

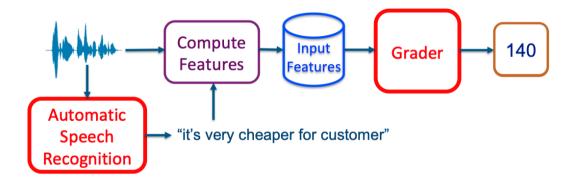
Mark Gales with Anton Ragni, Andrey Malinin and ALTA Speech Group

24th October 2019

Computer says no: Irish vet fails oral English test needed to stay in Australia

Louise Kennedy, a native English speaker with two degrees, says flawed technology is to blame

Spoken Language Assessment Pipeline



ASR Confidence Scores

- Useful to know whether ASR output is correct
 - confidence scores supply this information
 - three forms of error: substitutions, deletions and insertions

manual	AND	THESE	ARE		THE	FIMBLES
asr		THIS	ARE	ТО	THE	FIMBLES
error	del	sub		ins	—	_
conf		0.4	0.8	0.3	0.9	0.9

Baseline Confidence Scores

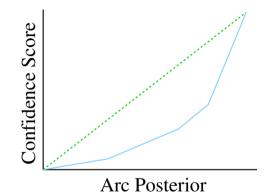
Baseline confidence scores based on arc posteriors

$$p(\boldsymbol{q}_{1:T}, \boldsymbol{x}_{1:T}) = p_{a}(\boldsymbol{x}_{1:T} | \boldsymbol{q}_{1:T})^{\frac{1}{\gamma}} P_{1}(\boldsymbol{w}_{1:L}); \quad P(\boldsymbol{a} | \mathcal{L}) = \frac{\sum \boldsymbol{q}_{1:T} \in \mathcal{Q}_{a} p(\boldsymbol{q}_{1:T}, \boldsymbol{x}_{1:T})}{p(\boldsymbol{x}_{1:T})}$$

- $\boldsymbol{q}_{1:\mathcal{T}}$ *T*-length state sequence for word sequence $\boldsymbol{\omega}$
- \mathcal{Q}_a set of state sequences that pass through arc a
- γ is usually the LM scale factor
- does not alter 1-best (compared to scaling LM)

・ロト ・雪 ト ・ ヨ ト ・

Confidence Score Calibration [?]

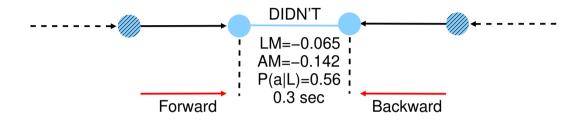


- Confidence scores often over-estimated
 - very simple normalisation approach

< ∃ >

< □ > < □ > < □ > < □ >

Neural Network Based Confidence Scores



- Use more general sequence model
 - for 1-best $w_{1:L} = w_1, ..., w_L$
 - use information associated with each arc a_{1:L}

$$P(w_i|\mathbf{a}_{1:L}) = \mathcal{F}(\mathbf{a}_i, \overrightarrow{\mathbf{a}}_{1:i-1}, \overleftarrow{\mathbf{a}}_{i+1:L})$$

< □ > < 同 > < 三</p>

RNN-Based Confidence Scores [?, ?]

Simple approach use recurrent neural networks

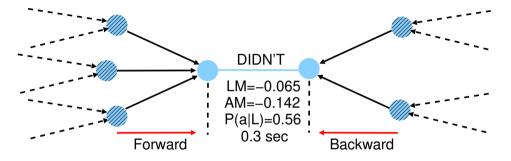
$$\vec{h}_{i} = \mathcal{F}(\vec{h}_{i-1}, \mathbf{a}_{1}); \quad \overleftarrow{h}_{i} = \mathcal{F}(\overleftarrow{h}_{i+1}, \mathbf{a}_{1});$$
$$P(w_{i}|\mathbf{a}_{1:L}) = \mathcal{F}(\vec{h}_{i}, \overleftarrow{h}_{i})$$

- Evaluation: Georgian (!) Conversation Telephone Speech
 - RNN-based on: posteriors, word ID and durations

System	NCE	AUC	
Arc posteriors	-0.1978	0.9081	
+ calibration	0.2755	0.9081	
+ RNN	0.2911	0.9121	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lattice Neural Network Based Confidence Scores [?, ?]



