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Hidden Markov Models I & II

Review of basic HMMs

• HMM assumptions

• HMM structure and operation

• maximum likelihood training

• forward-backward algorithm

Output Probability Distributions

• continuous density

• mixture distributions

• discrete density & VQ

• semi-continuous (tied mixtures)

Duration Modelling
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HMM Assumptions

Hidden Markov models (HMMs) are the most widely used

acoustic model for speech recognition.

Assumptions:

1. The observations accurately represent the signal. Speech

is assumed to be stationary over the length of the frame.

Frames are usually around 25msecs, so this is not a bad

assumption.

2. Observations are independent given the state that gen-

erated it. Previous and following observations do not

affect the likelihood. This is not true for speech, speech

has a high degree of continuity.

3. Between state transition probabilities are constant. The

probability of from one state to another is independent

of the observations and previously visited states. This

is not a good model for speech.

Despite its limitations HMMs are, to date, the most success-

ful acoustic models for speech recognition.

Neural Networks and hybrid HMM/neural network systems

are also used (this will be discussed later in this module).
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HMM Structure & Operation

An HMM is a finite state machine:

1. it has a variable number N − 2 of emitting states.

2. it has a non-emitting entry state and a non-emitting

exit state (some formulations don’t explicitly include

these).

3. any pair of states i and j can be connected by a transi-

tion with probability aij

4. it changes from current state i to new state j with prob-

ability aij every input frame

5. every time a state j is entered, an acoustic feature vector

o is generated with probability bj(o)

Note: the HMM is a generative model of speech. It can

also be used to find the likelihood that the model generated

the observed data.
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Figure 1:

For the HMM shown the output/state sequence is

time 1 2 3 4 . . . T

observations o1 o2 o3 o4 . . . oT

states 2 2 2 3 . . . 4

The HMM parameters are:

1. aij: The transition probability from state i to state j.

2. The parameters of the output probability distribution

associated with each state. Thus bj(o) is the probability

of generating the observation vector o given that the

HMM is in state j of the model.

The HMM, M, may be written as

M = {{aij}, {bj(·)}}
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Training HMMs

Efficient training (and recognition) algorithms exist for HMMs.

The standard training approach used is Maximum Like-

lihood (ML) estimation.

Three Emitting State
HMM

Speech Frames Aligned
with State

Left-to-right

Clean Speech Distribution
associated with State

(A Gaussian distribution
characterised by a mean 
and variance)

To train an HMM it is necessary to align each speech frame

with a state (or Gaussian), gather statistics on the aligned

data, and then update the model parameters.

The alignment may be done in a probabilistic fashion Baum-

Welch re-estimation, or a hard max fashion Viterbi train-

ing. Baum-Welch re-estimation is an example of the

Expectation-Maximisation (EM) algorithm.
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Expectation Maximisation

We have already seen an example of EM when training Gaus-

sian mixture models. Training of HMMs is similar to training

GMMs.

• for GMMs the “assignment” to a component is only de-

pendent on the position of the features vector in acoustic

space.

• for HMMs the “assignment” to a state will also depend

on when the feature vector occurs in time.

The training algorithm is designed to guarantee that for each

new estimate, the model set is more likely to generate the

training data than the previous model set estimate, unless a

local optimum has been reached.

p(O|M̂) ≥ p(O|M)

• M is the new model set

• M̂ is the new model set

• O is the training observation sequence

By repeating this process many times a local maximum will

be reached.
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Baum-Welch Estimation

Baum-Welch estimation (EM for training HMMs) has two

distinct stages.

1. Expectation: calculate the posterior probability of

a feature vector being generated by a particular state.

This probability (soft alignment) will be denoted as Li(t)

Li(t) = P (s(t) = i|O,M)

In words: the probability that the feature vector at time

t was generated by state i, given the whole training se-

quence and the current set of model parameters.

The combination of the observed data O and the un-

observed data

{{L2(1), . . . , LN−1(1)}, . . . , {L2(T ), . . . , LN−1(T )}}
is called the complete dataset;

2. Maximisation: using the complete dataset obtain the

maximum likelihood estimate of the model parameters.

The exact form of the parameter estimation depends on

the HMM being trained.

These two stages are repeatedly applied in training the HMMs
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Initial Model Estimates

To perform Baum-Welch training, initial estimates of the

models are required. Possible initialisation schemes are:

• phone-level labels: if the database has been labelled

at the phone level then these may be used in the training.

