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Abstract

The most popular model used in automatic speech recognition is the hidden Markov model
(HMM). Though good performance has been obtained with such models there are well known
limitations in its ability to model speech. A variety of modifications to the standard HMM
topology have been proposed to handle these problems. One approach is the factorial HMM.
This paper introduces a new form of factorial HMM which makes use of transformation
streams. The new scheme is a generalisation of the standard factorial HMM and other related
schemes in speech processing. A particular form of this model, the HMM error model (HEM)
is described in detail. The HEM is evaluated on two standard large vocabulary speaker
independent speech recognition tasks. On both tasks significant reductions in word error rate
are obtained over standard HMM-based systems.



1 Introduction

One of the major problems in automatic speech recognition is to generate an acoustic model
that performs well on unseen data1 and is compact. The system should be compact to allow the
recognition to be performed in “reasonable” time and to enable robust estimation of the model
parameters. Over the years this has led to a variety of modifications to the standard hidden
Markov model (HMM) to overcome the limitations of the model for speech recognition. One form
that is currently popular is to view the HMM as a dynamic version of a Bayesian network [24].
In particular, schemes based on factorial HMMs [14]2 have been examined [17]. Factorial HMMs
use a distributed state representation. This representation is very compact, but at the expense of
assuming that the decomposition of the observed signal into multiple sources is, approximately,
correct. Factorial techniques that have been investigated include convolutional HMMs [18], multi-
band systems [19], dynamic Bayesian networks [32], multiple stream systems [30] and loosely
coupled HMMs [22]. This paper introduces a new form of factorial HMM which makes use of
transformation streams. Transformation streams allow the state of one stream to modify the model
parameters, or feature space, of other streams. This concept of model and feature transformation
is very common (and successful) in speech recognition for speaker adaptation [16, 8] and covariance
modelling [9]. This paper incorporates these transformation into a multiple stream framework.
The use of these transformation streams is shown to be a generalisation of standard factorial
HMMs. This paper examines the form of the multiple stream models rather than details of
efficient training or decoding such models. For further details of inference with factorial models,
and fast approximations, see [14]. The linear transformation streams examined in detail in this
paper are also related to general forms of linear Gaussian models, an overview of which is given
in [25].

In addition to presenting a new form of stream model, a novel acoustic model for speech
recognition is described, the HMM error model (HEM). The model makes use of a transformation
stream in conjunction with a simple, single state, “model” stream. Due to the nature of the model
it may also be interpreted as a dynamic filter, the transformation stream, and a residual model.
This allows a simple description of how the model can improve the modelling ability of a standard
HMM. Rather than relying on the residual being accurately modelled by a zero mean, identity
covariance matrix, Gaussian distribution, the standard HMM assumption, it may be explicitly
modelled using any standard probabilistic model. In particular the use of Gaussian mixture
models is investigated. In common with many other acoustic modelling schemes and factorial
HMM schemes, the HEM may also be described as a form of soft parameter tying. In soft tying
schemes model parameters are “related” to one another. In contrast standard tying schemes [30]
require that model parameters are either independent or identical. Examples of soft-tying include
speaker adaptive training [1], soft state tying [15] and semi-tied covariance matrices [9].

This paper is organised as follows. The next section will describe factorial HMMs and various
forms of stream representations that have previously been investigated. Transformation streams
are then introduced and described. In addition an extension to multiple transformation streams is
then detailed. The HEM is described along with and an interpretation of the model as a dynamic
data filter and residual model. Finally experiments on two large vocabulary speech recognition
tasks are used to illustrate the advantage of HEMs over standard HMMs.

2 Factorial Modelling Schemes

This section will briefly review factorial modelling schemes. In recent years these schemes have
become very popular in both the machine learning and speech recognition communities. Figure 1
shows a simple factorial HMM system. There are two HMMs, each with three emitting states and
start and end anchor points. At the anchor points, shown in black, the various streams are forced

1Preferably in the sense of minimising word error rate rather than simply modelling the data .
2Here we are using the term factorial HMM to describe the general model in [14] rather than the specific version

implemented in the paper.
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HMM−1

HMM−2

Figure 1: 2-stream factorial HMM system. Emitting states are shown in gray, non-emitting anchor
points are shown in black. Arrows indicate possible transitions.

to synchronise. The “factorial” nature of such a model becomes clear when the total number of
possible state combinations is calculated. If there are S streams (here each stream is modelled
by an HMM), with N states per stream there are NS possible state pairings. For the example in
figure 1 this is 9 state combinations, but only uses the parameters from 6 states.

o o ot−1 t t+1

q q qt−1 t t+1

t+1qt−1 q t q(1)

(2)

(1)(1) (1)

(2) (2)

Figure 2: Directed acyclic graph for a 2-stream factorial HMM. Observed values are shaded,
unobserved values are unshaded. Circles are used to represent continuous values, squares discrete
values. The absence of an arrow indicates independence.

