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1. introduction

1 Introduction

�is is the �rst progress report for epsrc Project ep/i006583/1 (Generative Kernels and
Score Spaces for Classi�cation of Speech) within the Global Uncertainties Programme.

�e aim of this project is to signi�cantly improve the performance of automatic
speech recognition systems across a wide-range of environments, speakers and speak-
ing styles. �e performance of state-of-the-art speech recognition systems is o�en ac-
ceptable under fairly controlled conditions and where the levels of background noise
are low. However for many realistic situations there can be high levels of background
noise, for example in-car navigation, or widely ranging channel conditions and speak-
ing styles, such as observed on YouTube-style data. �is fragility of speech recognition
systems is one of the primary reasons that speech recognition systems are not more
widely deployed and used. It limits the possible domains in which speech can be reli-
ably used, and increases the cost of developing applications as systems must be tuned
to limit the impact of this fragility. �is includes collecting domain-speci�c data and
signi�cant tuning of the application itself.

�e vast majority of research for speech recognition has concentrated on improv-
ing the performance of systems based on hidden Markov models (hmms). hmms are
an example of a generative model and are currently used in state-of-the-art speech re-
cognition systems. A wide number of approaches have been developed to improve the
performance of these systems under changes of speaker and noise. Despite these ap-
proaches, systems are not su�ciently robust to allow speech recognition systems to
achieve the level of impact that the naturalness of the interface should allow.

One of themajor problemswith applying traditional classi�ers, such as support vec-
tor machines, to speech recognition is that data sequences of variable length must be
classi�ed.�is project combines the current generativemodels developed in the speech
recognition community with discriminative classi�ers used both in speech processing
and in machine learning. Figure 1 gives a schematic overview of the approach that this
project takes. �e shaded part of the diagram indicates the generative model of a state-
of-the-art speech recogniser. In this project, the generative models are used to de�ne
a score-space. �ese scores then form features for the discriminative classi�ers. �is

Test dataO

Canonical
model λ ′

Adaptation/
compensation

Recognition

λ Hypotheses

Generative
score-space

λ

Classi�er
Hypotheses

φ(O;λ)

Final
hypotheses

Figure 1 Flow diagram of the project plan. �e shaded region encompasses the
components of a state-of-the-art speech recogniser.
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2. model compensation

approach has a number of advantages. It is possible to use current state-of-the-art ad-
aptation and robustness approaches to compensate the acoustic models for particular
speakers and noise conditions. As well as enabling any advances in these approaches to
be incorporated into the scheme, it is not necessary to develop approaches that adapt
the discriminative classi�ers to speakers, style and noise. Using generative models also
allows the dynamic aspects of speech data to be handled without having to alter the
discriminative classi�er. �e �nal advantage is the nature of the score-space obtained
from the generative model. Generative models such as hmms have underlying con-
ditional independence assumptions that, whilst enabling them to e�ciently represent
data sequences, do not accurately represent the dependencies in data sequences such
as speech. �e score-space associated with a generative model does not have the same
conditional independence assumptions as the original generative model. �is allows
more accurate modelling of the dependencies in the speech data.

�is report will report on improvements in three of the components in �gure 1:
compensation, score-space computation, and classi�ers. It will also report on some
work related to the project. Section 2 will discuss compensation. It presents a novel
variational method for compensating hmm speech recognisers for noise, which does
not assume that the resulting distribution is Gaussian (published as van Dalen and
Gales 2011a). Section 3 will discuss score-space computation. It presents a method
to compute scores from generative models for all segmentations in amortised constant
time (published as van Dalen et al. 2012). Section 4 will discuss a recognition with vari-
ous forms of classi�ers. It will report on log-linear models, both for acoustic modelling
(work related to the project and published as Ragni and Gales 2011b;a) and language
modelling (unpublished). A structured svm is another type of classi�er whose use will
be discussed (work related to the project andpublished asZhang andGales 2011b;a). An
initial discussion will be given of a Bayesian non-parametric approach to classi�cation
using in�nite Gaussian mixture models (unpublished). Section 5 will report results of
initial experiments on data from YouTube supplied by Google (unpublished). Finally,
section 6 will summarise the �ndings so far and discuss research directions for the next
two years.

2 Model compensation

�is section describes a variational approach to compensating speech recognisers based
on hidden Markov model for noise. It is a summary of work published as van Dalen
and Gales (2011a).

Model compensation techniques modify the hmm’s state-conditional distributions
so they model the speech in the target environment. Because the interaction between
speech and noise is non-linear, the corrupted-speech distribution has no closed form.
In particular, even if the speech and noise distributions are Gaussian, the corrupted
speech is not. However, the majority of schemes assume the corrupted speech Gaus-
sian-distributed. Additionally, despite correlation changes, the covariance matrices
are normally diagonalised. �us, improvements from di�erent ways of computing the
same form of distribution are limited (see e.g. Li et al. (2010)).

Two approaches that remove the Gaussian assumption have been proposed. �e
“Algonquin” algorithm (Kristjansson 2002) still uses a Gaussian approximation, but
tuned for each clean speech component and observation vector. �us, the e�ective dis-
tribution over observation vectors is non-Gaussian. Another approach (van Dalen and
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2. model compensation

θt−1 θt
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Figure 2 �e noise-corrupted speech p (le�), with components k, speech x,
noise n, corrupted speech o; its approximation q (right) with componentsm.

Gales 2010) uses a non-parametric distribution, by approximating the integral in the
corrupted-speech likelihood expression with a sampling scheme. However, both these
approaches require extensive computation for each incoming feature vector. �us, for
most situations they are impractical.

�e aim of this section is to �nd forms of fast likelihood computation that approx-
imate these non-Gaussian distributions. Here, the framework of predictive methods is
applied to this problem. Predictive methods approximate a complicated model with a
simpler form by minimising the kl divergence between them (van Dalen et al. 2009).
How this applies to noise-robust speech recognition can be seen in Fig. 2. �e le�
graphical model represents noise-corrupted speech. �e speech is governed by a hid-
denMarkovmodel, with states θt. Associated with each state is a mixture of Gaussians
with component indicatorkt andGaussian component distributions generating speech
vectors xt.�e independently and identically distributed noisent corrupts the speech,
resulting in noise-corrupted speech ot.

