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Abstract— The vast majority of automatic speech recognition
systems use Hidden Markov Models (HMMs) as the underlying
acoustic model. Initially these models were trained based on
the maximum likelihood criterion. Significant performance gains
have been obtained by using discriminative training criteria, such
as maximum mutual information and minimum phone error.
However, the underlying acoustic model is still generative, with
the associated constraints on the state and transition probability
distributions, and classification is based on Bayes’ decision rule.
Recently, there has been interest in examining discriminative, or
direct, models for speech recognition. This paper briefly reviews
the forms of discriminative models that have been investigated.
These include maximum entropy Markov models, hidden con-
ditional random fields and conditional augmented models. The
relationships between the various models and issues with applying
them to large vocabulary continuous speech recognition will be
discussed.

I. INTRODUCTION

Automatic speech recognition (ASR), also known as speech
to text transcription (STT), is an interesting statistical pro-
cessing problem. Compared to many machine learning tasks
there is a large amount of training data, billions of words
of language model training data and billions of frames of
acoustic model training data. In addition ASR is a sequence
classification problem. Each sentence is parameterised as a
sequence of continuous valued frames, normally at a fixed
10 milli-second frame-rate. Over the years there have been
a range of techniques developed for speech recognition. This
has allowed large vocabulary continuous speech recognition
(LVCSR) tasks, such as Broadcast News transcription [1],
to be addressed. Though a number of modifications to the
acoustic models have been made, for example speaker adap-
tation [2], adaptive training [3] and semi-tied covariance
matrices [4], the underlying model has remained a Hidden
Markov Model (HMM) [5].

One of the major developments that has significantly im-
proved the performance of ASR systems is the use of dis-
criminative criteria for training HMMs, rather than using the
Maximum Likelihood (ML) criterion. A number of criteria,
such as Maximum Mutual Information (MMI) [6], [7] and
Minimum Phone Error (MPE) [8], [9], have been used to
train the parameters of the HMM1. Initially these criteria were
applied to small vocabulary speech recognition tasks. A num-
ber of techniques were then developed to enable their use for

1The HTK hidden Markov model toolkit, available at
http://htk.eng.cam.ac.uk/, supports many of the current state-of-
the-art techniques used in ASR.

LVCSR tasks. In particular, schemes such as I-smoothing [8]
and language model weakening [10] have been developed to
improve generalisation and the use of lattices to compactly
represent the denominator score [11].

Though large reductions in word error rate (WER) have
been obtained on a range of tasks, the performance on
LVCSR tasks, and tasks in challenging acoustic conditions,
is still not satisfactory for many speech-enabled applications.
This has led to interest in discriminative models for speech
recognition [12], [13], [14], [15] where the posterior of the
word-sequence given the observation is directly modelled. This
paper briefly reviews HMMs, discriminative training criteria,
and the current forms of discriminative models that have been
applied to ASR. In particular, conditional augmented models
are described along with how these may be used for LVCSR
tasks.

II. HIDDEN MARKOV MODELS

Hidden Markov Models (HMMs) [5] are the standard
acoustic model used in speech recognition. HMMs comprise
a discrete latent space, the state sequence, and associated
state output distributions. The observations are assumed to be
conditionally independent given the state that generated them
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Fig. 1. HMM Dynamic Bayesian Network

Figure 1 shows the dynamic Bayesian network (DBN)
associated with an HMM. For simplicity the use of mixtures
for each of the states has not been shown. The likelihood
of generating the observation sequence O1:T = {o1, . . . ,oT }
with an HMM having model parameter values λ is given by

p(O1:T |w; λ) =
∑
q

P (q|w)
T∏

t=1

p(ot|qt;λ(w)) (1)

where q = {q1, . . . , qT } is the state at each time instance and
the summation is over all possible state sequences. If mixtures
of members of the exponential family, typically Gaussian



distributions, are used, then

p(ot|qt;λ(w)) =
M∑

m=1

cmN (ot; µ(m),Σ(m)) (2)

P (q|w) allows the use of multiple pronunciations and pro-
nunciation probabilities. The state sequences are modelled as
a first-order Markov process. The parameters are stored in the
transition matrix, A, where P (qt−1 = si, qt = sj) = aij . The
standard training of HMM is based on Maximum Likelihood
(ML) training. The likelihood criterion may be expressed as

Fml(λ) =
1
R

R∑
r=1

log(p(O(r)|w(r)
ref; λ)) (3)

This optimisation is normally performed using Expectation
Maximisation (EM) [16].