In the machine learning community it is very popular to describe models in terms of graphs.
The directed acyclic graph (DAG) associated with the factorial HMM of figure 1 is shown in
figure 2. The absence of a link between nodes indicates independence. Thus the observation at
time t, ot, is conditionally independent of all other observations given the state in stream 1, q

(1)
t ,

and the state in stream 2, q
(2)
t . For T observations, o1, . . . ,oT , the likelihood given a particular

state sequence may be expressed as

p(o1, . . . ,oT |q1, . . . ,qT ) =
T∏

t=1

p(ot|qt) (1)

where qt is the set of S states (or state-components if Gaussian mixture models (GMM)s are used
at each state) that the model occupies at time t,

{
q
(1)
t , . . . , q

(S)
t

}
. In addition to the observation

conditional independence, the graph shows that the probability of being in a particular state of
a stream is conditionally independent of all other streams and state positions given the previous
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state. Thus

P (qt|qt−1) =
S∏

s=1

P (q(s)
t |q(s)

t−1) (2)

There are a variety of options for how the streams interact with one another to obtain the final
distribution for the observation at time t.

2.1 Linear stream combination

Here both the streams, labelled HMM-1 and HMM-2, generate observations in the complete feature
space. The observed feature vector ot is a linear combination of independent observations from
each of the streams.

ot =
S∑

s=1

o(s)
t (3)

where o(s)
t is the observation from stream s and is assumed to be Gaussian distributed. This is

the model implemented in [14]. The distributions associated with each state of each steam has a

distinct mean, µ(q(s)), but all distributions have a common covariance matrix (i.e.
∑S

s=1 Σ(q
(s)
t ) =

Σ,∀t ). The likelihood of the composite, meta, state described by qt generating an observation is
given by

p(ot|qt) = N (ot;
S∑

s=1

µ(q
(s)
t ),Σ) (4)

Re-estimation formulae and approximations for inference of such a model are given in [14]. This
form of model has been unsuccessfully applied to a simple speech recognition task in [17].

Figure 3: Restricted 2-stream factorial topology. Emitting states are shown in gray, non-emitting
anchor points are shown in black. Arrows indicate possible transitions.

A modified version of this scheme is the convolutional densities examined in [18]. The form
of the topology described in the paper is highly restricted, but relaxes the requirements that
a common covariance matrix is used. Figure 3 shows the restricted topology. For the single
component per state case this is identical to a single stream system. However, for the multiple
component per state system, here M components in “stream” 1 and K components in “stream”
2, the likelihood may be expressed as3

p(ot|qt) =
M∑

m=1

K∑

k=1

c(m)c(k)N (ot; µ(m) + µ(k),Σ(m)) (5)

3The dependence of the component on the particular state is dropped for simplicity of notation. Where this
dependence is clear this simplified notation will be used.
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where q
(1)
t = q

(2)
t for all t and c(m) is the prior of component m. For this case there are effectively

MK components, but only requiring M + K model parameters to be trained. The training of a
general factorial form of the convolutional densities is described in detail in [11]. Both these forms
of linear combination streams may be viewed as a simple version of the transformation stream
system described in this paper.

The linear combination need not be in the same domain as the feature vector. One common
form of stream combination in speech recognition is used for noise robustness [12, 27]. Here,
stream 1 is used to model speech and stream 2 to model noise. The composite observation is given
by4

ot = log
(
exp(o(1)

t ) + exp(o(2)
t )

)
(6)

In [12] the generative model for this composite observation is approximated by a single Gaussian.
Alternatively in [27] the observation is approximated by5

ot ≈ max
(
o(1)

t ,o(2)
t

)
(7)

In this case the likelihood of generating the observation is given by

p(ot|qt) = N (ot;µ(q
(1)
t ),Σ(q

(1)
t ))C(ot; µ(q

(2)
t ),Σ(q

(2)
t ))

+N (ot; µ(q
(2)
t ),Σ(q

(2)
t ))C(ot;µ(q

(1)
t ),Σ(q

(1)
t )) (8)

where C(.; µ,Σ) is the cumulative density function for a Gaussian distribution of mean µ and
covariance matrix Σ.

2.2 Independent streams

In recent years in speech recognition multiple independent stream systems, also known as multi-
band systems [3, 19], have become popular. Here the two HMMs in figure 1 model distinct subsets
of the feature vector. The complete feature vector may be written as

ot =




o(1)
t
...

o(S)
t


 (9)

The likelihood may then be expressed as

p(ot|qt) =
S∏

s=1

p(o(s)
t |q(s)

t )

=
S∏

s=1

N (o(s)
t ; µ(q

(s)
t ),Σ(q

(s)
t )) (10)

A simplified version of independent streams is described in the HTK manual [30]. The state
sequences in the streams are forced to be synchronous (q(1)

t = q
(2)
t = . . . = q

(S)
t ). The topology is

therefore the same as that of convolutional density HMMs shown in figure 3. Again, when single
components per state are used, there is no difference to this system and a standard HMM. However
for the multiple component case the effective number of components in a state are increased rather
than the number of states.