�e right graphical model in Fig. 2 approximates the corrupted speech distribu-
tion. �e Markov model p(θt−1|θt), which governs the clean speech, is assumed un-
changed. Many compensationmethodsmap each component k of the predicted distri-
bution onto one componentm of the approximation andmarginalise out only x andn.
�is is not a problem if the marginalisation is exact; however, usually each component
is approximated with a Gaussian (Acero et al. 2000; Li et al. 2010; Seltzer et al. 2010; van
Dalen andGales 2011c).�ismatched-pair approximation to the kl divergence neglects
the potential for a mixture of Gaussians to represent a mixture of non-Gaussian distri-
butions. To approximate a whole state-conditional distribution at once, this section
severs the hard link between components in the le�- and right-hand models. Instead,
a variational approach can assign part of the probability mass of component k in the
le�-hand model to any componentm in the right-hand model. �is tightens an upper
bound on the kl divergence. Within this variational framework, other forms of mix-
ture models can also be estimated. A new form of predictive cmllr, which transforms
clean speech Gaussians with shared linear transformations, can be derived. �is yields
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2.1. experiments

optimal linear transformations for modelling the non-linear e�ects of the noise.

2.1 Experiments

To illustrate the limitations of thematched-pair approximation, the variational predict-
ive methods described in this paper are tested on the 1000-word-vocabulary Resource
Management corpus (Price et al. 1988). �is task contains 109 training speakers read-
ing 3990 sentences, a total of 3.8 hours of data. All results are averaged over three of the
four available test sets, Feb 89, Oct 89, and Feb 91 (Sep 92 is not used), a total of 30 test
speakers and 900 utterances. Operations Room noise from the noisex-92 database
(Varga and Steeneken 1993) is arti�cially added at 20 and 14 dB. For a fair comparison,
the in�uence of the noise estimation algorithm should be eliminated. �erefore, a full-
covariance Gaussian noisemodel is extracted directly from the noise audio. (Amethod
that could estimate a noise model for Monte Carlo pcmllr is proposed in van Dalen
and Gales (2011b).) Because a noise model also implicitly compensates for speaker dif-
ferences, word error rates will be slightly higher than in van Dalen and Gales (2011c).

State-clustered triphone models with six components per mixture are built using
the htk rm recipe (Young et al. 2006). �e number of components is about 9500. �e
extended speech statistics are striped as in van Dalen and Gales (2011c). �e language
model is a word-pair grammar.

Table 1 on the next page contains word error rates for model compensation. “vts”
is a standard scheme. It linearises the mismatch function and applies the continuous-
time approximation, which makes o�-diagonal elements of the covariance matrix un-
reliable (van Dalen and Gales 2011c), so the covariance matrices are (as is usual) diag-
onalised.

Extended dpmc (edpmc) estimates means and covariances for each component
separately using Monte Carlo. As the number of samples goes to in�nity (at 100 000
samples, performance has converged) it yields the optimalGaussian-for-Gaussian com-
pensation. Compared to vts, edpmc removes the linearisation of the mismatch func-
tion and the continuous-time approximation (see van Dalen and Gales (2011c)), and
thus yields improved performance. Removing the diagonalisation for edpmc is espe-
cially useful at lower signal-to-noise ratios, when the noise a�ects feature correlations
most. At 14 dB, it yields another 15 % relative increase in performance.

�e above results still assume that one clean speech Gaussian generates Gaussian-
distributed corrupted speech. �e bottom row of Table 1 shows the e�ect of removing
this constraint. Variational edpmc uses the variational approach from section 2, which
allows corrupted-speech samples to be re-assigned to di�erent components. Because
probability mass can be moved to di�erent components, the state-conditional mixture
distribution is able to model the non-linear e�ects of the interaction of the speech and
noise. �is yields a 10% relative reduction in word error rate compared to the optimal
Gaussian-for-Gaussian compensation.

Table 2 on the following page shows the same contrasts, but estimating only the
parameters of linear transformations, by applying predictive cmllr. Non-variational
pcmllr can be trained from di�erent forms of statistics. �e word error rates in the
�rst row use statistics from a vts-compensated model. �e combination of the ap-
proximations in vts and pcmllr leads to reduced performance. �e numbers in the
second row are from cmllr essentially trained from full-covariance edpmc statistics,
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2. model compensation

Table 1Word error rates for model compensation.

Method Optimisation Shape 20 dB 14 dB
vts per component diag 8.6 17.4

edpmc per component diag 7.5 14.9
full 7.4 13.3

variational full 6.9 12.0

Table 2Word error rates for Predictive cmllr.

Base classes
16 1024 16 1024

Statistics 20 dB 14 dB
vts 10.9 10.0 23.8 20.9
edpmc 9.2 8.1 19.3 16.4
Variational 8.7 7.9 19.6 15.1

with 10 000 samples per base class. �ough the clean speech samples can be drawn
o�-line, collecting the statistics is still costly. However, for the 16 base class system, the
word error rate is the same with 5000 samples per base class, which makes the total
number of samples 80 000. �e complexity of this is invariant to the number of com-
ponents, so for larger systems this operating point could yield a reasonable trade-o�.
With 1024 base classes, pcmllr with edpmc does perform better than vts. �ough
the full transformation matrix of pcmllr implicitly performs some compensation for
correlation changes, it cannot model the non-Gaussian shape of the distributions.

�e bottom row in Table 2 shows results for variational pcmllr, which applies a
variational approach to estimating linear transformations per base class. It allows the
transformations tomove components in space tomodel the non-Gaussian distribution
of the corrupted speech. At 20 dB, around 26% of the probability mass of the samples
goes to di�erent components; at 14 dB, 37%. At 16 base classes this does not consist-
ently yield bene�ts, but with 128 or more, and especially at lower signal-to-noise ratios,
word error rates improve compared to non-variational pcmllr. �is ability to model
the non-Gaussian aspect of the corrupted-speech distribution with just linear trans-
formations of clean speech Gaussians shows the power of the variational approach.

�is section has viewed model compensation for noise-robustness and predictive
linear transformations from a variational perspective. �ese methods can be seen as
minimising an upper bound on the divergence between the corrupted speech and the
model for decoding. It is possible to �nd a tighter bound by considering the divergence
between states rather than between components. When applied to edpmc and predict-
ive cmllr, this yields reductions in the word error rate. It is possible to model the
non-linear impact of the noise with just linear transformations of Gaussians. �e vari-
ational predictive framework should allow a wide range of schemes to be developed.
�ese could, for example, address the computational cost of the schemes proposed here.
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3. score-space generation

3 Score-space generation

�is section describes an e�cient approach to computing generative score-spaces. It is
a summary of work published as van Dalen et al. (2012).

Generative score-spaces, which generalise Fisher score-spaces (Jaakkola andHaussler
1998), consist of log-likelihoods of generative models, and their derivatives. �ere are
two reasons for using these scores as features for a classi�er. With a zeroth-order gen-
erative score-space, which contains only the log-likelihood itself, based onwordhmms,
classi�cation is closely related to that of a hmm speech recogniser. �is allows state-of-
the-art techniques for hmm speech recognisers, such as methods for noise-robustness,
to be leveraged. Secondly, derivatives even of frame-level log-likelihoods are functions
of all frames in the segment. �us, the conditional independence assumptions of the
hmm are relaxed.

