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Likelihood Calculation

Normally (so that underflow is avoided) log-likelihoods are

calculated. Consider calculating the log-likelihood of a par-

ticular Gaussian component m of state j

log(N (o; µjm,Σjm)) = L(o; µjm,Σjm)

= −1

2
log (|Σjm|(2π)n)

−1

2
(o− µjm)′Σ−1

jm(o− µjm)

Only the second term is dependent on the observed data,

so replace the first term by a constant determined during

training, kjm. In addition the inverse covariance matrix is

stored (rather than the covariance matrix).

The total cost is then dependent on the form of the covari-

ance matrix

Covariance Number Mult. Acc. Sub/Additions

Full n2 + n n

Diagonal 2n n
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Likelihood Calculation (cont)

However we required the state log-likelihood. Then we need

log(bj(o)) = log




M∑

m=1
N (o; µjm,Σjm)




= log




M∑

m=1
cjm exp(L(o; µjm,Σjm))




Addition in the log-domain if implemented directly is ex-

pensive (requires an exponential for each component and a

log).

If log-likelihoods are calculated and stored, then the logadd

is usually implemented using

log(exp(A) + exp(B)) = A + log(1 + exp(B − A))

assuming that A > B. It is only worth computing the

second term when B −A exceeds some accuracy threshold.

So far the mixture weight has not been considered. This can

be implemented with no overhead by combining the weight

into the prestored constant as

cjm exp(L(o; µjm,Σjm)) = exp(log(cjm) + L(o; µjm,Σjm))

To avoid the cost of the logadd some systems approximate

the summation by a maximum

log(bj(o)) ≈ max
m

{
log(cjm) + L(o; µjm,Σjm)

}
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Bayesian Networks

When HMMs have been drawn, they have shown the state

topology, much the same as a Markov chain, but little infor-

mation about the indepence assumptions behind the model.

One way of showing these indpendence assumptions is using

a Bayesian network.

o

x

z

x

z

o

o

x

z

(a) (b) (c)

The above diagram shows three networks.

• (a) shows three continuous (circles) random variables.

o is observed (shaded). The interpretation of this

p(z, x, o) = p(z)p(x|z)p(o|z, x)

• (b) shows three continuous (circles) random variables.

o is observed (shaded). The interpretation of this

p(z, x, o) = p(z)p(x|z)p(o|x)

• (c) shows three discrete (squares) random variables. o

is observed (shaded). The interpretation of this

P (z, x, o) = P (z)P (x)P (o|z, x)
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Dynamic Bayesian Networks

For HMMs there is also a dynamic aspect of the model.

This requires a dynamic Bayesian network. Rather than

expressing an HMM as

2 3 4 51

It may be drawn as

ot−1 ot ot+1

HMM State

s(t−1) s(t) s(t+1)

Here the conditional independence assumptions behind the

HMM, that observations are independent given the state, is

clear. However the state topology is not shown.

Bayesian networks are very useful for graphically represent-

ing conditional independence. It is also possible to derive

general re-estimation formulae for many topologies.
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Discrete HMMs

HMMs can also be used to model sequences of discrete sym-

bols. In this case, the output distribution is discrete.

bj(q) = P (q̂t = q |s(t) = j)

where q̂t is the observed symbol at time t.

The output distribution (bj(q)):

• just a table of probabilities (effectively a histogram)

• estimated by simply counting the number of times each

symbol occurs in each state, weighted by the probability

of the HMM being in that state when the symbol occurs

b̂j(q) =
∑

t∈{q̂t=q}Lj(t)
∑T

t=1 Lj(t)

A minimum value for the new estimate of b̂j(q), eg 1e-5,

must be set as if set to zero it is likely to cause recogni-

tion errors (or some other distribution smoothing).

• highly efficient during recognition - a simple table lookup.

Discrete HMMs can be used for modelling data which is nat-

urally discrete. They can also be used in for continuous data

by using a vector quantiser. Here, the continuous feature

vector ot is mapped to a discrete index q̂t.
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Vector Quantisation

A vector quantiser consists of a codebook of Q (speech) vec-

tors {v1 . . .vQ}. The process is:

1. the incoming (speech) vector is compared to the set of

codebook vectors;

2. vector is replaced by the index of the nearest codebook

vector.

Speech Vector

VQ Index
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y
2
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?

