
Uncertainty: Knowing What You Don’t Know

Mark Gales with Anton Ragni, Andrey Malinin
and ALTA Speech Group

24th October 2019



Article in The Guardian August 2017

2/36



Spoken Language Assessment Pipeline

3/36



ASR Confidence Scores

4/36



ASR Confidence Scores [?]

• Useful to know whether ASR output is correct
• confidence scores supply this information
• three forms of error: substitutions, deletions and insertions

manual AND THESE ARE THE FIMBLES
asr THIS ARE TO THE FIMBLES
error del sub — ins — —
conf — 0.4 0.8 0.3 0.9 0.9

5/36



Baseline Confidence Scores

SIL

SIL

TO

TO

TO

IT

IT

IT

IT IT

IN

AN
AN

A

A

BUT

BUT

DIDN'T

DIDN'T

ELABORATE
SIL

IN

Time (s)

0.00 0.50 1.00 1.50 2.25 2.85

ASR

• Baseline confidence scores based on arc posteriors

p(q1∶T ,x1∶T ) = pa(x1∶T ∣q1∶T )

1
γ Pl(w1∶L); P(a∣L) =

∑q1∶T ∈Qa p(q1∶T ,x1∶T )

p(x1∶T )

• q1∶T T -length state sequence for word sequence ω
• Qa set of state sequences that pass through arc a
• γ is usually the LM scale factor
• does not alter 1-best (compared to scaling LM)

6/36



Confidence Score Calibration [?]

C
o

n
fi

d
e
n

c
e
 S

c
o

re

Arc Posterior

• Confidence scores often over-estimated
• very simple normalisation approach

7/36



Neural Network Based Confidence Scores

0.3 sec

LM=−0.065

Forward Backward

AM=−0.142

DIDN’T

P(a|L)=0.56

• Use more general sequence model
• for 1-best w1∶L = w1, . . . ,wL
• use information associated with each arc a1∶L

P(wi ∣a1∶L) = F(ai ,
Ð→a 1∶i−1,

←Ða i+1∶L)

8/36



RNN-Based Confidence Scores [?, ?]

• Simple approach use recurrent neural networks
Ð→

h i = F(

Ð→

h i−1,a1);
←Ð

h i = F(

←Ð

h i+1,a1);

P(wi ∣a1∶L) = F(

Ð→

h i ,
←Ð

h i)

• Evaluation: Georgian (!) Conversation Telephone Speech
• RNN-based on: posteriors, word ID and durations

System NCE AUC
Arc posteriors -0.1978 0.9081
+ calibration 0.2755 0.9081
+ RNN 0.2911 0.9121

9/36



Lattice Neural Network Based Confidence Scores [?, ?]

0.3 sec

DIDN’T

LM=−0.065

Forward Backward

AM=−0.142
P(a|L)=0.56

• Make use of complete lattice L

P(wi ∣L) = F(ai ,
Ð→

Qai ,
←Ð

Qai )

•
Ð→

Qai set of arcs in forward direction to ai
•
←Ð

Qai set of arcs in backward direction to ai

10/36



Lattice Neural Network Based Confidence Scores

0.3 sec

DIDN’T

LM=−0.065

Forward Backward

AM=−0.142
P(a|L)=0.56

• Use attention to merge arcs
Ð→

h i = attention({

Ð→

h j}j∈Ð→N ai
,ai) ;

←Ð

h i = attention({

←Ð

h j}j∈←ÐN ai
,ai) ;

P(wi ∣a1∶L) = F(

Ð→

h i ,
←Ð

h i)

11/36



Grapheme Features

D

LM=−0.065

Forward Backward

AM=−0.142
P(a|L)=0.56

0.3 sec

TDI

DIDN’T

N’

• Add grapheme ID and duration information

g i = self − attention({g(1)i , . . . ,g(N)i }); g(j)i =

⎡
⎢
⎢
⎢
⎣

id(j)i
d(j)i

⎤
⎥
⎥
⎥
⎦

12/36



LatticeRNN Based Confidence Scores

• Evaluation on a CTS task
• RNN-based on: posteriors, word ID and durations
• latticeRNN acts on confusion networks

System NCE AUC
RNN 0.2911 0.9121
lattice-RNN 0.2934 0.9178
+ grapheme 0.3004 0.9231

13/36



Prediction Uncertainty

14/36



Sources of Uncertainty

(a) Data Uncertainty (b) Knowledge Uncertainty

15/36



Data (Aleatoric) Uncertainty

16/36



Data Uncertainty

• Distinct Classes

• Overlapping Classes

17/36



Knowledge (Distributional/Epistemic) Uncertainty

18/36



Knowledge Uncertainty

• Unseen classes

• Unseen variations of seen classes

19/36



Ensemble Approaches

• Given training data D

P(y ∣x∗,θ) = ∫ P(y ∣x∗,θ)p(θ∣D)dθ

≈

1
M

M
∑

i=1
P(y ∣x∗,θ(i)); θ(i) ∼ p(θ∣D)

20/36



Ensemble Approaches

21/36



Entropy for Uncertainty

• Simple reminder of Entropy

H[P(y ∣x∗,θ)] = −
K
∑

c=1
P(y = ωc ∣x∗,θ) log (P(y = ωc ∣x∗,θ))

• General attributes
• high entropy: “flat” distribution, low confidence
• low entropy: “peaky” distribution, high confidence

• Doesn’t give information about source of uncertainty!

22/36



Ensemble Consistency [?, ?]