During inference, or decoding, classification is based on
Bayes’ decision rule

ŵ = arg max
w

{P (w|O1:T ; λ)} (4)

where the word sequence posterior is then obtained using
Bayes’ rule

P (w|O1:T ; λ) =
1

Z(λ,O1:T )
p(O1:T |w; λ(w))P (w) (5)

Z(λ,O1:T ) is the normalisation term. As Z(λ,O1:T ) is
independent of the hypothesised word sequence, it is normally
ignored. Viterbi decoding is often used for this process [5].

III. DISCRIMINATIVE TRAINING CRITERIA

For ML to be the “best” training criterion, the data and
models are assumed to satisfy a number of requirements, for
example the quantity of training data available and model-
correctness [17]. These requirements are not satisfied when
modelling speech data. This has led to the use of discriminative
training criteria, which are more closely linked to minimising
the error rate, rather than maximising the likelihood of the
training data. For speech recognition three main forms of
discriminative training have been examined. Note for speech
recognition the language model (or class prior), P (w), is
not normally trained in conjunction with the acoustic model
(though there has been some work in this area [18]). Typically
the amount of text training data for the language model is
far greater (orders of magnitude) than the available acoustic
training data.

Maximum Mutual Information (MMI): the following
form [6], [7] is maximised

Fmmi(λ) =
1
R

R∑
r=1

log(P (w(r)
ref|O(r);λ)) (6)

where O(r) is the rth training utterance with transcription
w(r)

ref. This equates to maximising the mutual information
between the observed sequences and the models2.

2Given that the class priors are fixed this should really be called conditional
entropy training. When this form of training criterion is used with discrimi-
native models it is also known as Conditional Maximum Likelihood (CML)
training.

Minimum Classification Error (MCE): is a smooth measure
of the error [19]. This is normally based on a smooth function
of the difference between the log-likelihood of the correct
sequence and all other competing word sequences.

Fmce(λ) =
1
R

R∑
r=1




1

1 +

[
p(O(r)|w(r)

ref ;λ)P (w
(r)
ref )∑

w 6=w
(r)
ref

p(O(r)|w;λ)P (w)

]%




(7)

There are some important differences between MCE and
MMI. The first is that the denominator term does not in-
clude the correct word sequence. Second the log-likelihoods
are smoothed with a sigmoid function, which introduces an
additional smoothing term %. When % = 1 then

Fmce(λ) = 1− 1
R

R∑
r=1

P (w(r)
ref|O(r); λ) (8)

Minimum Bayes’ Risk (MBR): rather than trying to model
the correct distribution, as in the MMI criterion, the expected
loss during inference is minimised [20], [21]

Fmbr(λ) =
1
R

R∑
r=1

∑
w

P (w|O(r);λ)L(w,w(r)
ref) (9)

where L(w,w(r)
ref) is the loss function of word sequence w

against the reference for sequence r, w(r)
ref. There are a number

of loss functions that have been examined.
• 1/0 loss: for continuous speech recognition this is equiv-

alent to a sentence-level loss function.

L(w,w(r)
ref) =

{
1; w 6= w(r)

ref

0; w = w(r)
ref

When % = 1 MCE and MBR training with a sentence
cost function are the same.

• Word: the loss function directly related to minimising
the expected Word Error Rate (WER). It is normally
computed by minimising the Levenshtein edit distance.

• Phone: for large vocabulary speech recognition not all
word sequences will be observed. To help the gener-
alisation the loss function is often computed between
the phone sequences, rather than word sequences. In the
literature this is known as Minimum Phone Error (MPE)
training [8], [9].

It is also possible to base the loss function on the specific
task for which the classifier is being built [21]. A comparison
of the above criteria on the Wall Street Journal (WSJ) task and
a general framework is given in [22]. Both MCE and MPE
were found to outperform MMI on this task. In addition to
the above criteria there has also been some work on estimating
model parameters based on maximising the margin [23].

To enable these discriminative training criteria to be suc-
cessfully applied to LVCSR tasks, a number of techniques have
been developed to improve generalisation. These include:



Acoustic de-weighting: for all forms of discriminative criteria
described, the log-likelihoods are often scaled. This is because
the dynamic range of the likelihoods obtained from the HMMs
are typically far greater than they should be, due to the con-
ditional independence assumptions. Furthermore the language
model may also be scaled due to is mismatch. For clarity these
scaling factors have not been included in the discriminative
training formulae given.