The vector quantisation process is illustrated above. A va-

riety of distance measures may be used:

1. Euclidean: d(o,vq) =
√
((o− vq)′(o− vq))

2. Weighted Euclidean: d(o,vq) =
√
((o− vq)′Σ−1(o− vq))

3. Mahalanobis: d(o,vq) = (o− vq)
′Σ−1(o− vq)

4. Minkowski metric, order s: d(o,vq) = s
√
(
∑

k |ok − vqk|s)
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Training the Quantiser

The Generalised Lloyd algorithm or Linde-Buzo-Gray

(LBG) algorithm is commonly used to train the VQ code-

book. It consists of :

Initialisation:

Choose an arbitrary set of Q vectors, {v1 . . .vQ}

Recursion:

1. For each speech frame ot in the training data calculate

index q̂t where

q̂t = arg min
Q
{d(ot,vq)}

2. Compute the total distortion that has occurred due to

this quantisation

D =
T∑

t=1
d(ot,vq̂t)

If D is sufficiently small, or sufficient iterations, stop

3. For each compute the centroid (and other parameters if

required) of all indices

vq =
∑

t∈{q̂t=q} ot
∑

t∈{q̂t=q} 1

Return to step 1.
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Multiple Codebooks

Problems:

• quantisation error: error in approximating incoming vec-

tor by codebook entry;

• increasing number of codebook entries, increases resolu-

tion, but estimation problems;

Compromise is multiple codebooks:

• split feature vector into groups, e.g. static, delta and

delta-delta parameters;

• generate a separate codebook for each group.

Consider 3 codebooks having 256 entries each:

• Number of parameters: 256× 3 = 768

• Number of possible indices: 2563 = 16777216

Nothing is ever free - assumption that feature vector groups

are independent of one another.

Discrete HMMs typically perform worse than continuous

density HMMs.
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Semi-Continuous HMMs

Semi-Continuous HMMs (SCHMMs), also called Tied-Mixture

HMMs, are a kind of “half-way house” between CDHMMs

and DHMMs. Here

bj(o) =
M∑

m=1
cjmN (o; µm,Σm)

In contrast to CDHMMs, N (o; µm,Σm) is independent of

the state. Thus all states make use of the same set of Gaus-

sian distributions, only the component weights are state spe-

cific.

Of course, the number of Gaussians is quite large as they

need to be representative of all acoustic space.

The parameters of the system are:

1. the transition matrix (standard HMM);

2. the set of means and variances for the Gaussian distri-

butions

{µ1, . . . ,µM ,Σ1, . . . ,ΣM}

3. the set of component weights for all NT states

{{c11, . . . , c1M}, . . . , {cNT 1, . . . , cNT M}}
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The training of SCHMMs is very similar to training a stan-

dard single Gaussian HMM. The alignments are obtained in

the same way as for standard CDHMMs, thus

Ljm(t) = P (s(t) = jm|O,M)

In addition it is necessary to obtain the posterior probability

of emitting a particular vector from a particular component

(independent of the state), this is

Lm(t) =
N∑

j=1
Ljm(t)

The component weights are obtained identically to the mul-

tiple component CDHMM case

ĉjm =

T∑
t=1

Ljm(t)

T∑
t=1

Lj(t)
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and the means and variances are based on the component

alignments

µ̂m =

T∑
t=1

Lm(t)ot

T∑
t=1

Lm(t)

SCHMMs can be more efficient than CDHMMs at run-time.

The probabilities may be calculated as

1. Calculate bm(ot) for all components. Sort to obtain the

top k components, all others are set to some small value.

2. For each state calculate

bj(ot) =
∑

cjmbm(ot)

where the sum is only over the top (ranked by log-

likelihood) k components.

This can give large savings as the probability for each Gaus-

sian is only calculated once, and typical values are M = 256,

k = 4.

Multiple streams are often used with SCHMMs. The reasons

for these are the same as those described in the previous sec-

tion for using multiple codebooks with DHMMs. Thus the

number of streams is equivalent to the number of codebooks

and the number of components in each stream is equivalent

to the number of codewords.

Note the analogy between the VQ symbol k and the Gaus-

sian m, and bjk and the component weights cjm in an SCHMM.
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Multiple Training Examples

The training equations given so far have only been for a sin-

gle training utterance. In general, multiple training exam-

ples are used. This has a slight effect on the re-estimation

formulae (consider only CDHMMs) as summations on nu-

merators and denominators of re-estimation formulae are

taken over all training sequences.