In this work a joint feature space is used. �e feature vector is divided into separate
sets of dimensions for each vocabulary entry v, and the other dimensions are zero:

φ(O, w) =

 δ(w = 1)φ1(O)
...

δ(w = V)φV(O)

 , (1)

where δ(· = ·) equals 1 if its argument is true, and 0 otherwise. In this expression, it
selects the feature vectorφv(O) for word v.

Since the derivatives in the generative score-space depend on the frames in a whole
segment, it seems obvious that they need to be re-computed completely for every hy-
pothesised segment. �is is, indeed, what Layton (2006) did, with an algorithm with
nested passes of forward–backward that was essentially run separately for each hypo-
thesised segmentation. However, this section will introduce a method that increment-
ally, with only a forward pass, computes scores for all segmentations that share a start
time. It views the generative model as a weighted �nite state transducer. In this form-
alism it is possible to generalise the weights (which would canonically represent hmm
output and transition probabilities) to another semiring. �is section will use expect-
ation semirings, which allow for more extensive book-keeping. As long as the hmms
have only few states, which for wordhmms is the case, this algorithm requires amodest
amount of extra storage. Its advantage is that in combination with a decoding method
that �nds the optimal segmentation, it computes the scores in amortised constant time.

3.1 Log-likelihoods as weighted �nite state transducers

Figure 3 illustrates the two component state machines required for computing the like-
lihood of a segment of speech. �e automaton S , in �gure 3a, produces possible se-
quences of phones. It produces a sequence of one ormore symbols ei and one ormore t.
A sequence of output symbols corresponds to a path, a sequence of arcs, starting at the
start state (“0”, with a bold circle), and �nishing at the �nal state (“2”, with a double
circle). �e total weight of the sequence is found by multiplying the weights of the arcs
on the path. �is represents the probability of the phone sequence. In the transducer
drawn here, the probability is normalised, but that is not required of wfsts.

For segments starting at each time, a transducer is set up representing phone likeli-
hoods for the observations. Aweighted �nite state transducerO that does that forO1:t
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3. score-space generation

0

ei/0.8

1
ei/0.2

t/0.5

2
t/0.5

(a) Weighted automaton S produces a
sequenceof phones.

0s 0.01s

ei:o1/1.3

t:o1/1.3 0.02s

ei:o2/0.7

t:o2/0.8 0.03s

ei:o3/0.9

t:o3/1

(b)wfstO with phone likelihoods for each observation ot.

Figure 3 Component wfsts for computing the likelihood of a segment.

0s,0 0.01s,0
ei:o1/1.04

0.01s,1

ei:o1/0.26

0.02s,1
t:o2/0.4

0.02s,2

t:o2/0.4

0.03s,1
t:o3/0.5

0.03s,2

t:o3/0.5

0.02s,0
ei:o2/0.56

ei:o2/0.14

0.03s,0
ei:o3/0.72

ei:o3/0.18

Figure 4 wfst T for computing the likelihood of a segment: the twowfsts from
�gure 3 composed.

for consecutive t is depicted in �gure 3b. Each state here represents a time (indicated
in fractions of seconds from 0s). �e audio in between two consecutive time steps is
represented by feature vector ot. For each observation there is an arc for each of the
phones. �e weight on each arc is set to the likelihood that the output distribution of
that phone (say, a mixture of Gaussians) gives for that observation ot. �e product of
the weights on the arcs on a path through this transducer therefore equals the obser-
vation likelihood for the phone sequence corresponding to the path.

In theory, automaton S produces an in�nite number of sequences of phones with
a weight assigned to each of the sequences. Transducer O represents an exponential
number of pairs of an input and an output sequence, where each input sequence con-
sists of phonemes, and each output sequence of observations o1,o2, . . .. �e interest
is in only those combinations of sequences from S and O with the same phone se-
quence. Because both automata are �nite-state machines, it is possible to represent the
sequences of interest, and their weights, with a third transducer T , which is obtained
through composition of S andO:

T = S ◦ O. (2)
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3.2. computing scores with higher-order expectation semirings

�is yields the transducer in �gure 4. �e states of this transducer are tuples of states
from the two original transducers. For clarity, the states corresponding to one state
from the transducer O representing the observations are in the same horizontal posi-
tion, and those corresponding to phone sequences in S in the same vertical position.
�is way, the graph corresponds to the trellis diagrams sometimes drawn to explain
Viterbi or the forward algorithm in hmms.

�e product of the weights that S and O assign represents the joint distribution
of phone sequence and observation sequence. �is is equivalent to the product of
the weights on the corresponding path π = e1 . . . et from a start to an end state
in the wfst T . �e interest here is in the total weight over all paths from a speci�c
start state and a speci�c end state. �e forward algorithm is a well-known algorithm
that computes this quantity. It uses dynamic programming, incrementally computing
the weights up to a frontier of states. �e frontier is normally moved forward time-
synchronously. For this reason, it is possible to compute the likelihood of a word from
one start time to a range of end times with one forward pass. Assuming the number
of states in the hmm constant, each additional end state requires only constant time to
compute. �is means that if the likelihood is required for all possible segments, with
the forward algorithm they can be computed in amortised constant time (Ragni and
Gales 2012).

3.2 Computing scores with higher-order expectation semirings

�e expectation semiring was introduced in Eisner (2002). Its initial purpose was to al-
low expectation–maximisation on weighted �nite state transducers with a probabilistic
interpretation. �e statistics, which in speech recognition training would be computed
a�er applying the forward–backward algorithm, are appended to the weights. By de-
�ning the weights to be in the expectation semiring, which de�nes operations⊕ and⊗
in a speci�c way, only a forward pass is required to gather all required statistics. For
normal speech recognition training, the cost of carrying statistics for a complete hmm
in each state would be prohibitive. However, in this paper the hmms are small, and
di�erent lengths for the observation segments need to be considered. �e following
will therefore de�ne weights in a semiring so that the algorithm in section 3.1 can be
applied, and higher-order generative scores computed in amortised constant time.