Language model simplification: the form of the language
model used in training should in theory match the form used
for inference. However, it has been found that using simpler
models, unigrams or heavily pruned bigrams, for training
despite using trigrams or fourgrams in decoding improves
performance [10]. By weakening the language model, the
number of possible confusions is increased allowing more
complex models to be trained given a fixed quantity of training
data.

I-smoothing: to improve the generalisation “robust” parameter
priors may be used when estimating the models. These priors
may either be based on the ML parameter estimates [8] or, for
example when using MPE training, the MMI estimates [24].
For MPE this was found to essential to achieve performance
gains [8].

In both MMI and MPE (and for the % = 1 MCE) the
optimisation criterion is a function of the word sequence
posterior. Thus the criteria have some of the attributes of
the direct or discriminative models. However the underlying
acoustic model itself is still a generative model, with word
sequence posteriors being produced using Bayes’ rule. Note
in recent years MBR decoding, associated normally with
the word-level cost function, has become popular in speech
recognition [25], [26], [27].

IV. MAXIMUM ENTROPY MARKOV MODELS

The DBN in figure 1 may be modified to produce a
discriminative (or direct model) by reversing the direction of
the arcs from the states to the observations and using an
exponential model. This is known as a Maximum Entropy
Markov Model (MEMM) [12].
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Fig. 2. MEMM Dynamic Bayesian Network

Figure 2 shows this form of model. The posterior associated
with word sequence w is given by

P (w|O1:T ;α) =
∑
q

P (w|q)
T∏

t=1

P (qt|ot, qt−1; α) (10)

An exponential model is used for the state posterior distribu-
tion

P (qt|ot;α, qt−1) =
1

Z(α,ot)
exp

(
αTT(ot, qt, qt−1)

)
(11)

P (w|q) is of interest when homophones are present in the
language. It can be simply derived from the pronunciation
probabilities and Bayes’ rule.

One of the issues with this form of model is that there is
no elegant approach to incorporating a language model in this
framework. This has limited possible gains with this form of
model [12].

V. HIDDEN CONDITIONAL RANDOM FIELD

Conditional Random Fields (CRFs) [28] are one approach
to constructing discriminative models. Given the observation
sequence O1:T = {o1, . . . ,oT } and label sequence w =
{w1, . . . , wL}, the standard form for this model is

P (w|O1:T ; α) =
1

Z(α,O1:T )
exp

(
αTT(O1:T ,w)

)
(12)

where Z(α) is the appropriate normalisation term to ensure
a valid PMF. For some applications L = T and it is possible
to extract the standard transition and state features. However
for tasks such as speech recognition often T > L since the
sample rate of the observations is fixed. This has led to the
use of Hidden CRFs (HCRFs) for speech recognition [13].

The general probability form when introducing a latent
variable to the the CRF framework is3

P (w|O1:T ; α) =
1

Z(α,O1:T )

∑
q

exp
(
αTT(O1:T ,w,q)

)
(13)

where again the summation is over all possible state se-
quences. The problem is to extract the “appropriate” statistics,
T(O1:T ,w,q) for recognition. These may be split into two
blocks

T(O1:T ,w,q) =
[

Tl(w)
Ta(O1:T ,w,q)

]
(14)

The first set of statistics are associated with the “language
model” for this data. These could be estimated in a discrim-
inative fashion for some tasks [18], however the simplest
approach is to set

Tl(w) = log (P (w)) (15)

and constrain all the α’s associated with this for all models to
be the same, αl.

The second set of statistics are those associated with the
acoustic data. There are a number of possible statistics that
could be extracted from the sequences. In HCRFs this selec-
tion is simplified by using the features that result from the
dependencies shown in figure 3. The form of statistic used

3Here the previously mentioned multiple pronunciation and homophone
issues have been ignored for clarity. Thus there is a unique one-to-one
mapping from the word sequence to the state sequence.
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Fig. 3. Feature Dependencies in the HCRF

with the current applications of HCRF to speech recognition
are

Ta(O1:T ,w,q) =




...∑T
t=1 δ(qt−1 − si)δ(qt − si)∑T

t=1 δ(qt − si)∑T
t=1 δ(qt − si)ot∑T

t=1 δ(qt − si)vec(otoT
t )

...




