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Abstract

Recently various techniques to improve the correlation model of feature vector ele-
ments in speech recognition systems have been proposed. Such techniques include
semi-tied covariance HMMs and systems based on factor analysis. All these schemes
have been shown to improve the speech recognition performance without dramat-
ically increasing the number of model parameters compared to standard diagonal
covariance Gaussian mixture HMMs. This paper introduces a general form of acous-
tic model, the factor analysed HMM. A variety of configurations of this model and
parameter sharing schemes, some of which correspond to standard systems, were ex-
amined. An EM algorithm for the parameter optimisation is presented along with
a number of methods to increase the efficiency of training. The performance of
FAHMMSs on medium to large vocabulary continuous speech recognition tasks was
investigated. The experiments show that without elaborate complexity control an
equivalent or better performance compared to a standard diagonal covariance Gaus-
sian mixture HMM system can be achieved with considerably fewer parameters.

Key words: Hidden Markov models, state space models, factor analysis, speech
recognition

1 Introduction

Hidden Markov models (HMMs) with continuous observation densities have
been widely used for speech recognition tasks. The observation densities asso-
ciated with each state of the HMMs should be sufficiently general to capture
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the variations among individual speakers and acoustic environments. At the
same time, the number of parameters describing the densities should be as low
as possible to enable fast and robust parameter estimation when using a lim-
ited amount of training data. Gaussian mixture models (GMMs) are the most
commonly used form of state distribution model. They are able to approximate
non-Gaussian densities, including densities with multiple modes. One of the
issues when using multivariate Gaussian distributions or GMMs is the form
of covariance matrix for each component. Using full covariance components
increases the number of parameters dramatically which can result in poor pa-
rameter estimates. Hence, components with diagonal covariance matrices are
commonly used in HMMs for speech recognition. Diagonal covariance GMMs
can approximate correlations between the feature vector elements. However,
it would be beneficial to have uncorrelated feature vectors for each component
when diagonal covariance matrices are used.

A number of schemes to tackle this intra-frame correlation problem have been
proposed. One approach to decorrelate the feature vectors is to transform
each set of vectors assigned to a particular component so that the diagonal
covariance matrix assumption becomes valid. This system would, however,
have the same complexity as full covariance GMMs. Alternatively, a single
global decorrelation transform could be used as in principal component analy-
sis. Unfortunately, it is hard to find a single transform that decorrelates speech
feature vectors for all states in an HMM system. Semi-tied covariance matrices
(STCs) (Gales, 1999) can be viewed as a halfway solution. A class of states
with diagonal covariance matrices can be transformed into full covariance ma-
trices via a class specific linear transform. Systems employing STC generally
yield better performance than standard diagonal covariance HMMs, or sin-
gle global transforms, without dramatically increasing the number of model
parameters.

The intra-frame correlation modelling problem may also be addressed by using
subspace models. Heteroscedastic linear discriminant analysis (HLDA) (Gales,
2002; Kumar, 1997) models the feature vectors via a linear projection matrix
applied to some lower dimensional vectors superimposed with noise spanning
the uninformative, “nuisance” dimensions. There is a close relationship be-
tween STC and HLDA. The parameter estimation is similar and both can be
viewed as feature space transform schemes. Alternatives to systems based on
LDA-like projections are schemes based on factor analysis (Saul and Rahim,
1999; Gopinath, Ramabhadran, and Dharanipragada, 1998). These model the
covariance matrix via a linear probabilistic process applied to a simpler lower
dimensional representation called factors. Where the LDA can be viewed as
a projection scheme the factor analysis is later referred to as a linear trans-
formation due to the additive noise term. The factors can be viewed as state
vectors and the factor analysis as a generative observation process. Each com-
ponent of a standard HMM system can be replaced with a factor analysed



covariance model (Saul and Rahim, 1999). This dramatically increases the
number of model parameters due to an individual loading matrix attached
to each component. The loading matrix (later referred to as the observation
matrix) and the underlying factors (state vector) can be shared among sev-
eral observation noise components as in shared factor analysis (SFA). This
system is closely related to the “factor analysis invariant to linear transfor-
mations of data” (FACILT) (Gopinath et al., 1998) without the global linear
transformation. SFA also assumes the factors being distributed according to a
standard normal distribution. Alternatively the standard factor analysis can
be extended by modelling the factors with GMMs as in independent factor
analysis (IFA) (Attias, 1999). In IFA the individual factors are modelled by
independent 1-dimensional GMMs.