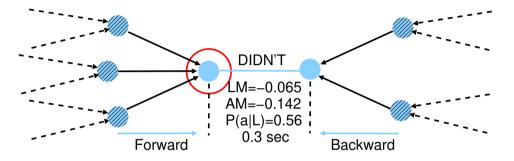
• Make use of complete lattice \mathcal{L}

$$P(w_i|\mathcal{L}) = \mathcal{F}(a_i, \overrightarrow{\mathcal{Q}}_{a_i}, \overleftarrow{\mathcal{Q}}_{a_i})$$

- \vec{Q}_{a_i} set of arcs in forward direction to a_i
- $\overleftarrow{\mathcal{Q}}_{a_i}$ set of arcs in backward direction to a_i

(日)

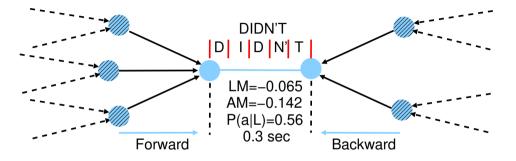
Lattice Neural Network Based Confidence Scores



Use attention to merge arcs

$$\vec{h}_{i} = \operatorname{attention}\left(\left\{\vec{h}_{j}\right\}_{j\in\overline{\mathcal{N}}_{a_{i}}}, a_{i}\right); \quad \overleftarrow{h}_{i} = \operatorname{attention}\left(\left\{\overleftarrow{h}_{j}\right\}_{j\in\overline{\mathcal{N}}_{a_{i}}}, a_{i}\right); \\ P(w_{i}|a_{1:L}) = \mathcal{F}(\overrightarrow{h}_{i}, \overleftarrow{h}_{i})$$

Grapheme Features



Add grapheme ID and duration information

$$\boldsymbol{g}_i = \text{self} - \text{attention}(\{\boldsymbol{g}_i^{(1)}, \dots, \boldsymbol{g}_i^{(N)}\}); \quad \boldsymbol{g}_i^{(j)} = \begin{bmatrix} \text{id}_i^{(j)} \\ d_i^{(j)} \end{bmatrix}$$

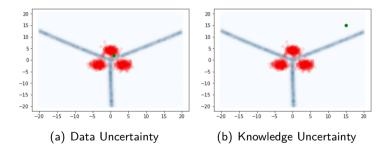
3

- Evaluation on a CTS task
 - RNN-based on: posteriors, word ID and durations
 - latticeRNN acts on confusion networks

System	NCE	AUC
RNN	0.2911	0.9121
lattice-RNN	0.2934	0.9178
+ grapheme	0.3004	0.9231

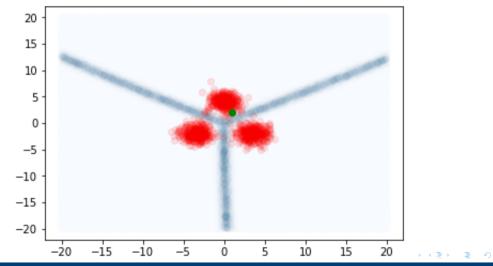
Prediction Uncertainty

Sources of Uncertainty



イロト 不得 トイヨト イヨト

Data (Aleatoric) Uncertainty

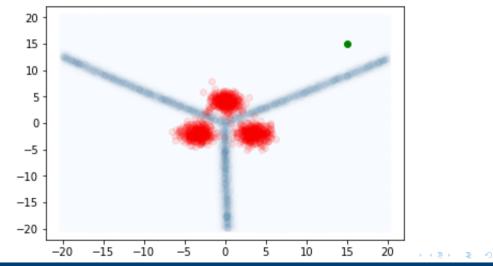


Data Uncertainty

Distinct Classes

Overlapping Classes

Knowledge (Distributional/Epistemic) Uncertainty



Knowledge Uncertainty

Unseen classes

- Unseen variations of seen classes

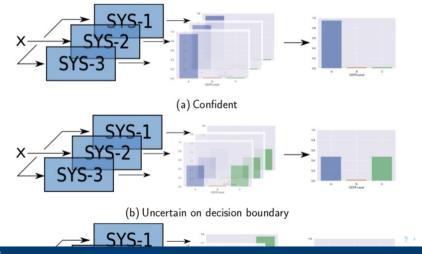
э.

・ロト ・四ト ・ヨト

• Given training data ${\cal D}$

$$P(y|\mathbf{x}^*, \boldsymbol{\theta}) = \int P(y|\mathbf{x}^*, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$
$$\approx \frac{1}{M} \sum_{i=1}^{M} P(y|\mathbf{x}^*, \boldsymbol{\theta}^{(i)}); \quad \boldsymbol{\theta}^{(i)} \sim p(\boldsymbol{\theta}|\mathcal{D})$$

Ensemble Approaches



Simple reminder of Entropy

$$\mathcal{H}[P(y|\boldsymbol{x}^*, \boldsymbol{\theta})] = -\sum_{c=1}^{K} P(y = \omega_c | \boldsymbol{x}^*, \boldsymbol{\theta}) \log (P(y = \omega_c | \boldsymbol{x}^*, \boldsymbol{\theta}))$$

- General attributes
 - high entropy: "flat" distribution, low confidence
 - Iow entropy: "peaky" distribution, high confidence
- Doesn't give information about source of uncertainty!