A simple way of viewing the required semiring is as appending derivatives to the
weights (Li and Eisner 2009). �e weight for arcs e then becomes

w[e;λ] ,〈l[e;λ] ,∇λl[e;λ]〉 . (3)

�e semiring operations de�ned on these new weights can be derived in various ways.
�e simplest for the purpose of this paper is to describe the derivatives of the sum or
product of two weights l1 and l2:

∇λ(l1 + l2) = ∇λl1 +∇λl2; (4a)
∇λ(l1 · l2) = l1 · ∇λl2 + l2 · ∇λl1. (4b)

9



3. score-space generation

Denoting the weights with〈l, l ′〉, the semiring operations should be de�ned as

〈l1, l ′1〉 ⊕〈l2, l ′2〉 ,〈l1 + l2, l ′1 + l ′2〉 ; (5a)
〈l1, l ′1〉 ⊗〈l2, l ′2〉 ,〈l1 · l2, l1 · l ′2 + l2 · l ′1〉 ; (5b)

0 ,〈0, 0〉 ; (5c)
1 ,〈1, 0〉 . (5d)

�is de�nition ensures that both operations ⊕ and ⊗ always produce the deriv-
ative of the �rst element in the second element. Applying the forward algorithm on
a weighted �nite state transducer in the expectation semiring therefore produces en
each �nal state a tuple with as �rst element the likelihood, and as second element its
derivative. If the likelihood for a segmentOτ:t is denoted with l[Oτ:t;λ], the resulting
tuple is

〈l[Oτ:t;λ] ,∇λl[Oτ:t;λ]〉 . (6)

Finding the �rst-order score with the derivative of the log-likelihood (as opposed to
the likelihood) is straightforward:

∇λ log l[Oτ:t;λ] =
∇λl[Oτ:t;λ]
l[Oτ:t;λ]

, (7)

which can be found with the values in (6).
It is also possible to �nd second-order derivatives in the same way. �e second-

order expectation semiring (Li and Eisner 2009) is found through a “li�ing trick”: since
�rst-order weights are in a semiring, their derivatives can be appended:

w[e;λ] ,
〈〈
l[e;λ] ,∇λl[e;λ]

〉
,∇T
λ

〈
l[e;λ] ,∇λl[e;λ]

〉〉
=
〈〈
l[e;λ] ,∇λl[e;λ]

〉
,
〈
∇T
λl[e;λ] ,∇T

λ∇λl[e;λ]
〉〉
. (8)

Assuming the number of generative parameters constant, the forward algorithm
can produce l[Oτ:t;λ] and its derivatives for t = τ . . . T inΘ(T − τ) time, i.e. amort-
ised constant time. Computing generative scores for each of these segments also takes
constant time. First- or second-order generative scores for optimal decoding, which
requires scores for all segmentations, can be found in amortised constant time.

3.3 Experiments

Optimal decoding with generative score-spaces was tested in a log-linear model (see
section 4.1) on a small, noisy corpus: aurora 2. �is makes it possible to test the
interaction with noise compensation methods. �e task uses a small vocabulary and
no language model, which makes experiments without such optimisations as pruning
possible. aurora 2 (Hirsch and Pearce 2000) is a standard digit string recognition
task. �e generative model has whole-word hmms with 16 states and 3 components
per state. �e number of hmm parameters is 46 732. �e hmms are compensated with
unsupervised vector Taylor series (vts) compensation as in Gales and Flego (2010).
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3.3. experiments

�ree di�erent sets of hmm parameters are used to derive features for the discriminat-
ive model: trained on clean data, trained on corrupted data with vts adaptive training
(vat), and on corrupted data with discriminative vts adaptive training (dvat).

With zeroth-order score-spaces, the discriminative model has 13 parameters, cor-
responding to the log-likelihoods of the 13 words (11 digits plus “sil” and “sp”), found
as in section 3.1. In �rst-order score-spaces the derivatives of the log-likelihood are
computed as in section 3.2 and appended. Only derivatives of the compensated means
are used, since including variances led to rapid over-�tting. �e number of parameters
was 21 554. Second-order score-spaces resulted in generalisation problems because of
the small training set, and initial experiments did not yield improvements over �rst-
order score-spaces.

�e discriminative models were initialised to use the likelihoods from the generat-
ive models unchanged. �ey were then trained with a minimum Bayes risk criterion as
in Ragni and Gales (2011b) and see section 4.1. �is used a large lattice with many, but
not all, segmentations to represent the numerator and denominator. One of the three
test sets, test set A, was used as the validation set to stop training.

Generative
model

Score-space
order

Test set AverageA B C

vts
— 9.8 9.1 9.5 9.5
zeroth 7.8 7.3 8.0 7.6
�rst 6.8 6.4 7.3 6.7

vat
— 8.9 8.3 8.8 8.6
zeroth 7.1 6.8 7.5 7.1
�rst 6.2 6.1 6.8 6.3

dvat
— 6.7 6.6 7.0 6.7
zeroth 6.6 6.5 6.9 6.6
�rst 6.1 6.1 6.6 6.2

Table 3Word error rates for decoding with generative score-spaces.

Table 3 contains word error rates for the experiments. Comparing the �rst two
rows of each block will give an insight in the properties of the log-linear model. �e
di�erences between second and third rows of each block indicate the e�ects of using
derivatives as features.

Results obtained by the generative model with Viterbi decoding are in the �rst row
of each block. For the second row, log-likelihoods are extracted from this model as
features for the log-linearmodel, and the optimal segmentation is found. For generative
models with (“vts’) and without (“vat”) adaptive training this gives an improvement
close to 20% relative. However, discriminatively trained hmms (“dvat”) are similar
to the log-linear model derived from just log-likelihoods (Heigold et al. 2011). �e
most signi�cant di�erences here are that the log-linearmodel chooses the optimalword
sequence and marginalises out over state sequences within the word. �is gives only a
tiny improvement.

�e bottom rowof each block containsword error rates using �rst-order derivatives
of log-likelihoods as features. �ese break the Markov assumption of hmms. Interest-
ingly, the e�ect of this seems only partly dependent of how good the underlyinghmm is.
�e improvement compared to score-spaces with just log-likelihoods is 11–12% relative
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for vts and vat. �e discriminatively trained hmm (dvat) has been optimised for de-
coding with it, rather than for use within a log-linearmodel. It is therefore encouraging
that the relative gain with �rst-order derivatives is as high as 6%.

4 Classi�ers

Most current speech recognition systems are based on hiddenMarkovmodels (hmms).
�ese are generative models, which can be used for classifying data using Bayes’ rule.
�e restriction on the form of classi�er this yields can be li�ed by extracting features
from the audio with a generative model, and applying any of a number of known clas-
si�ers.

Section 3 has shown how to generate generative score-spaces from hmm-like mod-
els to model the acoustics. �is section will discuss how to use these in various clas-
si�ers. �e main challenge for this is that speech is structured, as sequences of words.
Without exploiting this structure, the number of possible classes is in�nite (exponential
in the number of words). Section 4.1 will detail log-linear models that train parameters
for acoustic features and language model features. Section 4.2 will report on speech
recognition with structured svms, which use large-margin training. Section 4.3 will
discuss a Bayesian non-parametric classi�er: the in�nite Gaussian mixture model.

4.1 Log-linear models

One type of classi�er is a log-linear model. It uses a feature function φ(·) and a cor-
responding parameter vectorα. Unlike a generative model, a conditional model yields
the probability of hidden variables, in this case the word sequencew, given the obser-
vation sequence O. An issue is that the input sequence must be segmented into, say,
words. Each of the elementswi ofw is equal to one element v from the vocabulary v.
�e log-linear form of the model can be written:

P(w|O, s;α) ,
1

Z(O)
exp
(
αTφ(O,w, s)

)
. (9)

Here, s = {si}
|w|
i=1 is a segmentation of the observation sequence into segments si.

