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ABSTRACT

The vast majority of HMM–based speech recognition systems use
Gaussian mixture models as the state distribution model. The use
of these distributions is motivated more by ease of training, decod-
ing and the fact that a sufficient number of Gaussian components
may be used to approximate any distribution, than some underly-
ing aspect of the data being modelled. If distributions werese-
lected that better modelled the observed data, fewer components
should be required and recognition accuracy should improve. This
paper examines two distributions for improving the modelling of
the tails of the densities. The first distribution, the Richter distri-
bution, fits within the general framework of Gaussian component
tying, but has some attractive attributes for decoding. Thesec-
ond distribution, the power exponential, does not fit withina tying
framework. Despite gains in likelihood, indicating that the Gaus-
sian components are sub–optimal in a likelihood sense, onlysmall
gains in recognition performance were observed on a large vocab-
ulary speech recognition task.

1. INTRODUCTION

Modelling of the statistical distribution of acoustic datais com-
monly done using Gaussian mixtures. A notable exception is Phillips’
speech recognizer whose densities are mixtures of Laplacians [1].
However, examining the histograms of a single dimension of the
acoustic data assigned to a particular state of a speech recognition
system, there are three notable features that are distinctly non–
Gaussian. Some histograms are skew–symmetric, peakier than
typical Gaussians and have tails that taper off at a slower rate than
for a Gaussian tail. Despite these limitations, mixtures ofGaus-
sians perform well in speech recognition experiments. If the mod-
elling of the tail, peak or skewness of the distribution is improved
the performance of the recognizer may be expected to improve.
One option to improve modelling is to increase the number of
Gaussian components in the mixtures. However, this dramatically
increases the total number of parameters in the speech recognizer.
It would be desirable to improve the density model without dras-
tically changing the number of parameters. This paper proposes
two different distributions to improve modelling of the tail of the
distributions, the Richter distribution and the power exponential
distribution. Both the proposed distributions are symmetric, so
they do not address the skew–symmetric problem.

First, the Richter distribution is examined. This class of dis-
tributions was first suggested by Alan Richter in [7], and wasre-
ferred to as the Richter distribution in [3]. The Richter distribution
is a mixture of Gaussians where all the means are equal and the
covariance matrices are multiples of each other. This may becon-
sidered as a particular form of Gaussian mixture parameter tying.

A Richter distribution consisting ofR Gaussians will only have
2R − 2 parameters in addition to parameters describing a single
Gaussian. Despite the small increase in memory and computa-
tional load Richter distributions have fallen out of favourcompared
with more standard tying schemes. Second, the power exponential
distributions is considered. A power exponential distribution is a
distribution for which the exponent of a Gaussian is raised to a
power possibly different from that of the Gaussian. For large pow-
ers the power exponential distributions become increasingly more
like a uniform distribution whereas for small powers the distribu-
tions have sharp peaks and heavy tails. In the case of small powers
special care must be taken when estimating the means, variances
and mixture weights [2]. The power changes the behavior of the
tails drastically, but adds only one parameter to that of a single
Gaussian. The increase in memory requirements is thereforesmall,
whereas the computational load is somewhat larger.

This paper details re–estimation formulae for training HMM–
based speech recognition systems with both Richter and power ex-
ponential components. In addition, equations for adaptingRichter
distributions using linear transformations are described. The per-
formance of the two systems are then compared with appropriate
Gaussian component systems on the 1997 Hub4 partitioned evalu-
ation test set.

2. RICHTER DISTRIBUTIONS

One scheme for improving the tail distribution modelling isto use
the class of distribution described by

f(o;µ,Σ, p(v)) =

∫

N (o;µ, v2Σ)p(v)dv , (1)

wherep(v) is a probability density function, i.e.p(v) ≥ 0 and
∫

p(v)dv = 1. It is simple to see that this form of distribu-
tion is a generalisation of the standard Gaussian distribution where
p(v) = δ1(v), δvr (v) is the Kronecker delta function. This class
also includes the Cauchy distribution as another standard case. By
appropriately modifying the distribution ofv it is possible to alter
both the tails and the ’peakiness’ of the distribution. In [6] an EM
scheme is described for ML estimates ofµ andΣ that does not re-
quire explicitly obtaining the distributionp(v), which remains un-
altered during training. The discrete version of (1) was described
in [7]. Herep(v) =

∑

r
wrδvr (v) with wr > 0,

∑

r
wr = 1.