・ロト ・雪 ト ・ ヨ ト ・

Ensemble Consistency [?, ?]

Mutual Information

$$\underbrace{\mathcal{I}[y, \boldsymbol{\theta} | \boldsymbol{x}^{\star}, \mathcal{D}]}_{\text{Knowledge Uncertainty}} = \underbrace{\mathcal{H}[\mathbb{E}_{p(\boldsymbol{\theta} | \mathcal{D})}[p(y | \boldsymbol{x}^{\star}, \boldsymbol{\theta})]]}_{\text{Total Uncertainty}} - \underbrace{\mathbb{E}_{p(\boldsymbol{\theta} | \mathcal{D})}[\mathcal{H}[p(y | \boldsymbol{x}^{\star}, \boldsymbol{\theta})]]}_{\text{Expected Data Uncertainty}}$$

Total Variance

$$\underbrace{\mathbb{V}[y, \boldsymbol{\theta} | \boldsymbol{x}^{\star}, \mathcal{D}]}_{\text{Total Variance}} = \underbrace{\mathbb{V}_{p(\boldsymbol{\theta} | \mathcal{D})} \left[\mathbb{E}_{p(y | \boldsymbol{x}^{\star}, \boldsymbol{\theta})}[y] \right]}_{\text{Mean Variance}} + \underbrace{\mathbb{E}_{p(\boldsymbol{\theta} | \mathcal{D})} \left[\mathbb{V}_{p(y | \boldsymbol{x}^{\star}, \boldsymbol{\theta})}[y] \right]}_{\text{Expected Data Variance}}$$

Expected (Pairwise) KL-Divergence

$$\mathrm{KL}[y,\boldsymbol{\theta}|\boldsymbol{x}^{\star},\mathcal{D}] = \mathbb{E}_{\mathrm{p}(\boldsymbol{\theta}|\mathcal{D}),\mathrm{p}(\boldsymbol{\tilde{\theta}}|\mathcal{D})} \left[\mathrm{KL}[\mathrm{p}(y|\boldsymbol{x}^{\star},\boldsymbol{\theta}) || \mathrm{p}(y|\boldsymbol{x}^{\star},\boldsymbol{\tilde{\theta}})] \right]$$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

• Deep learning approaches often use 10,000,000+ parameters

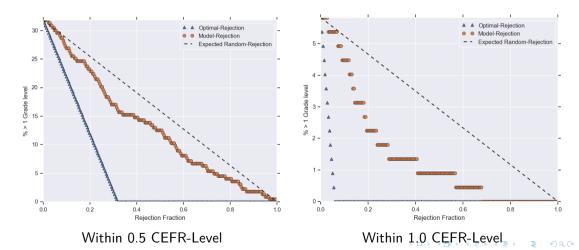
Modelling $p(\theta|D)$ challenging

- use variational approximations
- Monte-Carlo methods
- non-Bayesian approaches e.g. random network initialisation

Computer says no: Irish vet fails oral English test needed to stay in Australia

Louise Kennedy, a native English speaker with two degrees, says flawed technology is to blame

Grader Uncertainty: Ensemble-Based



Prior Networks

27/36

Ensemble Modelling [?, ?]

- Ensembles compute/memory intensive (scales linearly)
 - challenging to guarantee performance for outliers

Ensemble Modelling [?, ?]

- Ensembles compute/memory intensive (scales linearly)
 - challenging to guarantee performance for outliers
- Possible to compress ensemble to a single model:
 - Ensemble Distillation: standard compression approach

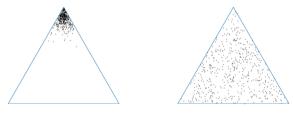
$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \left\{ \mathtt{KL}\left(\frac{1}{M}\sum_{i=1}^{M} \mathtt{P}(y|\boldsymbol{x}^{*}, \boldsymbol{\theta}^{(i)}) || \mathtt{P}(y|\boldsymbol{x}^{*}, \boldsymbol{\theta}) \right) \right\}$$

- models average distribution loses diversity of ensemble
- Ensemble Distribution Distillation: model ensemble diversity
 - maintains diversity of the ensemble

イロト 不得 トイヨト イヨト

Distributions on a Simplex

• Ensemble $\{P(y|\boldsymbol{x}^*, \boldsymbol{\theta}^{(i)})\}_{i=1}^M$ can be visualised on a simplex