This paper introduces an extension to the standard factor analysis which is
applicable to HMMs. The model is called factor analysed HMM (FAHMM).
FAHMMs belong to a broad class of generalised linear Gaussian models (Rosti
and Gales, 2001) which extends the set of standard linear Gaussian mod-
els (Roweis and Ghahramani, 1999). Generalised linear Gaussian models are
state space models with linear state evolution and observation processes, and
Gaussian mixture distributed noise processes. The underlying HMM generates
piecewise constant state vector trajectories that are mapped into the obser-
vation space via linear probabilistic observation processes. FAHMM combines
the observation process from SFA with the standard diagonal covariance Gaus-
sian mixture HMM acting as a state evolution process. Alternatively, it can
be viewed as a dynamic version of [FA! with a Gaussian mixture model as
the observation noise. Due to the factor analysis based observation process,
FAHMMSs should model the intra-frame correlation better than diagonal co-
variance matrix HMMs, yet be more compact than full covariance matrix
HMMs. In addition, FAHMMSs allow a variety of configurations and subspaces
to be explored.

The model complexity has become a standard problem in speech recognition
and machine learning over the recent years (Liu, Gales, and Woodland, 2003).
For example, Bayesian information criterion has been applied separately to
speaker clustering and selecting the number of Gaussian mixture components
in (Chen and Gopalakrishnan, 1998). Current complexity controls are derived
from Bayesian schemes based on correctly modelling some held-out data. How-
ever, it is well known that the models giving highest log-likelihood for some
data do not automatically result in better recognition performance on unseen
data. Most of the complexity control work for speech recognition has addressed

I The independent factor assumption in IFA would correspond to a multiple stream
HMM with independent 1-dimensional streams in the state space. In FAHMMSs this
assumption is relaxed, and the factors are distributed according to a GMM with
diagonal covariance matrices.



the selection of a single form of parameter such as the number of Gaussian
components. To date, a successful scheme to select more than one form of
parameter simultaneously has not been published. In case of FAHMMSs, the
number of Gaussian components in both, the state and observation space,
as well as the dimensionality of the state space can be chosen. Although the
model complexity is an important issue with FAHMMSs, it is beyond the scope
of this article.

The second section of this paper describes the theory behind FAHMMs includ-
ing efficient likelihood calculation and the parameter estimation. Implemen-
tation issues arising from increased number of model parameters and resource
constraints are discussed in the following section. An efficient two level training
scheme is described as well. Three sets of experiments with different configu-
rations in medium to large vocabulary speech recognition tasks are presented
in Section 4. Conclusions and future work are also provided.

1.1 Notation

In this paper, bold capital letters are used to denote matrices, e.g. A, bold
letters refer to vectors, e.g. a, and plain letters represent scalars, e.g. c. All
vectors are column vectors unless otherwise stated. Prime is used to denote the
transpose of a matrix or a vector, e.g. A’,a’. The determinant of a matrix is
denoted by | A|. Gaussian distributed vectors, e.g. & with mean vector, p, and
covariance matrix, 3, are denoted by & ~ N (u, X). The likelihood of a vector
z being generated by the above Gaussian; i.e., the Gaussian evaluated at the
point z, is represented as p(z) = N(z; u, X). Vectors distributed according
to a Gaussian mixture model are denoted by x ~ 3., ¢ N (., Xm) where
¢m are the mixture weights, and sum to unity. The lower case letter p is used
to represent a continuous distribution, whereas a capital letter P is used to
denote a probability mass function of a discrete variable. The probability that
a discrete random variable, w, equals m is denoted by P(w = m).

2 Factor Analysed Hidden Markov Models

First, the theory behind factor analysis is revisited and a generalisation of
factor analysis to encompass Gaussian mixture distributions is presented. The
factor analysed HMM is introduced in a generative model framework. Efficient
likelihood calculation and parameter optimisation for FAHMMSs are then pre-
sented. The section is concluded by relating several configurations of FAHMMs
to standard systems.



