
University of Cambridge

MPhil in Computer Speech Text &
Internet Technology

Module: Speech Processing II

Lecture 8: Basic Search Revision

Recording
Before

threetwo

tt-1t-2
one

WLR’s
logPlogPlogPlogP

one
t-3

W

logPlogP

After
Decision T

IY

NUH

UW

RTH

Lent 2003



Basic Search Revision 1

Introduction

Recall that in speech recognition we are trying to find the

word sequence, W, that maximises P (W|O) where O is

the observed speech.

From Bayes’ Theorem:

P (W|O) =
p(O|W)P (W)

p(O)

The search (decoder) component needs to find this value.

We have discussed and N -gram techniques earlier in this

module. The basic property of these techniques is that all

the knowledge (constraints) present can be represented in a

network form.

Hence we have

• Phone based HMMs (possibly context dependent)

• Pronunciation lexicon (dictionary)

• Language model

and in principle all the knowledge present can be compiled

into a large HMM and the best (most likely) path found

through the network.

In this lecture we will review basic Viterbi-style decoding

for continuous speech recognition and discuss basic pruning

techniques and continuous operation.



2 MPhil CSTIT: Speech Processing II

Simple No Grammar Network

N

N

IY

IH

etc

seen

been

be

etc

IY

SH

S

B

AA

Notes

(a) The basic HMMs are duplicated when the full network

is expanded: we talk of model instances. (Note able to

cache log-likelihoods for duplicate copies).

(b) Example shows all words in a loop but can add extra

finite language model structure.

(c) Network transitions may have probabilities attached to

them.



Basic Search Revision 3

Isolated Word Recognition

3

5

1

2

4

State

Time1 2 3 4 5 6

In theory we should compute the likelihood of each model

generating the set of observations, p(O|M). For efficiency

reasons we commonly approximate this by the Viterbi ap-

proximation using only the best state sequence. This likeli-

hood will be denoted as p̂(O|M).

We can write

p̂(O|M) = max
S
{p(O, S|M)}

= max
S
{ 6∏

t=1
as(t−1)s(t)bs(t)(ot)}

where s(1) . . . s(6) = S and s(0) = 1. In addition we will

be able to extract the best state sequence Ŝ

Ŝ = arg max
S
{p(O, S|M)}



4 MPhil CSTIT: Speech Processing II

Viterbi Algorithm

The best state sequence through trellis may be found by

the Viterbi Algorithm. In a similar fashion to the forward

probability we will introduce a new variable

φj(t) = max
S
{p(o1, . . . ,ot, s(t) = j|M)}

We now need to define an efficient recursion. This may be

achieved using

φj(t) = max
i
{φi(t− 1)aij} bj(ot)

The algorithm is initialised with

φj(0) =





1, j = 1

0, j > 1

In words: φj(t) represents probability of a partial path through

the trellis and the max is over all paths ending in state j at

time t.

In practice it is convenient to use logs to avoid underflow.

ψj(t) = max
i
{ψi(t− 1) + log(aij)} + log(bj(ot))

This may be though of in terms of dynamic programming

PartialPath
to (j, t)

=
max

i

{
PartialPath
to (i, t− 1)

+
Transition
Cost ito j

}
+

LocalSimilarity
Measure



Basic Search Revision 5

Paths

We would also like to be able to obtain the state sequence

associated with p̂(O|M). To do this we introduce the con-

cept of a path. This is crucial to understanding continuous

speech recognition.

A (partial) path represents an alignment of states with the

frames of speech starting from the start of the utterance and

continuing to time t. Thus A path is represented by

• a score - usually a log likelihood

• a history - to record the preceding sequence of states

For isolated word recognition where we might be interested

in finding the best state sequence the history should be at

the state level. The extension to handle continuous speech

recognition requires that the history be able to give the word

(or phone) sequence.

The problem is to have a representation of the path that

allows:

• a compact form of the history to be stored;

• at the end of the utterance the representation of the his-

tory can be mapped to the state/phone/word sequence.