Then
f(o;µ,Σ, p(v)) =

∑

r

wrN (o;µ, v2rΣ) . (2)

In addition to giving the formulae for calculating theµ andΣ,
formulae are given for ML estimates for the discrete distribution



of v are described. This form of distribution was used in [3] for
discrete speech modelling, though in the experiments described
the discrete distribution ofv was determined a priori rather than
trained from the data.

For large vocabulary speech recognition systems multiple Gaus-
sian components are typically used to model each state. Thispa-
per therefore considers the Richter mixture case where eachstate
is modelled by a mixture of Richter components

L(o) =
∑

m

∑

r

w(m)
r N (o;µ(m), v(m)2

r Σ
(m)) . (3)

Furthermore it has become very common totie parameters to-
gether, thus reducing the number of parameters to be stored and
increasing the robustness of the parameters estimated. In the same
fashion it is possible to tie the Richter distribution parametersw(m)

andv(m) over many Richter distributions.
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Figure 1: The log–likelihood of a Gaussian distribution anda
Richter distribution using global Richter weights and scaling fac-
tors obtained from the Hub4 training data, ’—’ indicates the
Richter distribution, ’- -’ indicates the Gaussian distribution.

Figure 1 shows a comparison of the log–likelihood of a four
Richter component distribution and the equivalent Gaussian dis-
tribution. Globally tied Richter distribution parameterswere ob-
tained using the Hub4 training data. The tails of the Richterdis-
tribution are longer than those of the Gaussian distribution. This
indicates that, at least in a likelihood sense, the Gaussiancompo-
nents are sub–optimal.

2.1. Parameter Estimation

The following re–estimation formulae, which are slightly modified
versions of those presented in [3], are used

µ̂(m) =

∑

r,τ

γ
(m)
r

(τ)

v̂
(pm)2
r

o(τ )

∑

r,τ

γ
(m)
r

(τ)

v̂
(pm)2
r

, (4)

Σ̂
(m) =

∑

r,τ

γ
(m)
r

(τ)

v̂
(pm)2
r

Ŵ
(m)(τ )

∑

r,τ
γ
(m)
r (τ )

, (5)

v̂(p)2r =

∑

M(p),τ
γ
(m)
r (τ )q̂(m)(τ )

d
∑

M(p),τ
γ
(m)
r (τ )

, (6)

and

ŵ(m)
r = ĉ(m)

∑

τ
γ
(m)
r (τ )

∑

M(p),r,τ
γ
(m)
r (τ )

(7)

where

ĉ(m) =

∑

r,τ
γ
(m)
r (τ )

∑

S(m),r,τ
γ
(m)
r (τ )

(8)

q̂(m)(τ ) =
(

o(τ )− µ̂(m)
)T

Σ̂
(m)−1

(

o(τ )− µ̂(m)
)

Ŵ
(m)(τ ) = (o(τ )− µ̂(m))(o(τ )− µ̂(m))T . (9)

M (p) is the set of components sharing the same Richter parame-
ters,pm is the Richter class of componentm, d is the dimension-
ality of the observation vectoro(τ ) andγ(m)

r (τ ) is the posterior
probability of being in Richter componentr of componentm at
time τ andS(m) is the set of components in the same state as
m. Formulae (4)–(7) yield an iterative estimation scheme since
the mean and the variance are a function ofv̂

(r), which itself is
a function of the estimates of the mean and variance. The suffi-
cient statistics for this operation are the occupancy, sum and sum
squared of the feature vector for each Richter distributionof each
component. Thus if there areM components andR Richter distri-
butions per component, the equivalent ofM×R components must
be stored. An alternative to this and the one used in this paper is to
either update the Richter distribution parameters or the means and
variances. In this case it is only necessary to store parameters at
the Richter tying level or the component level.