(16)

for all i, j. These are the same statistics as for a standard
HMM. However there are no constraints that the individual
state distributions associated with these statistics are valid
PDFs. This additional flexibility was found to yield large gains
on the TIMIT phone classification task 4.

VI. DYNAMIC KERNELS

The maximum entropy Markov model and the hidden CRF
model have the same conditional independence assumptions
as the HMM. They differ only in form of the arcs in the DBN
rather than altering the general structure. This means that the
forms of statistics extracted are based on the observation at
time t, ot and the current and previous states. There are a
number of approaches to extending the range of dependencies.
The easiest approach is to hypothesise possible dependencies
and then select the dependencies that improve discrimination
most. This is the approach adopted in Buried Markov Mod-
els [29]. One interesting aspect of handling speech data is that,
since sequences of observations are being classified, the space
of possible dependencies is very large making the choice of an
appropriate hypothesised subset hard. An alternative approach
is to use some of the approaches adopted with dynamic kernels
to give a systematic way of extracting features from the
sequences.

A number of kernels have been proposed for handling se-
quence data, including marginalised count kernels [30], Fisher
kernels [31], string kernels [32] and generative kernels [33].
An interesting class of these sequence kernels are based on
generative models. Both Fisher kernels [31] and generative
kernels [33] make use of generative models to map the variable
length sequences to a fixed dimensionality. In generative

4It should be noted that the training of these models is more compli-
cated than discriminative training of standard HMMs. Gradient decent based
optimisation schemes are used which may yield better performance when
discriminatively training standard HMMs than the commonly used extended
Baum-Welch training.

kernels the feature space used has the form

φ(O1:T ; λ) =




log(p(O1:T ; λ))
∇λ log(p(O1:T ;λ))

...
∇ρ

λ log(p(O1:T ;λ))


 (17)

where ρ is the order of the kernel, λ specifies the parameters
of the generative model.

It is useful to examine the form of the derivatives when a
discrete HMM is used as the generative model. The form of
the differential with respect to bin m of state sj (equivalent
in the continuous case to the prior of component m in state
sj), the first derivative is given by

∇cjm log(p(O1:T ;λ)) =
T∑

t=1

(γjm(t)/cjm − γj(t)) (18)

and

γjm(t) = P (qt = sjm|O1:T ; λ) (19)

γj(t) =
M∑

m=1

γjm(t) (20)

For the second derivative,

∇ckn∇T
cjm

log(p(O1:T ; λ)) = (21)

1

cjmckn

T∑
t=1

T∑
τ=1

(
D(q

(jm)
t , q(kn)

τ )− cjmD(q
(j)
t , q

(jm)
t )

−cknD(q
(jm)
t , q(k)

τ ) + cjmcknD(q
(j)
t , q(k)

τ )
)

− 2

cjmckn

T∑
t=1

P (qt = sjm|O1:T ; λ)δ(sjm − skn)

where

D(q(jm)
t , q(kn)

τ ) = (22)
P (qt = sjm, qτ = skn|O1:T ; λ)− γjm(t)γkn(τ)

These features are functions of the complete observation
sequence as they depend on the state posterior γjm(t) which
is a function of O1:T . Thus long-term dependencies may be
represented by these forms of features.

To illustrate the advantage of using the higher order deriva-
tives consider the simple example of a two class problem with
a two discrete output symbols {A, B}. The training examples
(equally distributed) are:
• Class ω1: AAAA, BBBB
• Class ω2: AABB, BBAA

If a discrete two-emitting state HMM, shown in figure 4, is
trained on this data then the state distributions also shown in
figure 4 are obtained. This ML trained HMM is unable to
distinguish between the sequences from class ω1 and ω2.

Table I shows the values of some of elements of the feature
vector associated with a generative kernel for each of the
two classes. It is clear that using the first and higher order
derivatives of the log-likelihood allow the two classes to be
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Fig. 4. Example discrete HMM topology and state probabilities

Feature Class ω1 Class ω2

AAAA BBBB AABB BBAA

Log-Lik -1.11 -1.11 -1.11 -1.11
∇2A 0.50 -0.50 0.33 -0.33

∇2A∇′2A -3.83 0.17 -3.28 -0.61
∇2A∇′3A -0.17 -0.17 -0.06 -0.06

TABLE I
FEATURE VECTOR VALUES FOR A GENERATIVE KERNEL

separated, in some cases using a simple linear classifier. From
the ∇2A∇′3A row of the table the feature captures the obvious
difference between the two classes that the label changes part
way through.

