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Abstract
Speaker verification is a binary classification task to determine
whether a claimed speaker uttered a phrase. Current approaches
to speaker verification tasks typically involve adapting a general
speaker Universal Background Model (UBM), normally a Gaus-
sian Mixture Model (GMM), to model a particular speaker. Ver-
ification is then performed by comparing the likelihoods from
the speaker model to the UBM. Maximum A-Posteriori (MAP)
is commonly used to adapt the UBM to a particular speaker. How-
ever speaker verification is a classification task. Thus, robust
discriminative-based adaptation schemes should yield gains over
the standard MAP approach. This paper describes and evaluates
two discriminative approaches to speaker verification. The first is
a discriminative version of MAP based on Maximum Mutual In-
formation (MMI-MAP). The second is to use an augmented-GMM
(A-GMM) as the speaker-specific model. The additional, aug-
mented, parameters are discriminatively, and robustly, trained us-
ing a maximum margin estimation approach. The performance of
these models is evaluated on the NIST 2002 SRE dataset. Though
no gains were obtained using MMI-MAP, the A-GMM system
gave an Equal Error Rate (EER) of 7.31%, a 30% relative reduc-
tion in EER compared to the best performing GMM system.

1. Introduction
Gaussian-mixture models (GMM) have become the dominant ap-
proach for modeling acoustic features in text-independent, speaker
verification systems[1]. The standard approach is to train a GMM
on all the available speaker data and use this as a Universal Back-
ground Model (UBM) to represent all speakers. This UBM is then
adapted to the limited amount of enrolment data for a particular
speaker, Maximum A-Posteriori adaptation is the usual approach
to allow the large number of GMM components in the UBM to be
robustly adapted to a speaker. However speaker verification is in-
herently a classification task. Hence discriminative approaches to
robustly adapting the general UBM to the specific speaker have the
capability to yield gains over the standard MAP approach. Most
previous discriminative approaches have concentrated on the use
of Support Vector Machines (SVMs) with kernels that handle the
dynamic nature of the speaker verification task, example kernels
include generative kernels [2], the Kullback-Leibler kernel [3] and
the sequence kernel [4]. All these approaches generate decision
boundaries in a score-space rather than discriminatively adapting
the speaker models. This paper describes and evaluates two differ-
ent discriminative approaches for speaker adaptation.

The first discriminative adaptation approach is based on a dis-
criminative MAP scheme which has been found to work well for
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both task and gender adaptation in automatic speech recognition
(ASR) [5]. Robust MAP estimates are obtained using the Maxi-
mum Mutual Information (MMI) criterion, rather than Maximum
Likelihood (ML). This approach can be viewed as maximising the
posterior of the correct speaker compared to all other speakers.
The second approach uses an augmented GMM (A-GMM) as the
speaker-specific model. Here the standard MAP adapted speaker
model is augmented by a local exponential approximation. The
parameters of this augmentation, the augmented parameters, are
estimated using maximum margin training, a discriminative ap-
proach [6]. Maximum margin estimation schemes should yield ro-
bust estimates even on limited data. This form of model is closely
related to the verification work in [2]. However the approach here
is from an adaptation perspective, rather than using an SVM to
generate a decision boundary in a generative score-space. This has
the advantage that the posterior can be computed for any observa-
tion allowing simple combination with other statistical approaches
if desired [6]. Such probabilistic interpretations are not normally
possible with SVMs.

This paper is structured as follows. The next section briefly
describes statistical approaches to speaker verification and the two
discriminative approaches investigated in this paper. In section 3,
experimental results on the 2002 NIST speaker recognition evalu-
ation dataset are presented. Finally, conclusions are drawn.

2. Discriminative Adaptation

The standard approaches used for speaker verification are based on
Bayes’ decision rule. Here to decide whether speaker s uttered O

the following decision rule is applied

log (P (ωs|O; λ))

accept
>
<

reject

β (1)

β is a threshold used to set false accepts and false rejects and λ

are the model parameters for all S speakers . As generative mod-
els, GMMs, are usually used, Bayes’ rule can be applied to obtain
the posterior of the class given models for all speakers. However,
rather than using a combined speaker model in the denominator,
which assumes a closed set, a UBM is usually trained on all the
speakers and used instead. This simple approximation is faster
and yields performance gains. The UBM is also used as the prior
distribution for the MAP estimates of the speaker-specific parame-
ters, λ(s) [1]. This section describes how discriminative adaptation
schemes may be used to obtain the speaker-specific models.