2.2. Likelihood Calculation

One of the reasons for using Richter distributions rather than ad-
ditional Gaussian components is the efficiency of the likelihood
calculation. The likelihood of an observation coming from apar-
ticular component is given by

L(o(τ );m) =
∑

m,r

b(m)
r exp

(

−
q(m)(τ )

2v
(m)2
r

)

,

whereq(m)(τ ) is a function of the component,m, and observation

q(m)(τ ) =
(

o(τ )− µ(m)
)T

Σ
(m)−1

(

o(τ )− µ(m)
)

(10)

andb(m)
r is a function of the Richter componentr, but independent

of the observation

b(m)
r =

1
√

2dπd|detΣ(m)|

w
(m)
r

√

v
(m)2d
r

,

The main additional cost is therefore in the log–add over theRichter
components. This may be ignored if a max of the components is
taken, rather than the sum.



2.3. Adapting Richter Distributions

It is also common to use linear transformations to adapt model
parameters to be more representative of a particular speaker, or
acoustic environment. A variety of linear transformationsand re–
estimation formulae are described in [5]. Modifying these formu-
lae to handle Richter distributions is trivial. The main modifica-

tion is to deal withγ
(m)
r

(τ)

v
(m)2
r

rather than the standard posterior com-

ponent probability. As an example the estimation formulae for
the transformÂ in maximum likelihood linear regression, where
Richter components are used, is

âi = k
(i)
G

(i)−1 , (11)

where

G
(r) =

∑

M,τ,r

γ
(m)
r (τ )

v
(m)2
r σ

(m)2
i

ξ(m)ξ(m)T (12)

and

k
(i) =

∑

M,τ,r

γ
(m)
r (τ )

v
(m)2
r σ

(m)2
i

ξ(m)T oi(τ ) . (13)

Similarly modifications to the variance adaptation formulae are
possible.

3. POWER EXPONENTIALS

Consider the class of densities

f(o;µ,Σ, α) = ρα|detΣ|−1/2 exp(−(γαq)
α/2), (14)

where
q = (o− µ)TΣ−1(o− µ) , (15)

γα =
Γ(3/α)

Γ(1/α)
(16)

and

ρα =
αΓ

1
2 (3/α)

2Γ
3
2 (1/α)

. (17)

This class was recently suggested and studied in [2]. The onedi-
mensional case appears to have first been suggested by Subbotin,
[8]. The class (14) will be referred to as the the power exponential
distribution. It is also known as the error function, p–Gaussians or
asα–Gaussians.

Following (3) a model is considered where each state in the
system is modelled by a mixture of power exponential distribution,
i.e.

L(o) =
∑

m

w(m)f(o;µ(m),Σ(m), α(m)). (18)

It is worth noticing that the class of functions described in(14)
is not a subset of the class described in (1). Power exponential
distributions can not in general be modelled with Richter distribu-
tions. This fact can be verified by noticing that functions inthe
class (1) are all log concave, whereas the power exponentials are
not log concave for0 < α < 1. This makes the framework of [6]
unsuitable for parameter update for0 < α < 1.
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Figure 2: The power exponential function for various valuesof α.

3.1. Parameter Estimation

The estimation formula forw(m) is identical to the standard HMM
re–estimation formulae. Update formulae forµ(m) andΣ(m) are
suggested in [2]:

µ̂(m) =

∑

τ
γ(m)(τ )

(

q(m)(τ )
)α(m)/2−1

o(τ )
∑

τ
γ(m)(τ ) (q(m)(τ ))

α(m)/2−1
, (19)

and

Σ̂
(m) =

∑

τ
γ(m)(τ )

(

q(m)(τ )
)α(m)/2−1

Ŵ
(m)(τ )

∑

τ
γ(m)(τ )

, (20)

whereq(m)(τ ) is defined in equation (10),̂W(m)(τ ) in equation
(9) andγ(m)(τ ) is defined to be the posterior probability of being
in the power exponential componentm at timeτ . It is not known
that the overall likelihood is guaranteed to increase with the update
given by (19)–(20), but numerical evidence suggests that this is so.