4The observations in this section assumes that the data is modelled in the log-spectral domain. It is simple to
map from the more commonly used cepstral parameters (in particular MFCCs [4]) [12].

5The max() function here operates independently for each vector element.
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2.3 Discrete streams

In [33] the particular distribution used to model the observation is determined by the meta-state
of the system at each time instance, qt. Each unique combination of stream states determines a
different distribution. Thus6

p(ot|qt) = N (ot; µ(qt),Σ(qt)) (11)

The dependence on the complete set of state occupancies is indicated by the mean and the co-
variance matrix being determined by the meta-state qt. One of the major issues with this form
of modelling is that the training data is partitioned into multiple distinct sets (as determined by
the total number of possible combinations). This may result in problems with robustly estimating
model parameters in the large complex systems typically used in speech recognition. Furthermore,
it may result in large memory and runtime costs for the system.

2.4 Loosely coupled streams

Loosely coupled models [22], one example of which is the mixed memory model [26], may be
viewed as a compromise between the independent stream system and the discrete stream system.
Here the distribution associated with each state of a stream is “influenced” by the states of the
other streams. There are various possibilities for the nature of this influence. The extremes
of the influence are the independent and discrete stream systems. In the independent stream
system there is no influence on the distribution of the other streams. In contrast, the discrete
stream system the distribution is determined by the state of all the streams, with only the stream
transitions independent of one another. Loosely coupled streams allow a compromise between the
two systems to be made (and, in a more general model than the factorial HMM, coupling for the
stream transitions).

The mixed memory model [26] uses the following method for describing the “influence” of the
emission probabilities of one stream on another

p(ot|qt) =
S∏

s=1

(
S∑

u=1

λ(s)
u p(o(s)

t |q(u)
t )

)
(12)

where the stream weights, λ
(s)
u , satisfy

S∑
u=1

λ(s)
u = 1; λ(s)

u ≥ 0 (13)

The observations have the form described in equation 9. The independent steam case is simply
described by

λ(s)
u =

{
1, u = s
0, otherwise (14)

In loosely coupled models a set of S2 stream weights are trained, in addition to the state distri-
butions. The advantage of such a factorisation over a straight meta-state model becomes clear
when the number of model parameters is considered. For simplicity consider the case where the
d-dimensional feature vector ot is equally partitioned into S streams and there are N states for
all the stream models. For a complete meta-state model there are O(dNS) parameters (assuming
the distribution has parameters O(d), though this is not the case for full covariance matrices). For
the mixed memory model there are O(dNS + S2) parameters. However, comparing the number
of model parameters with that of the independent stream system, O(dN), shows that there is a,

6The equation here shows only a single Gaussian component for the observation state. For the general case a
mixture of any distributions may be used.
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possibly large, increase in the number of model parameters over an independent stream system.
An alternative to mixed memory model is a generalised version of parameter tying [21].

Though to date the application of these models to speech recognition has not yielded perfor-
mance gains over standard HMM systems [22, 21], it is an interesting extension to the standard
factorial HMM framework.

3 Transformation streams

The previous section gave an overview of a variety of factorial schemes. In this section a new form
of factorial model is described. The model is a generalisation of the linear stream combination
scheme. It gives an alternative approach for how the state in one stream may influence the
parameters of another. This new form of factorial model uses transformation streams.

In speech recognition the use of linear transformations of both the model parameters [16, 8] and
feature vectors [8, 9] are very popular. For transformation streams a similar form of transformation
is considered. The state of one stream transforms the features, or model parameters, of another
stream. In a similar fashion to loosely coupled streams this may be seen as an approximation
to the discrete stream system without the dramatic increase in the number of model parameters.
Consider a simple two valued discrete stream representing speaker style, for example one “fast”
and the other “slow”. Rather than using a discrete stream to partition the training data, a
transform is associated with each value. In common with speaker adaptation, this allows a system
to be “adapted” in this case to speaker style with very few parameters. It is possible to train such
systems in the same fashion as adaptive training schemes described in [1, 8].

The linear stream combination systems in section 2 may be viewed as constrained versions of
linear transforms. The means from one stream become transform biases. In equation 5 the means
labelled µ(k) would become the biases. Bias transforms have been used for adaptation in speech
recognition, but have been shown to be less effective than more complex transforms [20]. This
suggests that the use of more complex transformation streams may be useful and yield improved
performance over the standard factorial scheme.

There are a variety of transforms that may be implemented. A general, possibly non-linear,
transformation of the model parameters could be used. However, if non-linear transformations
are to be used then there are typically no simple formulae to estimate the model parameters (nor
the transform parameters). For this reason, linear transformations will be concentrated on in this
paper. Furthermore, other than the generalisation of the linear stream combination system, only
2 stream systems are described. One of the streams has a conventional set of distributions (in this
case stream 2) associated with the states. The other stream determines a transformation7.

