

Neural Network Introduction 11

Training Criteria

A variety of training criteria may be used. Assuming we

have supervised training examples

{{x1, t(x1)} . . . , {xn, t(xn)}}
The target values, t(x), are K-dimensional.

One standard example is:

• Least squares error: one of the most common train-

ing criteria.

E =
1

2

n∑

p=1
||y(xp)− t(xp)||2

=
1

2

n∑

p=1

K∑

i=1
(yi(xp)− ti(xp))

2

This may be derived from considering the targets as be-

ing corrupted by zero-mean Gaussian distributed noise.

Alternative forms are (for reference):

• cross-Entropy for two classes: consider the case

when t(x) is binary (and softmax output), or more gen-

erally

• cross-Entropy for multiple classes: is related to

Kullback-Leibler distance between the distribution of

the output and the target.

12 MPhil CSTIT: Speech Processing II

Error Back Propagation

Interest in multi-layer perceptrons (MLPs) resurfaced with

the development of the error back propagation algorithm.

This allows multi-layer perceptons to be simply trained.

Inputs

xd

x2

x1

Hidden
layer

Output
layer

y (x)K

y (x)2

1y (x)

Outputs

A single hidden layer network is shown above. As previously

mentioned with sigmoidal activation functions arbitrary de-

cision boundaries may be obtained with this network topol-

ogy.

The error back propagation algorithm is based on gradient

descent. Hence the activation function must be differen-

tiable. Thus threshold and step units will not be considered.

We need to be able to compute the derivative of the error

function with respect to the weights of all layers.

All gradients in the next few slides are evaluated at the cur-

rent model parameters.

Neural Network Introduction 13

Single Layer Perceptron

Rather than examine the multi-layer case instantly, consider

the following single layer perceptron.

Σ

wd

w2

w1

1

x

x

x

1

2

d

0

y(x)z

function
Activation

w

We would like to minimise (for example) the square error

between the target of the output, t(xp), and the current

output value y(xp). Assume that the activation function is

known to be a sigmoid function. The cost function may be

written as

E =
1

2

n∑

p=1
(y(xp)− t(xp))

2 =
n∑

p=1
E(p)

To simplify notation, we will only consider a single observa-

tion x with associated target values t(x) and current output

from the network y(x). The error with this single observa-

tion is denoted E.

The first question is how does the error change as we alter

y(x).

∂E

∂y(x)
= y(x)− t(x)

But we are not interested in y(x) - how do we find the effect

of varying the weights?

14 MPhil CSTIT: Speech Processing II

SLP Training (cont)

We can calculate the effect that a change in z has on the

error using the chain rule

∂E

∂z
=




∂E

∂y(x)






∂y(x)

∂z




However what we really want is the change of the error rate

with the weights (the parameters that we want to learn).

∂E

∂wi
=


∂E

∂z





 ∂z

∂wi




The error function therefore depends on the weight as

∂E

∂wi
=




∂E

∂y(x)






∂y(x)

∂z





 ∂z

∂wi




All these expressions are known so we can write

∂E

∂wi
= (y(x)− t(x))y(x)(1− y(x))xi

This has been computed for a single observation. We are

interested in terms of the complete training set. We know

that the total errors is the sum of the individual errors, so

∇E =
n∑

p=1
(y(xp)− t(xp))y(xp)(1− y(xp))x̃p

So for a single layer we can use gradient descent schemes to

find the “best” weight values.

However we want to train multi-layer

perceptrons!

Neural Network Introduction 15

Error Back Propagation Algorithm

Now consider a particular node, i, of hidden layer k. Using

the previously defined notation, the input to the node is x̃(k)

and the output y
(k)
i .

Σwi2

wi1

1

x

x

x

1

2

wi0

yi
zi

function
Activation

(k)

(k)

(k) (k)

(k)

(k)

(k)

(k)

(k)wiN(k−1)

N(k−1)

From the previous section we can simply derive the rate of

change of the error function with the weights of the output

layer. We need to now examine the rate of change with the

kth hidden layer weights.

A general error criterion, E, will be used. Furthermore we

will not assume that y
(k)
j only depends on the z

(k)
j . For

example a softmax function may be used. In terms of the

derivations given the output layer will be considered as the

L + 1th layer.

The training observations are assumed independent and so

E =
n∑

p=1
E(p)

where E(p) is the error cost for the p observation and the

observations are x1, . . . ,xn.

16 MPhil CSTIT: Speech Processing II

EBP Algorithm (cont)

How does the error function vary as we alter the parameters

of level k where there are N (k) units.

The following recursion can be used

δ(k) =


 ∂E

∂z(k)




=



∂z(k+1)

∂z(k)





 ∂E

∂z(k+1)




=



∂y(k)

∂z(k)






∂z(k+1)

∂y(k)


 δ(k+1)

where

∂E

∂z(k)
=




∂E

∂z
(k)
1...

∂E

∂z
(k)
N(k)



,

∂y(k)

∂z(k)
=




∂y
(k)
1

∂z
(k)
1

∂y
(k)
2

∂z
(k)
1

. . .
∂y

(k)
N(k)

∂z
(k)
1

∂y
(k)
1

∂z
(k)
2

∂y
(k)
2

∂z
(k)
2

. . .
∂y

(k)
N(k)

∂z
(k)
2...

∂y
(k)
1

∂z
(k)
N(k)

∂y
(k)
2

∂z
(k)
N(k)

. . .
∂y

(k)
N(k)

∂z
(k)
N(k)




The gradient at level k can be written in terms of level k+1.

We can therefore back propagate calculating the gradients.

Gradient descent can then be used to optimise the model

parameters.

Neural Network Introduction 17

References

[1] C M Bishop. Neural Networks for Pattern Recogni-

tion. Oxford University Press, 1995.

[2] G D Cook and A J Robinson. Boosting the Per-

formance of Connectionist Large-Vocabulary Speech

Recognition. In Proceedings ICSLP, 1996.

[3] H Hermansky. Perceptual linear predictive (PLP) anal-

ysis of speech. Journal of the Acoustical Society of

America, 87:1738–1752, 1990.

[4] D J Kershaw, M M Hochberg and A J Robinson.

Context-Dependent Classes in a Hybrid Recurrent

Network-HMM Speech Recognition System. In Pro-

ceedings NIPS, pages 750–756 1996.

[5] N Morgan and H A Bourlard. Connectionist Speech

Recognition: A Hybrid Approach. Kluwer Acedemic

Publishers, 1994.

[6] J Neto, L Almeida, M M Hochberg, C Martins,

L Nunes, S J Renals and A J Robinson. Unsupervised

Speaker-Adaptation For Hybrid HMM-MLP Continu-

ous Speech Recognition System. In Proceedings Eu-

rospeech, pages 187-190 1995.

[7] A J Robinson. Dynamic Error Propagation Net-

works. PhD thesis, Cambridge University, 1989.