2.1. Discriminative MAP

Rather than using standard ML-based MAP approaches to gen-
erate the speaker-specific parameters, λ(s) from the UBM, it is
possible to use discriminative MAP approaches such as MMI-
MAP [5]. Here the following criterion is optimised

Fmmi =

Q
X

q=1

“

log
“

P (ω(q)|O(q); λ)
””

+ log (p(λ)) (2)

where ω(q) indicates the correct speaker for utterance O(q) and
p(λ) is the prior distribution of the model parameters for all speak-
ers. By maximising Fmmi it is possible to obtain robust estimates,
controlled by the prior, to maximise the posterior probability of the
correct speaker.

In common with other discriminative estimation schemes it is
not possible to get closed form estimates for the model parame-
ters using for example Expectation Maximisation (EM). Instead a
weak-sense auxiliary function may be used [5]. This yields update
formulae similar in fashion to EM but applicable to discrimina-
tive criteria. For MMI-MAP the the new estimate of the mean of
component j for speaker s, µ̂

(s)
j given the current estimate µ
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(considering a single utterance O = {o1, . . . , oT })1
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where τ I is a constant controlling the influence of the prior, µ̃
(s)
j is

the prior mean for component j of speaker s, Dj is a component-
specific smoothing term that ensures that weak-sense auxiliary
function is convex. γ

(s)
j (t) is the posterior probability of compo-

nent j generating the observation at time t given the current model
parameters for speaker s and γden

j (t) is the posterior for the de-
nominator model. In contrast to the standard MAP approach the
the UBM cannot be used for this, the denominator must be based

on the combined speaker model
“

PS

i=1 P (ωi)p(O; λ(i))
”

.

There are a number of parameters that need to be set. For ASR
the prior term τ I is normally set in the range 0-100 [5] and a sim-
ilar range was investigated in this work. The component specific
smoothing term, Dj was set to be twice the denominator occu-
pancy,

PT

t=1 γden
j (t). The prior for the transform parameters was

set as the MAP adapted mean. Thus as τ I → ∞ the scheme
will simply become equivalent to the standard MAP approach. In
addition an acoustic deweighting term is commonly used [5]. In
preliminary experiments it was found that an acoustic model scal-
ing factor of around 10−3 was required in contrast to ASR systems
which use values of 10−1 . This difference was felt to be due to the
nature of the combined speaker denominator model used.

2.2. Augmented Gaussian mixture models

Augmented statistical models were proposed in [7] as a method of
incorporating complex dependencies in a statistical model. Start-
ing from a base distribution, p̂(O; λ), a local exponential approx-
imation to that base distribution is produced. Thus for an set of
observations O = {o1, . . . , oT }, ot ∈ R

d, augmented statistical
models take the form

1If Dj = 0 and γden
j (t) = 0 this yields the standard MAP update.

p(O; λ,α) =
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where ∇
(1,ρ)
λ

ln p̌(O; λ) are the derivatives of order 1 through ρ
of the log likelihood with respect to the base model parameters λ,
α is a set of additional parameters, referred to as the augmented
parameters, controlling the influence of each derivative on the fi-
nal likelihood. Z is a normalisation term, required to ensure that
p(O; λ,α) is a valid probabilistic distribution and is defined as

Z =

Z

p̌(O; λ) exp
“
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λ

ln p̌(O; λ)
”

d O (5)

The model parameters are normally estimated in two stages. First
the base distribution parameters, λ, are estimated then the aug-
mented parameters α are found. In general the estimation of the
augmented parameters is highly complex. However for binary
classification tasks the estimation of these model parameters is re-
lated to finding a linear decision boundary in a generative score-
space [6].

Augmented statistical models are used in this work for the
speaker-specific model, p(O; λ(s), α(s)). It is necessary to first
define the base distribution, p̌(O; λ(s)). As in standard verifica-
tion a GMM is used as the base-distribution to yield an A-GMM.
The parameters for the base distribution of speaker s are the stan-
dard MAP adapted model set. Thus if the augmented model pa-
rameters are set to zero, α(s) = 0, the system defaults to the stan-
dard MAP approach. This base distribution is then augmented, in
this paper, with first order derivatives with respect to the means
only. These derivatives can be calculated as

∇
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µ
(s)
j and Σ

(s)
j are the MAP-adapted mean and covariance matrix

for component j for speaker s.
To obtain the speaker-specific augmented parameters, α(s),

equation 1 is used. The posterior is approximated by

P (ωs|O; λ) ≈
P (ωs)p(O; λ(s), α(s))