To achieve this we will use token passing and traceback.



6 MPhil CSTIT: Speech Processing II

Token passing

The info describing the head of a (partial) path can be stored

in a token containing

LogP log-likelihood of (partial) path

Link pointer to history information

All states of the expanded HMM network hold one token.

We can then define

• start token: LogP= 0, Link=NULL (*)

• null token: LogP = −∞, Link=NULL (*)

At time t, the token in each model state represents a path

through trellis covering input speech from time 1 to

(a) t− δt for state 1

(b) t for states 2 → N − 1

(c) t + δt for state N

On completion, LogP of token in state N should be p̂(O|M)



Basic Search Revision 7

Token Passing (cont)

Initially consider isolated word recognition. We will only be

interested in the word sequence (isolated word recognition,

so we do not need to worry about the history).

Viterbi algorithm can be restated as:

Put a start token in entry node;

Put null tokens in all other nodes;

for each time t = 1 to T do

/* Start of Step Model */

for each state i < N do

Pass a copy of the token Q in state i to

all connecting states j;

Q.LogP = Q.LogP + log(aij) + log(bj(ot))
end;

Discard all original tokens;

for each state i < N do

Find token in state i with max LogP

and discard the rest

end;

for each state i connected to state N do

Pass a copy of the token Q in state i to state N

Q.LogP = Q.LogP+ log(aiN)
end;

Find token in state N with max LogP

and discard the rest;

Put null token in entry state

/* End of Step Model */

end;



8 MPhil CSTIT: Speech Processing II

Connected Unit Case

Extension of the token passing algorithm to deal with con-

nected units is now simple. Algorithm becomes:

Copy
Token

Copy
Token

Choose
Best

Put a start token in all network entry states;

Put null tokens in all other states;

for each time t = 1 to T do

Step All Models;

Propagate Exit Tokens to all connecting entry states;

Record Decisions;

Delete all but the best token in each entry state

end

On completion, best token in exit states of all valid network

final models represents most likely model sequence. Note

that common entry states should be regarded as being a

single entry state for this and subsequent algorithms.

We need to decide how Record Decisions should be im-

plemented.



Basic Search Revision 9

Record Decisions

This function is used to give a compact history representa-

tion (for this algorithm at the word level). The points at

which tokens are propagated from the exit states of words

to entry states of other words must be recorded. A Word

Link Record (WLR) is used.

for each best token Q in each entry state at each t do

Create a new WLR w containing:

(1) a copy of Q

(2) time t

(3) identity of emitting word

Q.link = w

end;

Recording
Before

threetwo

tt-1t-2
one

WLR’s
logPlogPlogPlogP

one
t-3

W

logPlogP

After
Decision T

IY

NUH

UW

RTH

For simple loop network, 1 WLR is generated per speech

frame.



10 MPhil CSTIT: Speech Processing II

Record Decisions (cont)

When syntax constraints are included, 1 WLR is generated

for each syntactically distinct node in the network.

WLR’s

to

from

London

Manchester

Leeds

by

about

around

one

two

three

* to Leeds Lond. Lond.

to from by by

one

from

etc

from

Leeds



Basic Search Revision 11

Traceback

Word link records have given a compact representation for

the history. We now need to obtain the best word sequence.

After the final frame of speech has been processed

Examine WLRs generated at time T, find WLR with max LogP;

Print WLR.time, WLR.LogP, WLR.word;

while WLR.Link != NULL do

WLR = WLR.Link;

Print WLR.time, WLR.LogP, WLR.word;

end;

The traceback procedure yields:

1. best sequence (in reverse order)

2. word boundary locations

3. LogP for each individual word (can be calculated)



12 MPhil CSTIT: Speech Processing II

Performance Issues

For W words, N states/word (average), we need to perform

1. W x N internal token propagations

2. W external token propagations

for each time frame (typically 10ms)

Each internal propagation involves

(a) output prob calculation (may be shared)

(b) 2 or 3 add and compare ops for state instance

The internal propagation is (at least for medium vocabs) by

state-output probability calculations. For N distinct state

distributions, M Gaussians per state and vector size V ,

need to have N × M × V × 2 multiply-adds per frame.