Special consideration for0 < α < 1 is suggested in [2]. The
powersα(m) can either be fixed on a global level or they can be
updated according to the formula given in [2]:

α̂(m) = (21)

argmaxα

∑

τ

γ(m)(τ ) log
(

f(o(τ ); µ̂(m), Σ̂(m), α)
)

With this update ofα(m) the likelihood is guaranteed to increase.
Figure 3 shows the distribution ofα estimated on a per component
case. The mean of the values ofα is approximately one. It is in-
teresting to note that the Gaussian component equivalent ofpower
exponential components,α = 2, occurs infrequently. Again, this
indicates that Gaussian components are sub–optimal in a likeli-
hood sense.

Currently adaptation of power exponentials have not been in-
vestigated.

4. RESULTS

The two forms of modified tail distribution modelling were inves-
tigated on the 1998 Hub4 partitioned evaluation test set. A 60–
dimensional LDA based front end was used. The LDA was based
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Figure 3: The distribution of powers,α, after training using (21)
on the Hub4 1997 data.

on splicing 9 time frames of 24 dimensional Cepstra, includingc0.
A context dependent state–clustered allophone system was built
on the broadcast news training data. More details of the testand
language model setups are given in [4].

The baseline system for the Richter components had a total of
about 135,000 components. A 4 distribution Richter component
system (R=4) was initialised using the means and variances of the
baseline system. In preliminary experiments the best, though not
significantly so, system was found to be one with the Richter pa-
rameters tied at the state level. This is the one considered in these
experiments. Table 1 shows the comparison of a Richter system

System Error Rate (%)
F0 F1. Avg

base 11.6 18.5 18.7
base+adapt 10.1 17.0 16.4

Richter 11.3 18.1 18.4
Richter+adapt 10.1 16.9 16.3

Table 1: Results on the Hub4 1997 partitioned evaluation test set

and the equivalent baseline system. The adaptation scheme used
in both was a global mean and full variance transform described
in [5]. This was applied in an unsupervised batch adaptationmode.
Using Richter components showed a small gain in performance
over the standard Gaussian components. After adaptation the per-
formance of the two systems was almost indistinguishable.

The experiments using power exponential components used
a modified baseline system consisting of approximately 120,000
Gaussians. The test was performed on a subset of the 1997 par-
titioned evaluation that was used for development [4]. Finally a
smaller language model than for that of the tests with the Richter
distribution where used, thus degrading the performance for the
spontaneous speech category, F1, and for some of the more dif-
ficult conditions, F2–FX. Two power exponential systems were
built. The first used a fixed value ofα(m) = 1 for all components,
motivated by figure 3. The second system used a per–component
value ofα(m) obtained using equation (21).

Table 2 shows the performance of the various power exponen-
tial systems. Again only small reductions in word error ratewere
observed using the improved tail modelling.

System Error Rate (%)
F0 F1. Avg

base (α = 2) 11.8 22.9 26.1
α = 1 11.5 23.0 25.5

EM update forα 11.9 22.6 25.4

Table 2: Results for the power exponential distribution on asubset
of the Hub4 1997 partitioned evaluation test set

5. CONCLUSIONS

This paper has described two schemes for improving the tail dis-
tribution modelling in an HMM–based speech recognition scheme.
Though both schemes indicate that Gaussian components are sub–
optimal in a likelihood sense, they yielded only small reductions
in word error rate. Though disappointing in terms of reductions
in word error rate, the results indicate that using alternatives to
Gaussian components for speech modelling may be useful. Inves-
tigating other distributions may give reductions in the word error
rate. In particular both distributions investigated in this paper are
symmetric, still requiring multiple components to model any non–
symmetric attributes of the data. Explicit non–symmetric distribu-
tions may be an interesting avenue of investigation.
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