Z(O) is the normalisation constant. φ(O,w, s) is the feature function that returns
a feature vector characterising the whole observation sequence. α is the parameter
vector.

�e feature vector is divided into two parts, containing scores both related to the
acoustics and to the language model:

φ(O,w, s) =

[
φa(O,w, s)
φl(w)

]
. (10)

Section 4.1.1 will discuss acoustic modelling withφa, and section 4.1.2 language mod-
elling withφl.

4.1.1 Acoustic modelling

�is section discusseswork related to the project, published asRagni andGales (2011a;b).
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4.1. log-linear models

To investigate acoustic modelling, the language model will be assumed to be its
generative form, and the corresponding parameter set to 1. �e acoustics are modelled
with a semi-Markov model, so that the distribution factorises over the segments, i.e.
the feature function is a sum of features for each segment:

φa(O,w, s) ,
∑
i

φ(Osi , wi), (11)

whereOsi indicates the observations in segment si.
In section 3 it was assumed that the segmentation consists of words for simplicity of

notation. �is works well if the training data contain enough instances of each word.
However, for large-vocabulary speech recognition this is not normally the case. �e
usual way around this problem is to share parameters between di�erent phones or sub-
phones. In this work, the generative model is sub-phone-tied using a decision tree. For
the discriminative model, however, it is best to be tied on the phone level. Another
decision tree can be built, but care must be taken to ensure that the e�ective models,
combining generative and discriminative parameters, can be trained robustly. Here,
only those discriminative parameters are clustered where the generative model for the
correct class appears at the leaf nodes of the decision trees created for the generative
models.

An additional problem is that the assignment of mixture components is not �xed.
Applying the same discriminative parameters for, say, component 4 in one mixture as
component 4 in another mixture is meaningless. �erefore, the discriminative para-
meters are additionally tied over all components within amixture. Expressing the tying
structure as amatrixAwhich contains only one 1per column and otherwise only zeros,
(11) becomes

φa(O,w, s) ,
∑
i

Aφ(Osi , wi). (12)

4.1.1.1 Parameter estimation �e standard criterion for training log-linear mod-
els is the conditional likelihood. �is type of training is called conditional maximum
likelihood, or cml for short.

A criterion that is used to train the acoustic models of hmms is an approximation
to the Bayes’ risk. �is is called minimum Bayes’ risk (mbr) training and it assumes
a deterministic decoder. �e objective is to minimise the expected loss in the average
sentence accuracy over utterances r = 1 . . . R

cmbr(α) ,
1

R

∑
r

∑
w

∑
s

P
(
w
∣∣O(r), s;α

)
k
(
w,w(r)

)
, (13)

where k
(
w,w(r)

)
is the loss for word sequence w if the correct sequence is w(r).

Minimising (13) is expensive. An approach o�en used for training hmm speech recog-
nisers is to align the reference transcription with the audio (Povey 2003). �e accuracy
of a hypothesised segment can then be approximated by examining the overlap with
the reference transcription. �e minimisation of the expected Bayesian risk can be
performed numerically. It is usual to use phone segments, as will be done here. �is is
called minimum phone error (mpe).
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4. classifiers

System Order of
features

Test set AverageA B C
vts 9.8 9.1 9.5 9.5

Log-linear zeroth 8.1 7.4 8.2 7.6
�rst 7.0 6.6 7.6 7.0

Table 4 Results for log-linear modelling of acoustics on aurora 2.

4.1.1.2 Experiments To test acoustic modelling with a log-linear model, the au-
rora 2 and 4 corpora were used.

aurora 2 is a small vocabulary digit string recognition task. It is a standard corpus
for testing noise-robustness. Utterances are one to seven digits long and based on the
tidigits database with noise arti�cially added. �e clean speech training data com-
prises 8440 utterances from 55 male and 55 female speakers. �e test data is split into
three sections. Test set a comprises 4 noise conditions: subway, babble, car and exhib-
ition hall. Matched training data is available for these test conditions, but not used in
this work. Test set b comprises 4 di�erent noise conditions. For both test set a and b
the noise is scaled and added to the waveforms. For the two noise conditions in test
set c convolutional noise is also added. Each of the conditions has a test set of 1001 sen-
tences with 52 male and 52 female speakers. �e hmm set is trained on clean data. �e
“simple” back-end is used. vts compensation is estimated separately for each utterance.
�e results are averaged over the di�erent signal-to-noise ratios from 0–20 dB.

aurora 4 is a noise-corruptedmedium- to large-vocabulary task based on theWall
Street Journal data. �e hmmmodel is trained on 14 hours of clean or multi-style data.
�ehmms are state-clustered triphones (with 3140 states) with 16 components permix-
ture. Four iterations of vts compensation are performed for the test data.

RProp is used as the optimisation algorithm. Both training and testing is done
within a lattice rescoring framework: the lattices are found with the hmm recogniser.
�e alignments in the lattices are used.

Table 4 summarises results for the aurora 2 task. �e �rst row contains results
for a system trained on clean data, and compensated for the inferred noise with vts.
�is is the state of the art for hmms with noise compensation. Using just the log-
likelihoods that this system yields as features for the log-linear model yields the res-
ults in the second row. �e substantial average gain of 20% relative results from the
freedom in the parametrisation that the discriminative model gives. �e bottom row
additionally uses �rst-order derivatives of the word log-likelihoods. �is additional in-
formation, which, breaks the frame-level Markov assumption, produces an additional
10% relative gain.

Results on a noise-corrupted medium-vocabulary task, aurora 4, are in table 5 on
the facing page. �e �rst row contains the standard clean-trained, vts-compensated
system. For the second row, the generative model was trained on multi-style data with
maximum-likelihood estimation, but using the vts compensation while training and
optimising for that.�is is called “vts adaptive training” (vat).�e next row uses “dis-
criminative vts adaptive training” (dvat) (Flego andGales 2011), which trains the gen-
erative model discriminatively. �is retains the nominal property of the hmm model,
so that the distributions are locally normalised, but the training objective is minimum
Bayes’ risk.
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4.1. log-linear models

System Order of
features

Test set AverageA B C D
vts 7.1 15.3 12.1 23.1 17.9
vat 8.6 13.8 12.0 20.1 16.0
dvat 7.2 12.8 11.5 19.7 15.3

Log-linear zeroth 7.7 13.1 11.0 19.5 15.3
�rst 7.4 12.6 10.7 19.0 14.8

Table 5 Results for log-linear modelling of acoustics on aurora 4.

�e log-linear system instead trains discriminative parameters on the log-likeli-
hoods given by the vat system. With only 4020 parameters, it yields similar perform-
ance on average to discriminatively training of the complete hmm set, but it is more
robust to noisy data. Adding �rst-order derivatives of the likelihoods, the bottom row,
yields a consistent gain of 4% on top of that by breaking the frame-level Markov as-
sumption.