Data:
{
O1, . . . ,OR

}
, Or = {or

1, . . . ,o
r
T r}

1. Transition Probabilities

âij =

R∑
r=1

1
p(Or|M)

T r−1∑
t=1

αr
i (t)aijbj(o

r
t+1)β

r
j (t + 1)

R∑
r=1

1
p(Or|M)

T r−1∑
t=1

αr
i (t)β

r
i (t)

2. Output Probability Distributions

µ̂j =

R∑
r=1

T r∑
t=1

Lr
j(t)o

r
t

R∑
r=1

T r∑
t=1

Lr
j(t)

σ̂2
jk =

R∑
r=1

T r∑
t=1

Lr
j(t)(o

r
tk − µ̂jk)

2

R∑
r=1

T r∑
t=1

Lr
j(t)
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Duration Modelling

The problem of duration modelling, or how long should

be spent in a state, has not been addressed. From the state

transition probabilities

di(τ ) = aτ−1
ii (1− aii)

where di(τ ) is the probability of staying in state i for τ

frames.

From Model

Duration

Preferred (Observed)P
ro

ba
bi

lit
y

Using the durations obtained directly from the transition

probabilities is a poor model of the actual duration.

Duration modelling is important in order to make some dis-

tinctions e.g.

league vs leek

where the principle difference is in the length of the vowel.
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There are problems associated with duration modelling. The

duration in each state is dependent on the duration spent in

the surrounding states. It is a function of the speaker rate.

The duration may be considered as a separate knowledge

source from the acoustic vector probability, and as such may

require some form of information weighting to balance the

acoustic and duration information.

Three methods for improving duration modelling.

1. Use a number of states where the output probability

distribution is tied.

2. Integrate a parametric model of the state duration

3. Duration models applied as a post-processing stage.
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Using Additional States

Additional states are added where the same output distri-

bution is tied over all states.

0.4

(a)

(b)

(c)

0.9
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0.4 0.4

0.6

If d(τ ) is calculated over all paths through the model then

the following set of distributions are obtained.

P
ro

ba
bi

lit
y

(a)

Duration

(c)

(b)

If just the most likely state path is obtained through the

model then all distributions are similar to (a).
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Parametric Duration Models

Replace the self loop transition probability by a distribution

dj(τ ), thus

0.9
dj(τ)

Unfortunately this is no longer a Markov process, it is a

Semi-Markov process. The probability calculations are

complicated as it is now dependent on the time spent within

the state. The forward probability becomes

αi(t) =
∑

τ≤t

N∑

j=1
αj(t− τ )ajidj(τ )

τ∏

θ=1
bj(ot−τ+θ))

Similar forms for the backward probability and re-estimation

formulae may be derived. Both Poisson and Gamma dis-

tributions have been used for di(τ ).

It is simple to see the additional computational overhead in

the above probability calculation. As all previous possible

durations must be examined the computational load for an

observation of length T has increased from O(T ) to O(T 2).

This may be reduced by setting a maximum duration.
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Post-processing Duration Modelling

For isolated word recognition a simple post-processor method

can be effective in modelling state duration (or model/word

duration).

1. Calculate log(p(O|Mi)) for each model

2. backtrack state-by-state to find normalised durations, τ ′j

τ ′j =
τj

T

where τj is the actual number of frames in state j and

T is the total number of frames in the utterance.

3. Make recognition decision based on

log(p̂(O|Mi)) = log(p(O|Mi) + δ
N∑

j=1
log(pj(τ

′
j))

where δ is a weighting constant and pj(τ
′
j) is the probability

density function for the normalised duration of state j. The

duration may be modelled parametrically (Gamma distribu-

tion) or as a histogram.

This method has the advantage that normalised durations,

as opposed to absolute durations are used. This, crudely,

makes some account of the global speaker rate. Addition-

ally it is highly efficient, compared with the direct on-line

duration modelling.
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Unfortunately there are disadvantages.

1. The initial estimates of the state durations are made

with no reference to a duration model. Incorporating

a duration model may alter the state durations, hence

normalised durations and the final probabilities.

2. There is no simple extension of this to continuous speech

recognition, unless alternative recognition strings are

available. These may be obtained using an N-Best al-

gorithm or via the use of word lattices. In these cases

some improvements have been reported in some recog-

nition systems.