P (ωu)p(O; λ(u))

p(O; λ(u)) is the UBM distribution and P (ωu) is the prior dis-
tribution for the UBM2. Substituting this into equation 1 yields a
linear decision boundary in a score-space

w
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φ(O; λ(s)) +b
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β (7)

where the direction, w, and bias, b, are given by

b = log

„

P (ωs)
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«
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1
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–

(8)

Z(s) is the normalisation term associated with augmented speaker
model. The score space is a generative score-space [6],
φ(O; λ(s)), defined as

φ(O; λ(s)) =

»

log p̌(O; λ(s)) − log p(O; λ(u))

∇
λ(s) log p̌(O; λ(s))

–

(9)

2Normally priors on the models are incorporated in the threshold β with
P (ωu) = 1. However for A-GMM training they need to be maintained as
part of the model since training optimises the ratio of the two priors.



This score-space is similar to that used in [2]. However, here the
score-space is defined from a modeling perspective rather than as
a dynamic kernel. One approach to robustly estimating linear de-
cision boundaries in high-dimensional space (the dimensions of
the score-space is Md + 1 where M is the number of compo-
nents in the speaker-specific GMM) is to use maximum margin
training. This may be viewed as building a Support Vector Ma-
chine (SVM) using the score-space φ(O; λ(s)). As training an
SVM is a distance-based learning approach an appropriate metric
is required. In this work the distance between two observations,
K(O(i), O(j); λ(s)) is defined as

K(O(i)
, O

(j); λ(s)) =
1

TiTj

φ(O(i); λ(s))TG−1
φ(O(j); λ(s)) (10)

where G is the total diagonal covariance of all the score-space
examples, Ti and Tj are the lengths of utterances O(i) and O(j)

respectively. This is the form of metric described in [6].

3. Experimental Results
The performance of the discriminative adaptation approaches was
evaluated on the 2002 NIST SRE one-speaker detection task. This
tasks contains telephone cellular data with speech from 139 male
and 191 female speakers. The utterances are split so that only one
side of the conversation is present. For training there was a single
utterance from each speaker for enrolment of up to 120 seconds
in length. There are 3570 test utterances, each of known gender.
Each test utterance is scored against 11 different potential speak-
ers of the correct gender, one of which is usually the true speaker.
The utterances were parameterised using a frame rate of 10ms and
a window size of 30ms. A 31 dimensional feature vector was ex-
tracted from each frame using a bandwidth of 0-3.8 KHz. The
feature vector consisted of 15 static Mel-PLP coefficients, 15 delta
coefficients and the delta energy. Static energy or acceleration fea-
tures were not extracted as it has been previously reported [8] that
they contain no speaker-discriminative information. Lastly, Cep-
stral Mean Subtraction was performed on each utterance to intro-
duce robustness to stationary channel noise. Cepstral feature warp-
ing [9] was also carried out using a 3 second window to introduce
additional noise robustness.

Gender-dependent UBMs were trained using Baum-Welch re-
estimation from an initial single-component, diagonal-covariance
model doubling the number of mixture components after every 4
iterations. The UBMs were trained using all training utterances
of the appropriate gender. This approach differs from that in [8]
where the UBMs were trained on a different dataset. Baseline
speaker-dependent GMMs were trained using 2 iterations of MAP
adaptation using the appropriate UBM as a static prior. The MAP
adaptation constant, τ map, was initially kept fixed at 25 and only the
model means were adapted. Preliminary experiments were carried
out to investigate whether additionally adapting variances and mix-
ture weights provided any improvement in verification, however as
in [8] no significant improvement in performance was observed.

Performance was primarily evaluated using the Equal Error
Rate (EER). This is the value of the False Alarm and the Miss
probabilities when the operating threshold is adjusted such that
they are equal. The EER score provides a threshold-independent
score for which the costs of misses and false alarms are equal.
DET graphs [10] are also used in this paper to compare clas-
sifiers. These are similar to Receiver Operating Characteristics
(ROC) curves that plot miss against false alarm probability except

that DET graphs utilise an exponentially warped scale to improve
readability. In the 2002 NIST SRE, performance was evaluated by
means of a detection cost function (DCF) . This is the weighted
sum of the False alarm and Miss probabilities at a defined thresh-
old. The normalised cost [11] takes the form

DCF = PMiss + 9.9PFalseAlarm (11)

In these experiments no attempt was made to obtain an appropriate
operating threshold. To aid comparison with other work we report
minDCF scores alongside EER. Here, minDCF is the minimum
DCF obtained a-posteriori by adjusting the decision threshold.