4.1.2 Language modelling

To investigate discriminative language modelling, a standard hmm acoustic model is
used. �is means that the acoustic feature vectorφa(O,w, s) in (10) is set to a single
scalar. It approximates the likelihood according to an hmm speech recogniser with the
Viterbi approximation.

�e language model featuresφl(w), is the interest. Its �rst entry is the log-prob-
abibility returned by the generative language model. Appended to this are features
for each transition in the �nite-state representation of the language model, including
back-o� transitions. �ese count the number of times each transition is taken. �e
corresponding parameter in the parameter vector α therefore adds a bias to the prob-
ability given by the generative model. �is is a very similar set-up to that of Roark et al.
(2007). To reconstruct the generative language model, the parameter vector forφl can
be set to

[
1 0 0 . . .

]
T.

�e standard criterion for training log-linear models is the conditional likelihood
over the observations:

ccml(α) ,
1

R

∑
r

∑
s

P
(
w(r)

∣∣O(r), s;α
)
. (14)

Note that unlike (13), this does not explicitly take into account how word sequences
compete with the reference sequence, just the reference sequence.

4.1.2.1 Experiments To test discriminative language modelling, it is required to
have su�cient coverage of the transitions in the language, i.e. a large training corpus.
�e Cambridge English conversational telephone speech system for the darpa/nist
evaluation from 2004 (Evermann et al. 2005) was used. It uses 2200 hours of training
data of conversational telephone speech.

�e scarf toolkit (Zweig and Nguyen 2010) is used. Its input is lattices generated
by a hmm system trained with minimum phone error. �e acoustic scores are given
by the lattice. �e language model is a trigram model. All transitions in this language
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4. classifiers

ml mpe
Discriminative training L2 std dev subset all data
Fixed scaling factor 30.5 24.4
Scaling factor 53.5

Full language model

2.0× 10−06 24.8
8.5× 10−06 24.4
1.2× 10−05 24.4
2.7× 10−05 24.5
4.4× 10−05 30.8

Table 6 Training a language model with scarf.

model are used for the feature vector. To train the corresponding parameters, RProp
is used. �is is a gradient-based approach that adaptively changes the step size. scarf
by default sets the initial step size to 0.1. �is yielded erratic behaviour of the objective
function. �e initial step size was therefore changed to 10−5, which yielded smooth
behaviour and convergence in around 50 iteratons.

Table 6 contains the results of training a language model with scarf. �e numbers
quoted are on the eval03 test set. �e �rst row contains the baseline numbers, which
are similar to those in Evermann et al. (2005). �is uses a �xed language model scaling
factor. A �rst experiment (second row) estimated a languagemodel scaling factor. �is
impaired performance severely. It is suspected that this is caused by how the training
lattices are generated. To increase acoustic confusability, the language model used for
generating the lattices is a pruned bigram model. �ough for training the language
model scaling factor the lattice is rescored with the correct languagemodel, this cannot
introduce new hypotheses.

However, the lattices can still contain enough information to train the language
model discriminatively. �e sparseness of the training data for this purposemeans that
regularisation is required. L2 regularisation is used, since sparsi�cation is not neces-
sary for initial experiments. Since each iteration over the full training set takes 12 hour
on amodern 16-core machine, only a limited number of experiments is run, and initial
experiments use 1/20th of the training data. scarfmultiplies the L2 norm by the num-
ber of utterances.�e regularisation constants therefore are not consistent between test
sets. Table 6 reports the regularisation constant as the standard deviation.

�e results are disappointing: it is possible to match the original performance, but
not to improve on it. A number of factors play a role. First, unlike in Roark et al.
(2007), which uses ml-trained acoustic models, the results here are based on discrim-
inatively trained acoustic models. �is may already have taken out many of the errors,
so that discriminative training of the language model does not add anything. On a
more practical note, the training data is re-used a�er mpe training, which implies that
the acousticmodelsmaymatch the training data toowell. An alternative schemewould
hold out part of the training data for language model training. It might also be pos-
sible to train the acoustic and language models at the same time. Another cause may
lie in the mismatch between the ideal lattices for acoustic model training and language
model training. Discriminative training of the acoustic model in practice requires an
uninformative language model to arti�cially increase the acoustic confusability. Yet
another factor could be that there are too many parameters to train, and some tying
scheme should be found. Investigation of these factors remains future work.
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4.2. structured support vector machines

4.2 Structured support vector machines

�e theory behind binary support vectormachines (Vapnik 2000) andmulti-class svms
have been well established in the machine learning literature. More recently structured
support vector machines (ssvms) (Tsochantaridis et al. 2005) have been proposed to
handle situations where there is structured data to classify. �is section describes the
application of ssvms to speech recognition. �is work is related to the project, and
published as Zhang and Gales (2011b;a).

When svms are generalised to deal with speech recognition, the decision rule in its
primal form is

w∗ , argmax
w

αTφ(O,w, s), (15)

where the segmentation s is assumed known. �is decision rule is equivalent to the
decision rule that drops out for decoding with a log-linear as in (9) with the same para-
meter vector and feature function.

However, training is di�erent. Just like in normal svms, it optimises the margin
between the correct classi�cation and the closest competitors. �e ssvm criterion can
be expressed as minimising

1
2
‖α‖22 +

C

R

[
−max

s

{
αTφ(O(r),w(r), s)

}
+ max
w6=w(r),s

{
k
(
w,w(r),+

)
αTφ(O(r),w, s)

}]
+

, (16)

where the �rst term inside the square brackets relates to the correct hypothesis and
the second term to the competing hypotheses. Both max functions are convex with
respect to α, but the �rst one is negated, so the complete optimisation is non-convex.
To solve this non-convex optimisation problem, an approach similar to the concave-
convex procedure can be applied.

Optimising the segmentations is an additional problemcompared to standard struc-
tured svms.�is is slow, so that it becomes important to run the optimisation algorithm
in parallel. Two possibilities are considered: using the “1-slack” algorithm instead of
the “n-slack” algorithm, or to approximate the latter. For more details, see Zhang and
Gales (2011b;a).

4.2.1 Experiments

�e aurora 2 and 4 corpora are used to evaluate speech recognition with a structured
svm. Both tasks have been described in section 4.1.1.2. Only zeroth-order scores, log-
likelihoods, are used as features. �e generative models are compensated with vts
compensation.

Table 7 on the following page compares the baseline hmm system and structured
svms on the smaller corpus, aurora 2. �e 1-slack algorithm is used, with a prior
on the parameter vector. (�e n-slack algorithm performed slightly worse due to the
approximations it requires in parallel computation.) Because the maximum-margin
criterion provides better generalisation, performance is 20% relative better than for
hmms.
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Model A B C Average
hmm 9.8 9.1 9.5 9.5
ssvm 7.5 7.1 7.9 7.4

Table 7Word error rates for structured support vector machines on aurora 2.

