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Introduction

This lecture discusses a number of issues that are important

for large vocabulary recognition, particularly with N -gram

language models.

Topics covered include:

• Requirements for an LVCSR decoder

• Language Model Application in Tree-Based Networks

• Word-End & Maximum Model Pruning

• Tree-Structured Lexicons

• Alternatives Strategies
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The ideal decoder

An ideal decoder would be:

• Efficient - Computation resources must be reasonable.

For dictation decoding must be better than real-time.

Already seen beam search and token passing.

• Accurate - Decoder should always find the most likely

state sequence- admissible. In order to keep the com-

pute time down (e.g. using beam-search) almost always

not possible. This results in search errors, which should

be kept to a minimum.

• Scalable - Should be able to handle large vocabulary

sizes.

• Versatile - Needs to be able to handle a variety of

knowledge sources. For example N-gram language mod-

els and context dependent acoustic models.

• Results - Should be able to produce 1-best, N-best or

lattices.

Time synchronous decoders using Viterbi recognition will

be mainly discussed - in particular using the token passing

paradigm.
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Simple System

To illustrate some of the search issues a simple 4 word vo-

cabulary system will be used.

Lexicon (monophones):

AND / ae n d /

BILL / b ih l /

BIT / b ih t /

BEN / b eh n /

Using this example consider the problems involved in:

• Finite-state network (and unigram language model)

• Bigram language model

• Trigram language model

• Cross-word triphone context dependent models
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Finite-State Network

Initially consider a system with:

• Monophone models

• Finite state grammar

This is shown below (link in grey shows the extension to

continuous speech).
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To extend this to use a unigram language model:

• Add the language model probability (e.g. log(PBEN))

to the log-likelihood of the token at the start of each

word.

• Language model information incorporated as soon as

possible to aid pruning (beam search).
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Bigram Language Model

Expanding to use bigrams is more complex:

• Language model probability is dependent on the previ-

ous word

Cannot have a single return silence loop.
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Modify network by:

• Apply bigram probability to start of each word

• Add separate loop back for each word

• Add optional silence model (sp) to end of each word.

• Extension to word internal triphones is simple.
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Trigram Language Model

Expanding to use trigrams is even more complex:

• Language model probability is dependent on the previ-

ous two word
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Modify network:

• Duplicate each word according to previous word

• Apply trigram probability to start of each “duplicate”

word

• Add separate loop back for each “duplicate” word

• Extension to word internal triphones is simple.
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Cross Word Models

Consider a system with:

• Cross word triphone models

• Bigram language model
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Modify previous bigram network

• Make use of inter-word silence explicit in network

• Duplicate first phone of word according to the last phone

of the previous word

• Duplicate last phone of word according to the first phone

of the next word
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Asymmetry in Pruned Search

When a decoder uses pruning with a fully-connected N -gram

LM it is found that that most of the search effort is concen-

trated in the first phones of each word and relatively little

at the word ends. For example the average number of active

phones at different word positions for a 5000 word WSJ task

(word-internal triphones with bigram) is shown below.

Model position First Second Last Last Word
in word but one End

Number active 3539 866 265 91 43

Proportion active 65.4% 16.0% 4.9% 1.7% 0.8%

Relative computation 76.0% 18.6% 5.7% 1.9%

It can be seen that 95% of the computation is in the first

two phones. Therefore to make an efficient decoder it is

important to reduce the computation at the start of words.

This can effectively be done by tree-structuring the decoding

network although this means that each word does not have

a unique start in the network.
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Tree Structured Lexicon

Problem with standard implementation

• At the end of each word there are typically many pos-

sible following words - most of these paths are rapidly

pruned away.
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Tree structuring the lexicon reduces cost, but

• the language model application is delayed until the end

of the word - reduces the effectiveness of pruning.
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May be overcome by early, approximate, application.
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Dynamic Network Decoding

Examining the use of a trigram network and cross-word tri-

phones the size of the network rapidly becomes impractical

to store on current machines.

Rather than using a static network decoder, a dynamic net-

work decoder may be used. The basic idea is to create new

network nodes as required and rely on pruning of the search

space to keep the number of active paths small. This al-

lows more complex acoustic and language models and still

integrates all knowledge in a single pass.

Basic description:

• tree structure network where possible;

• create new network nodes as needed;

• expand network to ensure enough context for language

models and acoustic models;

• cross-word models triphone models only slightly more

expensive than word internal models;

• relies of rapid pruning of search space;

• a general purpose dynamic network decoder can use ar-

bitrary language model and acoustic model constraints

(e.g. one in use at CUED uses pentaphone (quinphone)

HMMs with a 4-gram LM).

For efficient pruning early application of the language model

is required.
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Alternatives to Viterbi

• Fast-match procedures - Look ahead a few frames

and calculate an approximate match using for example

monophone models. If this is unlikely, discard from the

beam now.

• Stack-decoders - modify form of decoder to run in a

time asynchronous fashion.

• Multi-pass search - run over data more than once.

For example:

Initially use word internal models/bigram. HMMs may

be discrete or tied mixture. Use these simple models to

generate multiple hypothesise (described in more detail

in next lecture). Rescore hypothesise with more accu-

rate cross-word models on anN-best list or lattices saved

during the forward pass.

Sometimes (e.g. BBN) run a very fast backwards pass

to generate the final answers (and use a backwards dic-

tionary, backwards data and a backwards LM).
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Stack decoders

Continuous speech recognition in a stack decoder framework
involves growing a tree of word hypotheses. In a simple
implementation:

while not complete

pop the top item from the stack

expand the set of hypotheses

for each extension

if not seen before then

add to stack

else

update appropriate item with these paths

Stack decoders allow the simpler incorporation of long-span

language models since the whole word history is known for

each stack item.

Stack ordering

• Best first: based on the log-likelihood of the hypoth-

esised path, independent of length.

• A* search: as best first, but adds an estimate of the

cost from current position to the end of the sentence

(the least upper bound). Becomes very efficient as the

LUB approximates the true path probability – but good

estimates are hard to come by.
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Example Stack

(2 words)state

PUSH

<START> THE

Language model

5-40

range
Time

Pr(5...40), Hist(5...40)

and 
Path probabilities

history pointers

<START> CAT 8-24 Pr(8...24), Hist(8...24)

<START> SAT 8-40 Pr(8...40), Hist(8...40) 

THE CAT 40-76 Pr(40...76), Hist(40...76)

THE SAT 42-82

THE MAT 46-76 Pr(46...76), Hist(46...76)
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Stack

Time-first hypothosis extension

1. The partial hypothesis “<START> THE” is popped off the
stack

2. Extend by each word (in this case “SAT”)

3. Result is pushed back on the stack.