• Interpolation weights: The simplest transformation is to use a set of interpolation weights
when summing the stream means, rather than using the straight summation of the linear
stream combination. Here

p(ot|qt) = N (ot;
S∑

s=2

λ
(q

(1)
t )

s µ(q
(s)
t ),Σ(q

(S)
t )) (15)

where λ
(q(1))
s is the stream interpolation weight of stream s given that stream 1 (the trans-

formation stream) is in state q(1). In this expression the covariance matrix is determined by
the state of stream S. The estimation of the model parameters is a simple generalisation of
the cluster adaptive training scheme described in [10].

• Model-space transformations, or maximum likelihood linear regression (MLLR) [16]:
Here a linear transformation of Gaussian component means is used to transform the distri-

7The description of the form of the transform relates to the standard forms used for speaker adaptation in
speech recognition. However, in this work the transforms are not speaker dependent. They are used as part of a
speaker-independent speech recognition system.
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butions. In this case

p(ot|qt) = N (ot;A(q
(1)
t )µ(q

(2)
t ) + b(q

(1)
t ),Σ(q

(2)
t )) (16)

where A(q(1)) and b(q(1)) are the matrix transformation and bias vector associated with state
q(1). Adaptive training for such a transform is described in [1]. However for large systems
with large model sets this becomes computationally (and memory) intensive. In addition to
adapting the means, it is possible to adapt the variances.

• Feature-space transformations, or constrained MLLR: Rather than adapting the model
parameters the feature vector may be transformed. In this case the likelihood is expressed
as

p(ot|qt) = |det(A(q
(1)
t ))|N (A(q

(1)
t )ot + b(q

(1)
t );µ(q

(2)
t ),Σ(q

(2)
t )) (17)

One advantage of using a transformation of the features is that the adaptive training of the
model parameters is simple [8] requiring minimal changes to the standard training schemes.
Since this form of transform acts on the observations, it allows data generated from different
sources to be more effectively normalised (see section 4 for more details).

It is possible to associate a more powerful transform with each stream state, without having
the complexity of a non-linear transformation, by using a mixture of linear transformations. Each
transform has an associated component prior (or weight), c(m). The likelihood may be expressed
as

p(ot|qt) =
M∑

m=1

c(m)|det(A(m))|N (A(m)ot + b(m); µ(q
(2)
t ),Σ(q

(2)
t )) (18)

where the state of the first stream at time t, q
(1)
t , has transform components 1 to M associated

with it and the state of the second stream at time t, q
(2)
t , is modelled using a single Gaussian

component. A simple form of mixture of transformations has previously been used for speaker
adaptation in [6] and as an extension to factor analysis [13]. By using more than one transformation
component a non-linear state-stream specific transformation may be obtained. It is also possible
to have multiple levels of transformation stream [11].

The HMM error model (HEM) sits within the class of factorial models using transformation
streams. The transformation stream used is a feature-space transformation, constrained MLLR.
This has two important consequences. First for large systems it is expensive to adapt the model
parameters when using model-space transformations. Second updating the parameters of the other
streams given the transformation is simple in this case [8].

4 HMM Error Model

The model examined in this paper, the HMM error model (HEM), is a 2-stream factorial model
using a feature-space transformation stream. Furthermore the second stream model is restricted
to having only a single emitting state (effectively a GMM). As such it does not make full use of the
power of a factorial HMM system, but does sit within the general class of factorial HMMs. There
are no theoretical reasons why a more complex model could not be investigated in particular if
the fast approximations for factorial models described in [21] are used.

The DAG associated with a HEM model is shown in figure 4. There is only a single state in the
second stream, but multiple components. The single state for stream 2 is indicated by removing
the dependence of the state on time (i.e. q(2) is used). In addition the transformation stream is
allowed to have multiple transformation components. ω

(s)
t is a discrete valued variable indicating

the component at time t in stream s that generated the observation.
Due to the relatively simple model used there is another intuitive interpretation of the HEM.

Rather than considering it as a multiple stream system it could also described in terms of a filter
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t
(1)(1)ω

q t
(1)(1)

ot

q(2)

tω(2)

Figure 4: DAG for an HMM Error Model. Observed values are shaded, unobserved values are
unshaded. Circles are used to represent continuous values, squares discrete values. The absence
of an arrow indicates independence.

Normalised 

ot

(1) (2) (2)
A o +b

(3) (3)

t A o +bt tA o +b
(1)

Filter

Observation
space

model

space

Residual
model

Figure 5: HMM Error Model with a 3 component residual model and a 3-emitting state single
component filter model.
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model and residual model. A HEM model, with a three state transformation stream, is shown in
figure 5. The first stream, a transformation stream, is a filter model. The second stream models
the residual from the filter model. The aim of the filter model is to transform the data from the
observation space into some normalised space such that the data is independent and identically
distributed. For this work, a mixture of linear feature-space transformations is associated with each
state of the filter model. If the filter model is initialised using HMMs trained with ML estimation,
the data in the normalised space will have zero mean and an identity covariance matrix. However
the higher order statistics are not constrained in any way. Furthermore, for speech recognition
diagonal covariance matrices are commonly used. In this case only the leading diagonal of the
covariance matrix is constrained to consist of ones, the off-diagonal terms may be non-zero. Hence
by using either a GMM or more complex covariance matrix Gaussian distribution as the residual
model, it is possible to more accurately model the data distribution in the normalised space.