Model A B C D Average
hmm 7.1 15.3 12.2 23.1 17.8
ssvm 7.4 14.2 11.3 21.9 16.8

Table 8Word error rates for structured support vector machines on aurora 4.

Table 7 compares the baseline hmm system and structured svms on aurora 4. In
this case, the n-slack algorithm cannot be run because due to the larger vocabulary
it generates too many constraints. �e structured svm produces a 6% relative gain
compared to the hmm system.

4.3 In�nite Gaussian mixture models

Analternative to the standard forms of discriminativemodels is to use a non-parametric
Bayesian approach (Rasmussen 2000; Beal et al. 2002; Blei et al. 2004; MacKay and
Peto 1994; Teh 2006; Fox et al. 2008). �is section describes some initial work in this
direction based on a simple form of generative Bayesian model, the in�nite Gaussian
mixture model (igmm). Later work will investigate more complex forms of model for
example the in�nite hmm and the in�nite svm for classifying speech.

4.4 Model De�nition

�e in�niteGaussianmixturemodel is aGaussianmixturemodel with an in�nite num-
ber of components.�e key insight tomaking inference in such amodel possible is that
since the training data D = {xn}

N
n=1 has N points, the maximum number of com-

ponents that can have generated these points isN. First consider a standard Gaussian
mixture model (gmm) withM components:

p(x|θ) =

M∑
m=1

c(m)N (x;µ(m),Σ(m)) (17)

�us the set of the model parameters θ has the form

θ =
{
M, {c(1), . . . , c(M)}, {µ(1), . . . ,µ(M)}, {Σ(1), . . . ,Σ(M)},

}
(18)

with a sum-to-one constraint on the component priors {c(1), . . . , c(M)}. �is gmm
is a parametric model where a single set of parameters is used. Typically the number
of componentsM is �xed a-priori (though this is not a requirement) and the priors,
means and covariances estimated using ml or map. �e map setting of the parameters
is

θ̂|M,D = argmax
θ

{p(D|θ)p(θ|M)} (19)
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4.5. adaptation and compensation

where D are the training data. �rough the prior in p(θ|M), the variances are forced
to be non-zero.

Rather than considering a single set of model parameters, with a �xed number of
components, a Bayesian approach can be adopted. Here the likelihood of the next ob-
servation is de�ned as

p(x|D) =
∫
p(x|θ)p(θ|D)dθ (20)

�ough simple to express in this form, marginalising over the distribution is imprac-
tical for gmms (for individual Gaussians, it is possible to use a prior that yields a closed-
form solution) and the form of the posterior of the parameters p(θ|D) is highly com-
plicated. To handle this problem a non-parametric Bayesian approach can be adopted.
Here samples of the parameters are drawn from p(θ|D). �e posterior distribution
does not have to be explicitly speci�ed. �e samples are used to approximate the mar-
ginalisation over the parameters. �us, ifN samples are drawn,

p(x|D) ≈ 1

N

N∑
i=1

p(x|θi) (21)

where

θi ∼ p(θ|D). (22)

�is model and procedure can be extended to the case where the number of compon-
ents is in�nite. In this case, instead of drawing component priors from a Dirichlet
distribution, components are drawn from a Dirichlet process with an appropriate base
measure. At each stage of the sampling procedure, only the parameters of the compon-
ents that are assigned data points need to be represented explicitly. �e other, in�nitely
many, components’ posterior distribution is equal to their prior. It is therefore possible
to integrate out over them. �e process of drawing these samples is described in detail
in Rasmussen (2000).

In this project the task is classi�cation of speech.�is contrastswithmost published
approaches where these non-parametric Bayesian approaches are used for clustering
(Fox et al. 2011). Classi�cation with igmms can be achieved by splitting the training
data into appropriate classesDω, and training a separate igmm for each class:

ω̂|x = argmax
ω

{P(ω)p(x|Dω)} (23)

whereDω is the training data associated with classω.

4.5 Adaptation and Compensation

One of the advantages of using simple forms of generative Bayesian model is that it is
possible to use compensation and adaptation approaches. �ese approaches are not
yet well-known in the machine learning community, but they are standard in speech
recognition. Consider the case of global cmllr1 (Gales 1998). Given a transform {A,b}

1It is not possible to use standard regression classes as the component number and parameters are not
�xed. However, it is possible to use class-speci�c transforms.
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classi�cation is based on

ω̂|x,A,b = argmax
ω

{P(ω)p(x|Dω,A,b)}

= argmax
ω

{P(ω)p(θ|Dω,A,b)p(x|θ,A,b)}

≈ argmax
ω

{
P(ω)

1

N

N∑
i=1

p(x|θωi,A,b)

}
(24)

where given a classω samples i of the set of parameters θωi are drawn as

θωi ∼ p(θ|Dω) (25)

Since each set of parameters θωi de�nes a gmm the likelihood can simply be written
as

p(x|θωi,A,b) = |A|

Mωi∑
m=1

c
(m)
ωi N (Ax+ b;µ

(m)
ωi ,Σ

(m)
ωi ) (26)

In commonwith standard adaptation the parameters of the transformneed to be estim-
ated from some adaptation data Da = {x1, . . . , xT }. Labels for each of these samples
y1, . . . , yT are either known, or derived using an existing system. �e transform para-
meters are then found from2

Â, b̂|Da,D = argmax
A,b

{∑
ω,τ

δ(w,yτ) log
(∫
p(xτ|θ,A,b)p(θ|Dω)

)}

≈ argmax
A,b

{∑
ω,τ

δ(w,yτ) log

(
1

N

N∑
i=1

p(xτ|θωi,A,b)

)}
. (27)

Here, δ(·, ·) is the Kronecker delta. �is now has the form of standard parameter es-
timation. Using em the following auxiliary function can be obtained (ignoring constant
terms)

Q(Â, b̂;A,b) =
∑
ω,τ

δ(ω,yτ)

N∑
i=1

Mωi∑
m=1

γ
(m)
ωi (τ) log

(
p(xτ|θωi,m, Â, b̂)

)
(28)

where

γ
(m)
ωi (τ) = P(m|xτ,θωi,A,b) (29)

�is allows the parameters of the transform to be estimated in the same fashion as
standard cmllr. �e same approach can be adopted for other compensation and ad-
aptation approaches.