(a) In domain x^* (b) Out-of-domain x^*

ensemble samples from a distribution over distributions

ж

・ロト ・四ト ・ヨト

Distributions on a Simplex

• Ensemble $\{P(y|\mathbf{x}^*, \boldsymbol{\theta}^{(i)})\}_{i=1}^M$ can be visualised on a simplex

(a) In domain **x***

- (b) Out-of-domain x^*
- ensemble samples from a distribution over distributions
- Only need to model desired distribution
 - should allow explicit control over diversity

3

*ロ * * 四 * * 日 * * 日 *

• A Prior Network predicts parameters of Dirichlet Distribution

$$p(oldsymbol{\mu}|oldsymbol{x}^*; oldsymbol{\hat{ heta}}) = ext{Dir}(oldsymbol{\mu}|oldsymbol{lpha}), \quad oldsymbol{lpha} = oldsymbol{f}(oldsymbol{x}^*; oldsymbol{\hat{ heta}})$$

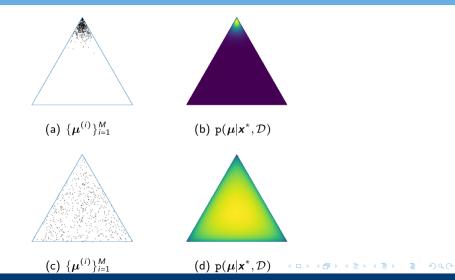
where

$$\boldsymbol{\mu} = \begin{bmatrix} P(\boldsymbol{y} = \omega_1 | \boldsymbol{x}^*) \\ P(\boldsymbol{y} = \omega_2 | \boldsymbol{x}^*) \\ \vdots \\ P(\boldsymbol{y} = \omega_K | \boldsymbol{x}^*) \end{bmatrix}$$

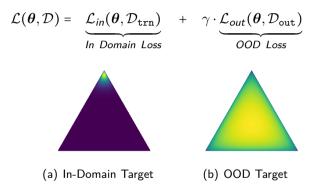
- Dirichlet Distribution \rightarrow Distribution over simplex
 - Conjugate prior to categorical distribution
 - Convenient properties → analytically tractable

・ロト ・雪 ト ・ ヨ ト ・

Distribution over Distributions



Prior Network Construction



- Explicitly train the form of the Dirichlet distributions
 - but requires selection/generation of out-of-distribution data

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

Target Dirichlet Parameters [?]

- Train network to predict appropriate distribution:
 - map $y^{(i)} \rightarrow \beta^{(i)}$: should yield correct class minimise

$$\mathcal{L}(\boldsymbol{\theta}; \mathcal{D}) = \sum_{i=1}^{N} \mathrm{KL}\left(\mathrm{p}(\boldsymbol{\mu}|\boldsymbol{\beta}^{(i)}) || \mathrm{p}(\boldsymbol{\mu}|\boldsymbol{x}^{(i)}; \boldsymbol{\theta})\right)$$

• Consider setting $\beta^{(i)}$ as follows \rightarrow

$$\beta_k^{(i)} = \begin{cases} \beta + 1 & \text{if } y^{(i)} = \omega_k \\ 1 & \text{if } y^{(i)} \neq \omega_k \end{cases}$$

- if β is large \rightarrow : high confidence
- if β is low \rightarrow : low confidence
- If β is zero \rightarrow : flat (uniform) distribution
- Reverse-KL yields better results (see paper for reasons)

- Use CIFAR-100 for out-of-distribution (OOD) training data
 - evaluate performance in detecting OOD test samples
 - metric AUC (average 10 randomly initialised models $\pm 2\sigma$)

Model	CIFAR-10				
Model	SVHN	LSUN	TinyImageNet		
Ensemble	$89.5 \pm \text{NA}$	$93.2~\pm~\text{NA}$	$90.3 \pm \text{NA}$		
Prior Network	$98.2 \ \pm 1.1$	95.7 ± 0.9	95.7 ±0.7		

Conclusions

- Uncertainty important for deploying machine learning
 - systems tend to be overly confident

- Uncertainty important for deploying machine learning
 - systems tend to be overly confident
- Knowing the cause of uncertainty useful
 - allows different actions to be taken to address uncertainty
 - applications: active learning, uncertainty for RL, ...

- Uncertainty important for deploying machine learning
 - systems tend to be overly confident
- Knowing the cause of uncertainty useful
 - allows different actions to be taken to address uncertainty
 - applications: active learning, uncertainty for RL, ...
- It's hard!
 - humans aren't too good at it either

イロト 不得 トイヨト イヨト