Initially the MMI-MAP scheme was evaluated. As discussed
in section 2.1, the MAP adapted speaker models were used as the
prior. Only a single iteration of MMI-MAP was performed with
various values of τ I . In these preliminary results only the male-
speakers were evaluated and a 128 component UBM was used.
To be consistent with the training criterion verification was based
on the composite speaker model in the denominator, rather than
the UBM. This caused a slight degradation in the baseline perfor-
mance, about 0.15% in EER.

τ I 50 100 200 500 ∞

EER (%) 12.92 12.81 12.83 12.51 12.33

Table 1: Performance of MMI-MAP with varying τ I

The MMI-MAP results are shown in table 1. Overall the per-
formance is highly disappointing, as for no value of τ I does MMI-
MAP outperform the baseline (τ I = ∞). In training the posterior
probability of the correct speaker did increase, however this gain
did not generalise to the test speakers. This lack of generalisation
differs from results obtained on the YOHO database where gains
were observed with MMI-MAP.

A-GMM-based speaker-models were then trained with the
baseline MAP-adapted GMMs as the base-distributions. Maxi-
mum Margin training was implemented using SV M light [12]. As
impostors are required for SVM training, utterances from all com-
peting speakers of the same gender were used during training. To
prevent the classifier unduly penalising true utterances, each true
utterance was weighted until the “sizes” of the true and impostor
training sets were equal. The performance of the A-GMM based
system was evaluated on both male and female data. Initially the
value of τ map used in standard MAP was set at 25 for all systems.

# Components
GMM A-GMM

EER(%) minDCF EER(%) minDCF

128 12.17 0.5014 8.62 0.3714
256 11.24 0.4704 7.88 0.3467
512 11.13 0.4638 7.48 0.3371

1024 11.37 0.4669 7.31 0.3281

Table 2: Performance for A-GMM and GMM acoustic models

Table 2 shows the performance of both the the baseline GMM
and the A-GMMs. The performance of the GMM systems only
improved marginally as the number of components was increased
from 256 up to 1024. This lack of performance gain is in contrast
to that observed in [8]. The A-GMM systems shows large gains
over the baseline GMM system for all sizes of model. The best



performing system was based on 1024 components and gave an
EER of 7.31%.

In [8] the value of τ map was reduced as the number of compo-
nents increased. This is because the amount of data associated with
each component decreases as the number of components increases.
Thus with a fixed τ map many components will not shift far from the
prior. Table 3 shows the performance of the 1024 component UBM

τ map GMM A-GMM
EER(%) minDCF EER(%) minDCF

0 11.94 0.4724 9.54 0.4317
10 10.43 0.4378 7.75 0.3585
25 11.37 0.4669 7.31 0.3281
50 12.33 0.5029 7.44 0.3272

Table 3: Performance for 1024-component acoustic models

system with both GMMs and A-GMMs. Again for all values of
τ map the A-GMM out-performed the baseline GMM. However as
the value τ map increased the performance gain of the A-GMM over
the GMM gradually increased (note the performance of the GMM
initially improved and then got worse). This can be explained as
the augmented parameters α(s) are estimated in the score-space
defined by the MAP-adapted base distribution. If the base distribu-
tion is too “close” to the training example, a “biased” score-space,
and scores, compared to the test data will be obtained. This bias is
present for both the GMM and A-GMM, but it affects the perfor-
mance more in the A-GMM case because of the large dimension
of the score-space. Thus the best value of τ map is expected to be
smaller for the GMM system than the A-GMM system, as seen in
table 3. When τ map = 0 the parameter estimates for the speaker
models are based only on the maximum-likelihood estimate given
the adaptation data, this is similar to the approach used in [2].
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Figure 1: DET curve comparing best GMM and A-GMM systems

The best performing GMM system used 1024 components and
τ map = 10. The best A-GMM also was based on a 1024 component
UBM, but with τ map = 25. The DET curves for these two systems
are shown in figure 1. Compared to the best baseline GMM sys-
tem, the A-GMM achieved a 30% relative reduction in EER.

4. Conclusions
This paper has described two discriminative approaches to speaker
verification. The first approach is based on discriminative-MAP
(MMI-MAP) to adapt a UBM to a particular speaker. This allows
the posterior of the correct speaker to be directly increased. This
scheme has been found to be useful for ASR tasks, but yielded no
performance gain on the 2002 NIST SRE task. Though gains in
the posterior of the correct speaker were obtained in training these
did not generalise well to the test data. In contrast, the maximum-
margin trained Augmented GMM, A-GMM, acoustic models were
found to generalise well. The A-GMM based system gave a 30%
relative reduction in EER compared to the best performing GMM
system. The best system performance achieved was 7.31% EER.
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