A model similar to the HEM has previously been investigated for variance compensation in
speaker adaptation [8]. The filter model was constrained to have diagonal transforms and the
residual model a single speaker-specific full covariance matrix multi-variate Gaussian distribution.
This allowed feature vector correlations to be modelled. The model described in [8] differs from the
HEM in a couple of ways. First the residual model is trained per speaker. The HEM residual model
is trained on all the training data (though may, of course, be adapted when speaker adaptation is
being used). Second the filter model was not adaptively trained, the transform parameters were
set using the initialisation scheme described later in section 4.3.1.

This section describes the likelihood calculation for a HEM model and how the model may be
trained using ML estimation. In addition some implementation issues are addressed.

4.1 Likelihood Calculation

From the description of the HEM model in figure 5 the likelihood is calculated by computing the
likelihood of the normalised observations using the residual model. However, appropriate scaling
is required to account for the component weights of the filter model and the effects of the feature
transformation of the filter model. Consider a single state q of an HEM modelled with M Gaussian
components per state of the filter model and a K-component GMM residual model. The likelihood
of the state q generating the observation at time t may be written as8

p(ot|qt = q) =
M∑

m=1

K∑

k=1

c(m)c(k)|det(A(m))|N (W(m)ζt; µ
(k),Σ(k)) (19)

where state q has M components, 1, . . . , M ,

W(m) =
[

A(m) b(m)
]

(20)

ζt =
[

ot

1

]
(21)

Various forms of transformation matrix A(m) may be used. These range from simple diagonal
transforms to full matrix transforms. The most common form of covariance model used in speech
recognition is diagonal. In terms of viewing the HEM as a filter and residual model this corresponds
to a diagonal transform. This will be the form of model primarily discussed.

The likelihood may also be expressed in a more standard form using

p(ot|qt = q) =
MK∑

i=1

c(i)N (ot; µ(i),Σ(i)) (22)

8Since only the state of stream 1 can vary in this model the dependence on the state at time t of the stream is
dropped.

9



where

c(i) = c(m)c(k) (23)
µ(i) = A(m)−1(µ(k) − b(m)) (24)

Σ(i) = A(m)−1Σ(k)A(m)T−1 (25)

and m and k correspond to the expanded space component i. So in the standard factorial fashion
using M +K components MK components are generated. By expressing the likelihood calculation
in this form the relationship with other soft-tying schemes is clear. The parameters of the com-
ponents in equation 22 are related to one another. The relationship does not have the standard
tying form, but satisfies the soft-tying forms described in equation 23 to 25.

4.2 Parameter Estimation

This section describes how both the filter model and the residual model may be trained using
expectation maximisation (EM) [5]. As with other factorial HMM schemes, multiple levels of indi-
cator variables are required. The likelihood of the HEM, M, generating an observation sequence
O = o1, . . . ,oT is given by

L(O;M) =
∑

Θ

T∏
t=1


P (qt|qt−1)

∑

m∈θ(t)

K∑

k=1

c(m)c(k)|det(A(m))|N (W(m)ζt; µ
(k),Σ(k))


 (26)

where Θ is the set of all valid state sequences according to the transcription for the data, qt is the
state at time t of the current path and θ(t) is set of Gaussian components belonging to the state
at time t. It is simple to show that the following auxiliary function is obtained

Q(M,M̂) =
M∑

m=1

K∑

k=1

T∑
t=1

γ
(mk)
t

(
log(c(m)) + log(c(k)) + log(|det(A(m))|) (27)

−1
2

(
log(Σ(k)) + (W(m)ζt − µ(k))T Σ(k)−1(W(m)ζt − µ(k))

))

where γ
(mk)
t is the probability of being in component m of the filter model and residual com-

ponent k at time t and M is the total number of transform components in the filter model. To
simultaneously update both the filter model parameters and residual model parameters is highly
complex (and for most tasks impractical). Instead a simple iterative maximisation scheme is used.
First the filter model parameters are estimated given the current estimates of the residual model.
Second the residual model parameters are updated given the filter model. The two optimisation
schemes are described below.