If N = 2000,M = 10, V = 39 which is 1.5 million multiply-

adds per 10ms frame. This is a already a lot. For a large

vocab system (esp one with context-dependent models and a

language model) the internal/external token propagation is

at least as expensive (due to the very large number of state

instances).

In practice, a substantial reduction in computation can be

achieved by only considering paths which are close in score

to the best path. This is called Beam Search.



Basic Search Revision 13

Basic beam search algorithm

We would like to ensure that our search was admissible (i.e.

the best path is guaranteed to be found). In practice this

is too expensive, we will need to accept a certain level of

search errors.

Each model instance is either active or inactive. The basic
beam search algorithm is:

Set all entry models of all network initial words are active;

for each time t = 1 to T do

for each active model w do

Step Model;

Find maximum LogP in w, lMax(w);

end;

Find global maximum LogP, gMax

for each active model w do

if lmax(w) < gMax - Thresh

De-Activate w;

end;

PropagateExit Tokens to all connecting entry states

if LogP > gMax - Thresh;

Record Decisions;

Delete all but the best token in each entry state;

Re-Activate all entry models which have just

received a new entry token;

end;



14 MPhil CSTIT: Speech Processing II

Beam Search Example

W

T

TH R

IYR

UW

UH N

UW

t=20

Token Propagated

activeExample

t=10

UH N

IY

t=0

TH

N

IY

W

T

UHW

T

TH R

UW



Basic Search Revision 15

Partial Traceback

During recognition, every active token represents a possible

path. In the basic algorithm, we wait until end of speech

and then traceback to find the best sequence. However, a

large grammar could generate 100’s of WLR’s per frame.

This results in a large memory management overhead and a

waste of memory.

This is not necessary since:

1. not all WLR’s lie on active paths;

2. when a word is recognised “well” - all active paths pass

through that WLR (esp. when pruning is used)

The aim of partial traceback is to:

• remove all WLR’s that do not lie on active paths

• if all active paths pass through the same node (model)

in the network, output path upto that word.



16 MPhil CSTIT: Speech Processing II

Partial Traceback Algorithm

Every WLR is given a usage counter ”nUse” to count the

number of pointers to it.

for every WLR, wlr, do

wlr.nUse = 0;

end;

for every active model w do

for every token in w do

for each WLR, wlr, on trace back path do

wlr.nUse++

end;

end;

end;

for every WLR, wlr, do

if wlr.nUse == 0 then

delete wlr;

end;

for all active tokens, Q

for each WLR, wlr, in traceback path from Q do

if wlr.nUse == total active states then

output remaining path;

change current WLR to NULL (*)

end;

end;

end;

Note - the above algorithm allows a recogniser to run contin-

uously withou having to wait until the speaker has finished

before outputting something (look at how current speech

products).



Basic Search Revision 17

Partial Traceback Example

*

starttothose

Models

Partial Traceback

Garbage

/t/

/p/

Active

will

metell about

tripspartshesell

ships

In the above example:

• 5 WLRs can be deleted as they are not on active paths;

• tell me can be printed.



18 MPhil CSTIT: Speech Processing II

Summary of Basic Viterbi Decoding

1. Time-synchronous beam search

2. All paths cover same region (1 → t) of input speech

hence they are simple to compare

3. If beam is wide enough, we can guarantee to find most

likely word sequence with computation linear in the

number of active words and length of input

4. Partial traceback and garbage collection make continu-

ous operation possible

5. It is easy to implement

However, the basic algorithm is difficult to scale to large vo-

cabularies and integrate in complex acoustic models and N -

gram language models due to the very large fully-expanded

state-space. We will examine some of these issues in future

lectures.