One form of discriminative classifier that has been found to
yield good empirical results on a range of tasks is the Support
Vector Machine (SVM) [34]. By using these generative kernel
features SVMs can be applied to binary classification tasks
with sequence data. This approach has been applied in the
speech processing area to simple small vocabulary speech
recognition tasks [15], LVCSR tasks by making use of the
acoustic code-breaking framework [35], [36] and speaker
verification [37], [38]. The kernel between two sequences,
O(1) and O(2), has the form

K(O(1),O(2); λ) = φ(O(1); λ)TG-1φ(O(2); λ) (23)

where G defines the metric. An interesting aspect of these
generative kernels is that estimating the decision boundary
may be related to estimating the parameters of an Augmented
Statistical model [39], [36]. Though good performance has
been obtained, it is non-trivial to apply this to tasks with
large numbers of classes (without the use of schemes such
as acoustic code-breaking).

VII. CONDITIONAL AUGMENTED MODELS

Conditional Augmented models (CAUG) combine some of
the properties of CRF/HCRFs and Dynamic kernels [14].
Rather than restricting the statistics to be the same as those
of a standard HMM, generative kernels are used to extract
“features” for use in a discriminative classifier. Using the
features associated with generative kernels gives an elegant
way of combining generative and discriminative models. Now
the features associated with the acoustic data are

Ta(O1:T ,w) = φ(O1:T ;λ) (24)

where λ are the parameters of the kernel which are a function
of the label sequence w. It is now possible to directly use these

features in a discriminative exponential model. Consider the
simplest form of dynamic kernel, the log-likelihood (zeroth
order generative kernel).

Ta(O1:T ,w) =




...

δ(w − w̃) log
(
p(O1:T ; λ(w̃))

)

...


 (25)

for all w̃ This then yields

P (w|O1:T ;α,λ) =
1

Z(α, λ,O1:T )
× (26)

exp
(
αl log(P (w)) + α(w) log

(
p(O1:T ; λ(w))

))

This is similar to discriminative training of standard HMMs
though now the values of α may also be optimised5.

Using more powerful dynamic kernels yields interesting
extensions to the standard HMM. Consider a first order
generative kernel.

Ta(O1:T ,w) =




...
δ(w − w̃) log(p(O1:T ; λ(w̃)))

...
δ(w − w̃)∇λ log(p(O1:T ; λ(w̃)))

...




(27)

for all w̃ The posterior is then expressed as

P (w|O1:T ; α,λ) =
1

Z(α, λ,O1:T )
× (28)

exp
(
αl log(P (w)) + αTTa(O1:T ,w, λ)

)

This allows a range of long-term dependencies to be incorpo-
rated.

It is useful at this stage to examine the form of sufficient
statistics that are obtained using an HMM with continuous
observation feature vectors as the generative model. Consider
the form based on a first order kernel.

Ta(O1:T ,w) =




...
δ(w − w̃) log(p(O1:T ;λ(w̃)))

δ(w − w̃)∇µj log(p(O1:T ; λ(w̃)))
δ(w − w̃)∇Σj log(p(O1:T ; λ(w̃)))
δ(w − w̃)∇aij log(p(O1:T ;λ(w̃)))

...




(29)

5In practice these values are fixed to improve the generalisation of the
discriminatively trained models.



for all state pairings i and j where

∇µj log(p(O1:T ; λ)) =

T∑
t=1

γj(t)Σ
−1
j

(
ot − µj

)
(30)

∇Σj log(p(O1:T ; λ)) = (31)

1

2

T∑
t=1

γj(t)vec
(
−Σ−1

j + Σ−1
j (ot − µj)(ot − µj)

TΣ−1
j

)

∇aij log(p(O1:T ; λ)) = (32)
T∑

t=1

(P (qt−1 = si, qt = sj |O1:T ; λ)/aij − γi(t− 1))

In a similar fashion to the discrete example in section VI,
these features are again a function of the complete observation
sequence O1:T .

The CAUG model has two distinct sets of parameters to
estimate, the generative model for obtaining the features,
λ, and the parameters of the discriminative model, α. The
simultaneous optimisation of both parameters is difficult since,
for example, the CML objective function has many local
maxima. Alternatively the generative model parameters can
be estimated using either ML, or one of the discriminative
training criteria. Given the estimated value of λ and hence as-
sociated features, the estimation of α is a convex optimisation
problem.