The vast majority of speech databases (TIMIT is an

exception) do not have these labels.

• flat start: all the models are initialised with the same

parameters. These are typically set as the global mean

and variance of all the training data.

• best previous models: use the best set of models

on a “similar” database as the initial estimates for the

new database.

In practice flat-start or best previous models are used.

If the posterior probability of state occupation, Li(t), was

found by explicitly calculating every path through the model

it would not be practical to train HMMs. Fortunately an

efficient algorithm exists: the Forward-Backward algo-

rithm.
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The Forward-Backward algorithm

Two new variables are defined, the forward “probability”,

αi(t) defined as

αi(t) = p(o1, . . . ,ot, s(t) = i|M)

and the backward “probability”, βi(t), defined as

βi(t) = p(ot+1, . . . ,oT |s(t) = i,M)

From the above, the frame alignment is given by

Li(t) =
αi(t)βi(t)

p(O|M)

There are efficient recursive (through time) routines to ob-

tain the forward and backward probabilities. For αi(t),

αj(t) =



N−1∑

i=2
αi(t− 1)aij


 bj(ot)

A similar expression exists for the backward probabilities

βi(t) =
N−1∑

j=2
aijbj(ot+1)βj(t + 1)

For the Viterbi case, the alignment involves finding only the

most likely state sequence (using the Viterbi algorithm) and

then assuming that (with probability 1) the model followed

that state sequence.

Note: useful equality

p(O|M) =
N−1∑

i=2
αi(t)βi(t) =

N−1∑

i=2
αi(T )aiN
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The elements of the transition matrix, aij, are defined

as

aij = P (s(t + 1) = j|s(t) = i)

and are estimated as

âij =
Estimated number of transitions from states i to j

Estimated number of transitions from state i
In terms of the forward and backward probabilities

âij =

T−1∑
t=1

αi(t)aijbj(ot+1)βj(t + 1)

T−1∑
t=1

αi(t)βi(t)

The transition probabilities give the state duration proba-

bilities. It is simple to show from the state transition prob-

abilities that

di(τ ) = aτ−1
ii (1− aii)

where di(τ ) is the probability of staying in state i for τ

frames.
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Output Probability Distributions

HMMs are split into three broad classes according to the

form of their output probability distributions (density func-

tions).

The three classes are:

1. Continuous Density HMMs

2. Discrete Density HMMs

3. Semi-Continuous (Tied-Mixture) HMMs

Each has a different representation of acoustic space.

Discrete Density VQ Codebook

Multiple Density Continuous HMMs

Semi-Continuous HMMs

The form of the output probability distribution alters the

parameters of the HMMs and how they are estimated.
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Continuous Density HMMs

In Speech Processing I we assumed that bj(o) is Gaussian

distributed.
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A single dimension Gaussian distribution is shown above:

the parameters are the mean (µ) and variance, (σ2). For

an n-dimensional feature vector where all dimensions are

uncorrelated (diagonal covariance matrix).

bj(o) =
n∏

d=1

1
√
(2πσ2

jd)
exp



−(od − µjd)

2

2σ2
jd




and for the full covariance case

bj(o) =
1

|Σj|12(2π)
n
2

exp


−1

2
(o− µj)

′Σ−1
j (o− µj)




where Σj is the Covariance Matrix.
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It is common to write the probability density of a vector

given a particular multivariate Gaussian distribution as

bj(o) = N (o; µj,Σj)

Other distributions, (e.g. Laplacian) have also been used,

however Gaussians are by far the most popular.

The parameters of a CDHMM are:

1. The transition matrix (standard HMM);

2. A mean and covariance for each state j

{µj,Σj}
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Number of Parameters

The number of parameters is very important when trying to

ensure robust parameter estimation.

1. Mean: The number of parameters is the dimensionality

of the data, n (39).

2. Variances: Two forms of covariance matrix are com-

monly used

(a) Diagonal: Here the elements of the feature vector

are assumed uncorrelated.

Σ =




σ2
1 0 . . . 0

0 σ2
2 · · · 0

... ... . . . ...

0 · · · · · · σ2
n




The number of parameters is again the dimension-

ality of the data, n (39).

(b) Full: Elements may be correlated. A symmetric

matrix is used. Number of parameters is n(n+1)
2

(780).

Σ =




σ2
1 σ12 . . . σ1n

σ12 σ2
2 · · · σ2n

... ... . . . ...