4.2.1 Filter Model Estimation

The filter model parameters c(m) and W(m) for each component m must be estimated given the
current estimate of the residual model parameters. In the trivial case where the residual model is
a single diagonal covariance matrix Gaussian component, the filter model parameter estimation is
identical to the standard HMM estimation schemes (see the initialisation section which follows for
an interpretation of the model parameters). For the more interesting K-component GMM residual
model case, the form of equation 27 is very similar to the estimation of a feature-based transform
given in [8]. Only the case where the covariance matrices of the residual components are diagonal
is considered9. The ML estimate of the ith row of W(m), w(m)

i , may be shown to be

w(m)
i =

(
αpi + k(i)

)
G(i)−1 (28)

9The more general full covariance case is a simple modification to the training given in [7].
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where pi is the extended cofactor row vector
[

pi1 . . . pin 0
]
, (pij = cof(A(m)

ij )),

G(i) =
K∑

k=1

1

σ
(k)2
i

T∑
t=1

γ
(mk)
t ζtζ

T
t (29)

k(i) =
K∑

k=1

1

σ
(k)2
i

µ
(k)
i

T∑
t=1

γ
(mk)
t ζT

t (30)

and α satisfies

α2piG(i)−1pT
i + αpiG(i)−1k(i)T −

(
K∑

k=1

T∑
t=1

γ
(mk)
t

)
= 0 (31)

The optimisation scheme is iterative since the estimation of each matrix row is influenced by the
cofactors of the complete matrix. For the simple case where the transformation matrix A(m) is
diagonal, the cofactors are zero so a closed form solution is possible.

In addition to the transform parameters the weights of the components of the filter model are
required. Comparing equation 27 to the standard HMM re-estimation formulae shows that

c(m) =
∑K

k=1

∑T
t=1 γ

(mk)
t∑

i∈J (m)

∑K
k=1

∑T
t=1 γ

(ik)
t

(32)

where J (m) is the set of transform components belonging to the same filter model state as com-
ponent m.

4.2.2 Residual Model Estimation

Once the filter model has been trained the estimation of the residual model is very similar to the
standard GMM training. It is simple to show that the mean of residual component k is given by

µ(k) =
∑M

m=1

∑T
t=1 γ

(mk)
t W(m)ζt∑M

m=1

∑T
t=1 γ

(mk)
t

(33)

and similarly for the covariance matrix

Σ(k) =
∑M

m=1

∑T
t=1 γ

(mk)
t (W(m)ζt − µ(k))(W(m)ζt − µ(k))T

∑M
m=1

∑T
t=1 γ

(mk)
t

(34)

The estimation of residual component weights follows the standard GMM optimisation. Thus

c(k) =
∑M

m=1

∑T
t=1 γ

(mk)
t∑M

m=1

∑K
k=1

∑T
t=1 γ

(mk)
t

(35)

4.3 Implementation Issues

4.3.1 Parameter Initialisation

In common with other EM-based schemes, it is important to have reasonable estimates to initialise
the training. The initialisation of the HEM parameters has two distinct stages. First the filter
model parameters are estimated assuming that a single, zero mean, identity covariance matrix
Gaussian residual model is used. As previously mentioned this simply requires training a stan-
dard HMM. The conversion of the standard HMM parameters into the filter model parameters is
achieved using

A(m) = C(m)−1 (36)
b(m) = −A(m)µ(m) (37)
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where

C(m)C(m)T = Σ(m) (38)

Note that in equation 19 the “transform” A(m) is a full matrix. However from the standard
full covariance HMM it can be initialised with an upper triangular matrix from the Choleski
factorisation of the covariance matrix. The need for a full transformation matrix when there is
more than one component in the residual GMM (i.e. the set of components K), is the same as
the need for full semi-tied transforms [9].

Once the filter model parameters have been estimated, the residual model can be initialised
using any standard scheme for initialising GMMs. For the work presented here a scheme similar
to the HTK mixing-up routine was used [30] (see section 4.3.4 for more details).

4.3.2 Flooring

All state-of-the-art HMM-based speech recognition systems apply a variance floor in the estimation
stage (see for example [30]). It is interesting to see how variance flooring may be applied to HEMs.
There are two places that flooring may be applied. The first place is the residual model variances.
This is usually unnecessary as the variances of the residual model are expected to be around one.
The more interesting aspect of the flooring is how to appropriately floor the filter model. For
simplicity only the case of diagonal covariance matrices (which result in diagonal transforms) is
initially considered. For this case the transform parameter estimation is non-iterative. By analogy
with the standard variance flooring the maximum value that ai can take is 1/fi where fi is the
floor value for the ith element. Using equation 28 wi, hence ai, may be found. If ai exceeds 1/fi it
is then set to 1/fi. It is now necessary to find the ML estimate of bi. Setting the value of ai to fi

then (note that for the diagonal transform case G(i) is a 2× 2 matrix and k(i) is a 2-dimensional
vector) yields

b
(m)
i =

∑K
k=1

∑T
t=1

γ
(mk)
t

σ
(k)2
i

(oti/fi − µ
(k)
i )

∑K
k=1

∑T
t=1

γ
(mk)
t

σ
(k)2
i

=
g
(i)
12 /fi − k

(i)
2

g
(i)
22

(39)

It is interesting to see that the ML estimate of the mean-equivalent term, the bias, is altered when
flooring is applied. This is not the case for standard HMMs or GMMs.