The form of model in equation 28 can be directly used for
isolated speech recognition tasks. However for more complex
continuous tasks, a problem with this form of model is that the
features, training and inference is a function of all the words
in the sequence, w. This means that Viterbi decoding may not
be used, as the conditional independence assumptions for its
efficient implementation are not present in this form of model.
One approach to dealing with this is to add an additional level
of latent variables, θ. The extracted features are assumed to
be conditionally independent given θ, so

P (w|O1:T ; α, λ) =
1

Z(α, λ,O1:T )
× (33)

∑
θ

exp

(
αT

l

[
log(P (w))

Tl(θ)

]
+

L∑
i=1

αTTa(Ot(w,i,θ), wi, λ)

)

where θ segments the observation sequence into the L labels
(these may be at the word, phone or state level)

O1:T =
{
Ot(w,1,θ), . . . ,Ot(w,L,θ)

}
(34)

This is similar to the HCRF, but the features that are extracted
may span many frames. If the sufficient statistics extracted
have the same form as the standard HMM (thus model λ is
not used), then this is now very similar to the “standard” form
of hidden CRF.

Using equation 33 is still inefficient for training and infer-
ence. This may be addressed, by selecting the best segmenta-
tion using the generative model with parameters λ

θ̂ = arg max
θ
{P (θ)p(O1:T |θ;λ)} (35)

Equation 33 can be rewritten as

P (w|O1:T ; α,λ) =
1

Z(α, λ,O1:T )
× (36)

exp

(
αT

l

[
log(P (w))

Tl(θ̂)

]
+

L∑

i=1

αTTa(Ot(w,i,θ̂), wi,λ)

)

Training and inference can now be implemented in a simi-
lar fashion to the discriminative training implementation in
HTK [40]. Initially a lattice is generated using the current
model λ. This is then “model-marked” where time-stamps are
added to the lattice at the model-level, this may be either at the
phone or word level. In training statistics are then accumulated
given these fixed segment boundaries. In inference the best
path is found given these fixed boundaries. This is discussed
in more detail in [41].

VIII. PRELIMINARY CAUG EXPERIMENTS

This section presents some preliminary experimental results
on the TIMIT classification task taken from [14]. The experi-
mental setup described in [13] was used. Models were trained
with three states and either ten or twenty mixture-components.
Acoustic model decoding was performed without the use of a
language model. No data or feature whitening was performed.

Classifier Criterion Components
λ α 10 20

HMM ML – 29.4 27.3
CAug ML CML 24.2 –
HMM MMI – 25.3 24.8
CAug MMI CML 23.4 –

TABLE II
CLASSIFICATION ERROR ON THE TIMIT CORE TEST SET

The classification (i.e. known phone boundaries) perfor-
mance on the TIMIT core test set is shown in table II. For these
experiments both ML and MMI trained HMMs were used as
the generative model to obtain the features. As expected the
use of MMI training with the standard HMM gave large gains
on this task over the ML trained systems. However the CAUG
model gave reductions in error rate for both ML and MMI
trained systems. As expected the gains for the ML baseline
system were larger than when using MMI training, though
the absolute performance of the MMI-based CAUG system
was about 0.8% absolute better than the equivalent ML-based
system.

Despite good performance compared to standard HMMs,
CAug models do not quite attain the performance of
HCRFs [13]. This is believed to be due to three main factors:
the fixed state segmentation from the base model, over-training
(training error falls to 15.1% for MMI statistics) and lack of a
language model (tests on MMI HMMs suggest that this may
yield a gain of up to 0.5% absolute).



IX. CONCLUSION

This paper has reviewed some of the acoustic models used
in acoustic speech recognition, with particular emphasis on
discriminative models. The current forms of discriminative
training that have been used to improve the performance of
standard HMM-based systems were described. These discrim-
inatively trained HMMs are used in the majority of state-of-
the-art LVCSR systems. A number of possible discriminative
models that have been proposed in the literature have been
discussed along with a more detailed description of the con-
ditional augmented model.

Though many of the various forms of discriminative model
described have achieved gains over baseline systems (some
with discriminative training), it is not clear whether these
gains will map to LVCSR tasks. The tasks on which the
discriminative models have typically been applied have been
relatively simple compared to the state-of-the-art LVCSR
tasks. Related to this, it is not clear whether the techniques
used to improve generalisation )language model weakening, I-
smoothing etc) will work for these discriminative models. This
may be particularly important given the additional flexibility of
the discriminative models compared to the generative models.
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