σ1n · · · · · · σ2
n



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Uncorrelated Samples
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Correlated Samples
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Estimating CDHMM Parameters

The maximum likelihood estimates of the parameters of the

output probability density of a CDHMM is straightforward

once the frame/state alignment is known. The task is to

obtain the mean and variance for a state.

• Mean vector

µ̂j =
Estimated sum of vectors emitted from state j

Estimated number of vectors from state j

=

T∑
t=1

Lj(t)ot

T∑
t=1

Lj(t)

• Full covariance matrix

Σ̂j =
Estimated sum of (ot − µ̂j)(ot − µ̂j)

′ for state j

Estimated number of vectors from state j

=

T∑
t=1

Lj(t)(ot − µ̂j)(ot − µ̂j)
′

T∑
t=1

Lj(t)

• Diagonal covariance matrix

σ̂2
jk =

Estimated sum of (otk − µ̂jk)
2 for state j

Estimated number of vectors from state j

=

T∑
t=1

Lj(t)(otk − µ̂jk)
2

T∑
t=1

Lj(t)
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Mixture Distributions

Using a single (multivariate) Gaussian to model the output

distribution may be poor. It is possible to use a mixture of

Gaussians to model the distribution. Thus

bj(o) =
M∑

m=1
cjmbjm(o) =

M∑

m=1
cjmN (o; µjm,Σjm)

cjm is the component weight, or prior. For this to be a

probability density function it is necessary that

M∑

m=1
cjm = 1 and cjm ≥ 0
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A two component Gaussian mixture distribution is shown

above. Using Gaussian mixtures it is possible to approx-

imate any distribution (provided you have enough compo-

nents). Mixture distributions allow very flexible modelling

of the acoustic vectors associated with a state.
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Modelling PDFs

• Asymmetric and Bimodal distributions
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(a) Asymmetric Distribution
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(b) Bimodal Distribution

• Correlation-modelling using diagonal covariance ma-

trices

(c) Contours (d) Distribution
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Model Parameters

The parameters that need to be stored are

1. the transition matrix (standard HMM);

2. for each state the set of weights, means and variances

{{cj1,µj1,Σj1}, . . . , {cjM ,µjM ,ΣjM}}

Problem with the use of multiple component distributions

is that it may result in a large number of Gaussians, hence

system parameters.

Contrast parameters (n = 39,M = 10):

• Single Full Covariance Gaussian: mean requires

n parameters, covariance matrix n(n+1)
2 - 819 parame-

ters.

• Single Diagonal Covariance Gaussian: mean re-

quires n parameters, covariance matrix n - 78 parame-

ters.

• Multiple Diagonal Covariance Gaussian Com-

ponents: M components require Mn parameters for

the mean Mn parameters for the diagonal variances and

M − 1 for weights - 789 parameters.

May be overcome using tying in the same fashion as cluster-

ing for triphones.
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For Baum-Welch re-estimation each of the component Gaus-

sians may be considered as a separate state thus

ij

aij

aijcj2

aijcj1

cjm

a
ii j

j1

j2

jm

The alignment for a frame is to a particular Gaussian com-

ponent of a particular state. Thus

Ljm(t) = P (s(t) = jm|O,M)

=
1

p(O|M)

N−1∑

i=2
αi(t− 1)aijcjmbjm(ot)βj(t)

The estimates of the mean and variance will be the same as

for the single Gaussian case

µ̂jm =

T∑
t=1

Ljm(t)ot

T∑
t=1

Ljm(t)

In addition, it is necessary to estimate the mixture weights.

In a similar way to the transition probabilities

ĉjm =
Estimated Number of vectors from comp. m state j

Estimated number of vectors from state j

In terms of the alignments this becomes

ĉjm =

T∑
t=1

Ljm(t)

T∑
t=1

Lj(t)
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Training Gaussian Mixture HMMs

It is, again, necessary to have initial estimates of the models.

If using best previous set no problem. However, not possible

to use flat start. Two options:

1. Clustering. Gather together all aligned vectors for a

state and used clustering (or VQ) techniques to initialise

a set of Gaussians.

2. Mixing-Up. Iterative routine.

Initialise Single
Component HMMs

Select Components
to perturb

Train "new" HMMs
using Baum-Welch

Test on cross-
Validation set

Perturb Selected
Component(s)

(+/- 0.2*Std. Dev)

STOP

Improves
Performance

Degrades
Performance