If the igmm is to be trained on heterogeneous data, then it is also possible to apply
the equivalent of adaptive training. Consider the training data is split into S blocks
for classω, Dω = {D(1)

ω , . . . ,D(S)
ω } and there is a transform {A(s),b(s)} for each of

these blocks. As a global cmllr transform can be applied to the features, the data from
2Here only standard ml approaches are adopted. It would be interesting to apply Bayesian approaches

to the transforms as well.
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each of the blocks can be transformed using the appropriate linear transform. �us the
draws for the igmm are then based on

θωi ∼ p
(
θ
∣∣{A(1),b(1)D(1)

ω }, . . . , {A(S),b(S)D(S)
ω }
)

(30)

and

{A(s),b(s),D(s)
ω } =

{
A(s)x1 + b

(s), . . . ,A(s)x
τ
(s)
ω

+ b(s)
}

(31)

Since the transforms depend on the draws from themodels, and the draws of themodel
depend on the transforms, the standard iterative approach of alternating the draws
from the model and the transform estimation must be performed.

4.6 Preliminary Experiments

In theory igmms can be directly applied to sequence data as samples can be considered
independent of each other. However in this work the scores from generativemodels are
used to handle the dynamic aspects of the data. �is allows the standard forms of noise
robustness to be applied as an initial level of compensation. Additionally the igmm
can be adapted to the test conditions (here unsupervised adaptation is performed), or
adaptive training performed. For all experiments a diagonal covariance matrix igmm
was used.

�ese experiments were conducted using the aurora 2 corpus, using the same
hmm training and vts compensation con�guration as Gales and Flego (2010) along
with the use of the compensated models to segment the data. �e set-up was a form
of acoustic code-breaking, where the words in the one-best hypothesis are reclassi�ed
one by one.

�e score-space in this work was based on the log-likelihood score space. How-
ever class log-posteriors, rather than log-likelihoods, were used.3 �ough many other
forms of transformation of the log-likelihood score-space are possible these were not
investigated.

System Train Test Test setwer (%)
Adapt Adapt A B C Avg.

vts — — 9.84 9.11 9.53 9.48

igmm
— — 11.47 10.95 11.63 11.30
— cmllr 9.49 9.38 9.54 9.46

cmllr cmllr 9.62 9.67 9.72 9.62

Table 9 aurora 2 results comparing vts and igmm systems.

Table 9 shows the performance of the baseline vts system (used to derive the seg-
mentation and score-space) and various con�gurations of the igmm system. �e �rst
row gives results for igmm reclassi�cation without adaptation. For the second row,
the cmllr transform is estimated on the 1-best for all test data for each noise type and
signal-to-noise ratio separately. �e third row uses cluster-adaptive training, where the
multi-condition training subsets from Gales and Flego (2010) are used for estimating

3An “acoustic deweighting” factor of 0.1 was used in deriving the class posteriors.
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5. experiments on youtube data from google

Task Set oov rate (%) Perplexity
YTElect — 0.66 122.51

YTGeneral dev 1.40 217.8
eval 1.33 195.6

Table 10 Perplexity and oov rates on the YouTube data.

Task Set Segmentation
Auto Manual

YTElect — 27.5

YTGeneral dev 54.0 47.5
eval 59.0

Table 11Word error rates on the YouTube data.

the transforms. �e performance of the igmm in all con�gurations is disappointing.
At this stage it is unclear what the issues are. �ese issues will be investigated in future
work.

5 Experiments on YouTube data from Google

As part of the project, Google has provided audio data from YouTube videos that dis-
plays di�erences in speaking and adverse environments of various kinds. �is is a hard
task for a speech recogniser. Most of the videos that the data is from is still on YouTube,
so that metadata can be found. �is is not currently used.

�e YTElect data (see also Alberti et al. 2009) contains audio from videos about
the 2008 American presidential election, such as candidates’ speeches. It is 9 hours of
audio. �e YTGeneral data is a random sample from YouTube data, and contains a
“dev” set of 9 hours of audio and an “eval” set of 8½ hours.

Since especially the YTGeneral data contains a variety of audio that should not be
recognised (such as music, background noise, and speech in other languages), auto-
matic segmentation was performed. �e YTGeneral corpus also has been segmented
manually. �e total fraction of audio present in the manual segmentation that is miss-
ing in the automatic segmentation is 5.3 %.

To have a baseline for the project, the cu-2004 Broadcast News system was used,
up to the P1+P2 stage (Kim et al. 2005). Table 10 shows the perplexity and out-of-
vocabulary rate on both corpora. It is clear that the language model �ts the election
data much better than the more general data.

Table 11 shows the corresponding word error rates. Performance on the YTElect
task is not as good as on broadcast news (Kim et al. 2005). �e general YouTube data,
however, turns out to be much harder. With automatic segmentation, word error rates
are higher than 50%. With the manual segmentation, performance improves slightly,
to 47.5 %. �is is comparable to the performance of a Google baseline system.
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6. conclusion

6 Conclusion

�is report has documented progress in three key areas within the epsrc Project ep/
i006583/1, Generative Kernels and Score Spaces for Classi�cation of Speech. �e areas
are model compensation, score-space generation, and the classi�ers.

A new approach for model compensation for noise-robustness was presented in
section 2. It removes the Gaussian assumption that underlies standard model com-
pensation, but �nds a parametric form of compensation that it is fast to decode with.

Section 3 proposed a method to computing generative scores for many segmenta-
tions at once. �is is vital for making speech recognition with generative score-spaces
e�cient (the standard Viterbi algorithm cannot be used). �e method uses the for-
ward algorithm for an generative model for one word. However, it replaces the for-
ward probabilities with values in the expectation semiring, which allows derivatives of
the probabilities to be propagated.

Section 4 discussed various classi�ers to be used with generative score-spaces. Log-
linear models were discussed for both acoustic modelling and for language modelling.
Structured svms, which use a max-margin criterion for training, were then discussed.
Finally, the use of in�nite Gaussian mixture models was investigated.

6.1 Future work

�e same three areas provide opportunities for further work.
Adaptation and noise-robustness speci�cally for within the classi�ers is interesting.

Currently the generative models are adapted with no reference to the generative scores
or the classi�er they are used in. Optimising the actual likelihood used for decoding
may further increase performance.

�e second area is the score-space generation. Currently the features that are ex-
tracted are log-likelihoods and their derivatives. Other features may be valuable. Also,
regularisation techniques may allow higher-order derivatives to be included without
harming generalisation and speed.

�e third area is the classi�ers, where three directions are identi�ed. Firstly, ap-
proaches to bring the sophistication of log-linear models with generative models to
large-vocabulary speech recognition. �is will require a number of optimisations and
approximations, both for training and decoding. Second is the the use of di�erent ker-
nels in structured svms. In the primal form, kernels are essentially restricted to a dot
product between score-spaces. Structured svms can use the dual form, which allows,
for example, radial basis kernels to be used. �irdly, other non-parametric Bayesian
approaches than in�nite gmms can be investigated. Combining the two types of clas-
si�ers mentioned, either in�nite log-linear models (extending log-linear models in the
way in�nite hmms extend hmms) or in�nite structured svms can be used.
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