When full transformations are used the simplest approach is to set a maximum value on the
leading diagonal elements of A(m)A(m)T . This is similar to the flooring scheme used for full-
covariance matrix systems in HTK [30].

4.3.3 Memory and Computational Cost

Two important issues in speech recognition (and many other applications) are the memory and
runtime computational cost of the system. For the HEM system there is a minimal increase in the
number of model parameters. The typical large vocabulary speech recognition system may have
over 100,000 diagonal covariance matrix Gaussian components. For the experiments in this paper
only 3 additional Gaussian components are required10.

The computational cost of calculating the likelihoods with a HEM system are significantly
greater than that of a standard HMM system of comparable complexity to the filter model. Since
the HEM model results in a GMM (of the complexity of the residual model) being generated for
every component of the filter model the runtime likelihood calculation cost scales linearly with

10If full transforms are used, equivalent to initialising the filter model with a full covariance matrix system, there
is an increase, almost a doubling, in the number of model parameters. This results from the use of a full, rather
than symmetric full, transformation matrix.
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the number of components in the residual model. However by using schemes such as Gaussian
selection [2] the cost of the likelihood calculation compared to the search may be dramatically
reduced.

4.3.4 Mixing Up

The results presented in this paper are based on a system built using HTK [30]. In order to
build the system mixing up11 was used. The residual model is a GMM which may be mixed-up
in the standard HTK fashion of perturbing the means. However, since we are building mixtures
of transforms, rather than components, for the filter model it is interesting to consider how to
mix-up a mixture of transforms. The likelihood of a particular M -component filter model state,
q, and K-component residual model pairing may be written as

p(ot|qt = q) =
M∑

m=1

K∑

k=1

c(m)c(k)|det(A(m))|N (W(m)ot; µ(k),Σ(k))

=
M∑

m=1

K∑

k=1

c(m)c(k)|det(A(m))|N (A(m)ot; µ(k) − b(m),Σ(k)) (40)

where components 1 to M are associated with state q. Hence, to perturb the mean of the “meta-
component” involves perturbing only the transformation bias. In addition it may be assumed that
the average variance in the residual model is approximately 1 (the residual model is initialised to
this range). The perturbation operation is then

[
A(m) b(m)

] →
{ [

A(m) (b(m) + ε)
]

[
A(m) (b(m) − ε)

] (41)

where ε is the perturbation value. For the experiments used in this paper ε is set 0.2. The
component weight is evenly divided between the two new transforms.

5 Results

The performance of the HEM models was evaluated on two standard large-vocabulary speaker-
independent speech recognition tasks. The first, Wall Street Journal (WSJ) Hub1, is a scripted
speech database where speakers were asked to read passages from the WSJ. The second task, Hub5,
is a telephone bandwidth spontaneous speech recognition task. For all the experiments presented
here diagonal covariance matrices are used for all Gaussian components (including the residual
model where used). The transforms of the filter model were also constrained to be diagonal. The
same decision tree clustering was used for determining the context dependent standard HMM
states and the HEM transformation states. Hence the number of model parameters for a standard
HMM system and a diagonal transform HEM system are about the same for the same number
of components in the filter model. The filter model transform parameters were initialised with
a single component standard HMM system as described in 4.3.1. The three component residual
model was initialised to means at 0.2, 0.0 and -0.2 for each dimension and identity covariance
matrices.

5.1 Wall Street Journal Experiments

The baseline system used for the WSJ (Hub1) recognition task was a gender-independent cross-
word-triphone mixture-Gaussian tied-state HMM system. This was the same as the “HMM-1”
model set used in the HTK 1994 ARPA evaluation system [28]. In this model set, all the speech

11Mixing-up involves gradually increasing the number of Gaussian components in a particular state. The standard
procedure is to take the Gaussian component with the largest weight, perturb the means to generate two components
and retrain the system.
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models had a three emitting state, left-to-right topology. Two silence models were used. The
first silence model, a short pause model, had a single emitting state which may be skipped.
This model was used to represent short inter-word silences. The other silence model was a fully
connected three emitting state model used to represent longer periods of silence. The speech was
parameterised into 12 MFCCs, C1 to C12, along with normalised log-energy and the first and
second differentials of these parameters. This yielded a 39-dimensional feature vector, to which
cepstral mean normalisation was applied. The acoustic training data consisted of 36493 sentences
from the SI-284 WSJ0 and WSJ1 sets, and the LIMSI 1993 WSJ lexicon and phone set were used.
The standard HTK system was trained using decision-tree-based state clustering [31] to define
6399 speech states. For the H1 task a 65k word list and dictionary was used with the trigram
language model described in [28]. All decoding used a dynamic-network decoder [23].