• Mutual Information

I[y ,θ∣x⋆,D]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Knowledge Uncertainty

=H[Ep(θ∣D)[p(y ∣x
⋆,θ)]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Total Uncertainty

−Ep(θ∣D)[H[p(y ∣x⋆,θ)]]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Expected Data Uncertainty

• Total Variance

V[y ,θ∣x⋆,D]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Total Variance

= Vp(θ∣D) [Ep(y ∣x⋆,θ)[y]]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Mean Variance

+Ep(θ∣D) [Vp(y ∣x⋆,θ)[y]]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Expected Data Variance

• Expected (Pairwise) KL-Divergence

KL[y ,θ∣x⋆,D] = E
p(θ∣D),p(θ̃∣D) [KL[p(y ∣x⋆,θ)∣∣p(y ∣x⋆, θ̃)]]

23/36



Ensemble “Generation” [?, ?, ?]

• Deep learning approaches often use 10,000,000+ parameters

Modelling p(θ∣D) challenging

• use variational approximations
• Monte-Carlo methods
• non-Bayesian approaches e.g. random network initialisation

24/36



Spoken Language Assessment

25/36



Grader Uncertainty: Ensemble-Based

Within 0.5 CEFR-Level Within 1.0 CEFR-Level
26/36



Prior Networks

27/36



Ensemble Modelling [?, ?]

• Ensembles compute/memory intensive (scales linearly)
• challenging to guarantee performance for outliers

• Possible to compress ensemble to a single model:
• Ensemble Distillation: standard compression approach

θ̂ = argmax
θ

{KL(

1
M

M
∑

i=1
P(y ∣x∗,θ(i))∣∣P(y ∣x∗,θ))}

• models average distribution - loses diversity of ensemble
• Ensemble Distribution Distillation: model ensemble diversity

• maintains diversity of the ensemble

28/36



Ensemble Modelling [?, ?]

• Ensembles compute/memory intensive (scales linearly)
• challenging to guarantee performance for outliers

• Possible to compress ensemble to a single model:
• Ensemble Distillation: standard compression approach

θ̂ = argmax
θ

{KL(

1
M

M
∑

i=1
P(y ∣x∗,θ(i))∣∣P(y ∣x∗,θ))}

• models average distribution - loses diversity of ensemble
• Ensemble Distribution Distillation: model ensemble diversity

• maintains diversity of the ensemble

28/36



Distributions on a Simplex

• Ensemble {P(y ∣x∗,θ(i))}M
i=1 can be visualised on a simplex

(a) In domain x∗ (b) Out-of-domain x∗

• ensemble samples from a distribution over distributions

• Only need to model desired distribution
• should allow explicit control over diversity

29/36



Distributions on a Simplex

• Ensemble {P(y ∣x∗,θ(i))}M
i=1 can be visualised on a simplex

(a) In domain x∗ (b) Out-of-domain x∗

• ensemble samples from a distribution over distributions

• Only need to model desired distribution
• should allow explicit control over diversity

29/36



Prior Networks [?]

• A Prior Network predicts parameters of Dirichlet Distribution

p(µ∣x∗; θ̂) = Dir(µ∣α), α = f (x∗; θ̂)

where

µ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P(y = ω1∣x∗)
P(y = ω2∣x∗)

⋮

P(y = ωK ∣x∗)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

• Dirichlet Distribution → Distribution over simplex
• Conjugate prior to categorical distribution
• Convenient properties → analytically tractable

30/36



Distribution over Distributions

(a) {µ(i)}M
i=1 (b) p(µ∣x∗,D)

(c) {µ(i)}M
i=1 (d) p(µ∣x∗,D)

31/36



Prior Network Construction

L(θ,D) = Lin(θ,Dtrn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

In Domain Loss

+ γ ⋅Lout(θ,Dout)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

OOD Loss

(a) In-Domain Target (b) OOD Target

• Explicitly train the form of the Dirichlet distributions
• but requires selection/generation of out-of-distribution data

32/36



Target Dirichlet Parameters [?]

• Train network to predict appropriate distribution:
• map y (i) → β(i): should yield correct class - minimise

L(θ;D) =

N
∑

i=1
KL (p(µ∣β(i))∣∣p(µ∣x(i);θ))

• Consider setting β(i) as follows →

β
(i)
k = {

β + 1 if y (i) = ωk
1 if y (i) ≠ ωk

• if β is large →: high confidence
• if β is low →: low confidence
• If β is zero →: flat (uniform) distribution

• Reverse-KL yields better results (see paper for reasons)

33/36



Out-of-Distribution Detection: Image Tasks

• Use CIFAR-100 for out-of-distribution (OOD) training data
• evaluate performance in detecting OOD test samples
• metric AUC (average 10 randomly initialised models ±2σ)

Model CIFAR-10
SVHN LSUN TinyImageNet

Ensemble 89.5 ± NA 93.2 ± NA 90.3 ± NA
Prior Network 98.2 ±1.1 95.7 ±0.9 95.7 ±0.7

34/36



Conclusions

35/36



Uncertainty: Knowing What You Don’t Know

• Uncertainty important for deploying machine learning
• systems tend to be overly confident

• Knowing the cause of uncertainty useful
• allows different actions to be taken to address uncertainty
• applications: active learning, uncertainty for RL, ...

• It’s hard!
• humans aren’t too good at it either

36/36



Uncertainty: Knowing What You Don’t Know

• Uncertainty important for deploying machine learning
• systems tend to be overly confident

• Knowing the cause of uncertainty useful
• allows different actions to be taken to address uncertainty
• applications: active learning, uncertainty for RL, ...

• It’s hard!
• humans aren’t too good at it either

36/36



Uncertainty: Knowing What You Don’t Know

• Uncertainty important for deploying machine learning
• systems tend to be overly confident

• Knowing the cause of uncertainty useful
• allows different actions to be taken to address uncertainty
• applications: active learning, uncertainty for RL, ...

• It’s hard!
• humans aren’t too good at it either

36/36