When generating the multiple component systems used for this task, mixing-up was used [30].
The performance was investigated at various stages of this process. It should be emphasised that
the grammar scale factor and insertion penalties were not optimised at any stage for the particular
number of components in the system. A three Gaussian component residual model was used.
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Figure 6: Average performance on WSJ 1994 H1 development and evaluation data using a standard
HMM system and a global residual model 3-component HEM system

The average performance on the WSJ 1994 development and evaluation data is shown in
figure 6 for a standard system and a 3-component HEM system at various numbers of components
per state. For all size systems the HEM models out-performed the standard systems. The 12
component HEM system was 4% relative better than the standard system. This was significantly
better at a 95% confidence level using a pair-wise significance test. It is also interesting to note
that the 8-component HEM system outperforms the 12-component standard system.

5.2 Switchboard Experiments

The Switchboard (Hub5) acoustic training data is obtained from two corpora: Switchboard-1
(Swb1) and Call Home English (CHE). The full training corpus consists of 265 hour training set,
4482 sides from Swb1 and 235 sides from CHE. For the experiments performed in this section a
subset of this was used. A total of 68 hours was chosen to include all the speakers from Swb1
in h5train00 as well as a subset of the available CHE sides. 862 Swb1 sides and 92 CHE sides
were used in this subset. This is the “h5train00sub” training set described in [15]. The speech
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waveforms were coded using perceptual linear prediction cepstral coefficients derived from a Mel-
scale filterbank (MF-PLP) covering the frequency range from 125Hz to 3.8kHz. A total of 13
coefficients, including c0, and their first and second order derivatives were used. Cepstral mean
subtraction and variance normalisation were performed for each conversation side. Vocal tract
length normalisation (VTLN) was applied in both training and test. In common with the WSJ
task, a gender-independent cross-word-triphone mixture-Gaussian tied-state HMM system was
built.

The model sets generated were trained in the standard HTK fashion using mixing-up. State-
based decision tree clustering was used to define a total of 6165 distinct speech states. Again
the performance of the system was examined at various stages of the mixing up process. For all
experiments a trigram language model was used, built as in [15]. A three Gaussian component
residual model was again used. In addition to a global residual model, phone specific residual
models were also built.
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Figure 7: 1998 Switchboard evaluation performance comparing a standard HMM system, a global
3-component HEM system and a phone-specific 3-component HEM system.

The performance of a standard system, a global three-component-residual-model HEM system
and a phone-based, three-component-residual-model, HEM system are shown in figure 7. The
performance of the global HEM residual model was consistently better than the standard HMM
system. The twelve component system performance of 46.1% was significantly better at the
95% level than the standard system. The phone residual model performance was consistently
slightly better than the global residual model system. Again it is interesting to note that the
8-component phone level residual model HEM system out performs the 12-component standard
system. Increasing the number of components of the standard system to 14 gave an error rate of
46.8% compared to 46.7% for the 12-component system. This indicates that simply increasing the
number of components in the standard fashion will not improve performance on this task.

The absolute gain obtained using the phone-based HEM models was small (0.9% absolute),
though it was significant at the 95% confidence level. The performance of the HEM systems may
be compared with other soft tying schemes12. An implementation of the state soft-tying scheme
as described in [15], using the same training data, gave an error rate of 46.2% compared to the

12Due to the nature of the HEM, which uses a GMM for the residual model, it is more appropriate to compare
the performance with soft tied systems rather than factorial HMM systems. To the author’s knowledge there are
no performance figures for factorial HMMs on systems of this size.
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45.8% obtained using a phone level HEM13. One interpretation of the the residual model is that
it is, crudely, modelling the correlations of the feature vector. A standard soft tying approach to
this is to use semi-tied covariance matrices [9]. On this task a global semi-tied transform yielded
an error rate of 46.1%. Thus the use of a simple global residual model achieves about the same
performance as a global semi-tied system on this task.

6 Conclusions

This paper has introduced a new form of factorial model stream, the transformation stream. This
new form of stream is shown to generalise the standard factorial HMM and the convolutional
densities investigated in speech recognition. A particular form of factorial HMM, the HMM error
model, was then described. This model may also be described in terms of a non-linear filter and
residual model. The filter model transforms the original set of feature vectors into a space in
which the data should be zero mean and identity covariance matrix. However due to inaccuracies
in the model higher-order terms in the filtered data may exist. It is therefore necessary to use
non-Gaussian residual models, in this case a GMM. This form of model was evaluated on two large
vocabulary speech recognition tasks, one involving read speech, the other spontaneous telephone
speech. On both test sets the new form of model performed significantly better than standard
HMMs.

Very few of the possible options for the HEM model, or more generally the use of transformation
streams, have been investigated in this paper. In particular the form of the HEM model used here
concentrates the complexity on the filter model rather than for example using a more complex
residual model (possibly using the full power of factorial HMMs with transformation streams).
The model has also not been assessed in terms of how it performs with speaker adaptation (nor
whether it is better to simply adapt the residual model rather than the filter model). Finally the
use of discriminative training techniques is popular in state-of-the-art speech recognition [29]. It
would be interesting to know whether HEMs are suitable for discriminative training.
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