2.1 Factor Analysis

Factor analysis is a statistical method for modelling the covariance structure
of high dimensional data using a small number of latent (hidden) variables.
It is often used to model the data instead of a Gaussian distribution with full
covariance matrix. Factor analysis can be described by the following generative
model

x ~ N(0,1)
o=Cz+w, v~ N (), 5

where x is a collection of k factors (k-dimensional state vector) and o is a
p-dimensional observation vector. The covariance structure is captured by the
factor loading matrix (observation matrix), C, which represents the linear
transform relationship between the state vector and the observation vector.
The mean of the observations is determined by the error (observation noise)
modelled as a single Gaussian with mean vector p® and diagonal covariance
matrix X(?. The observation process can be expressed as a conditional distri-
bution, p(o|x) = N(0; Cz + p?,2)). Also, the observation distribution is
a Gaussian with mean vector p(® and covariance matrix CC’ + ).

The number of model parameters in a factor analysis model is n = p(k + 2).
It should be noted that any non-zero state space mean vector, u®), can be
absorbed by the observation mean vector by adding Cp® into p(®). Further-
more, any non-identity state space covariance matrix, @, can be transformed
into an identity matrix using eigen decomposition, £® = QAQ’. The matrix
Q consists of the eigenvectors of X and A is a diagonal matrix with the
eigenvalues of £ on the main diagonal. The eigen decomposition always ex-
ists and is real valued since a valid covariance matrix is symmetric and positive
definite. The transformation can be subsumed into the observation matrix by
multiplying C from the right by QA2 It is also essential that the observation
noise covariance matrix be diagonal. Otherwise, the sample statistics of the
data can be set as the observation noise and the loading matrix equal to zero.
As the number of model parameters in a Gaussian with full covariance matrix
is 7 = p(p+3)/2, a reduction in the number of model parameters using factor
analysis model can be achieved by choosing the state space dimensionality
according to k < (p —1)/2.

Factor analysis has been extended to employ Gaussian mixture distributions
for the factors in IFA (Attias, 1999) and the observation noise in SFA (Gopinath
et al., 1998). As in the standard factor analysis above, there is a degeneracy
present in these systems. The covariance matrix of one state space component



can be subsumed into the loading matrix and one state space noise mean vector
can be absorbed by the observation noise mean. Therefore, the factors in SFA
can be assumed to obey standard normal distribution. The effective number of
free parameters (mixture weights not included) in a factor analysis model with
Gaussian mixture noise models is given by 2(M®@ — 1)k + kp + 2M ) p where
M@ and M© represent the number of mixture components in the state and
observation space respectively.

2.2 Generative Model of Factor Analysed HMM

Factor analysed hidden Markov model is a dynamic state space generalisation
of a multiple component factor analysis system. The k-dimensional state vec-
tors, x;, are generated by a standard diagonal covariance Gaussian mixture
HMM. The p-dimensional observation vectors, o;, are generated by a multiple
noise component factor analysis observation process. A generative model for
FAHMM can be described by the following equation

T ~ Mhmm’ Mhmm _ {a”’ e 7#’§fz)7 E(IE)}
@, 1)
Oy = Ct.’Et + Uy, Uy ~ ZC [,l,]m, 2 )

where the observation matrices, C}, may be dependent on the HMM state or
tied over multiple states. The HMM state transition probabilities from state ¢
to state j are represented by a;; and the state and observation space mixture

distributions are described by the mixture welghts {c } mean vectors

J"’ Jm

{u]n ,ujm} and diagonal covariance matrices {Em’ jm}.

Dynamic Bayesian networks (DBN) (Ghahramani, 1998) are often presented
in conjunction with the generative models to illustrate the conditional in-
dependence assumptions made in a statistical model. A DBN describing a
FAHMM is shown in Fig. 1. The square nodes represent discrete random vari-
ables such as the HMM state {¢;}, and {w},w?} which indicate the active
state and observation mixture components, respectively. Continuous random
variables such as the state vectors, x;, are represented by round nodes. Shaded
nodes depict observable variables, o;, leaving all the other FAHMM variables
hidden. A conditional independence assumption is made between variables
that are not connected by directed arcs. The state conditional independence
assumption between the output distributions of a standard HMM is also used
in a FAHMM.
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Fig. 1. Dynamic Bayesian network representing a factor analysed hidden Markov
model. Square nodes represent discrete and round nodes continuous random vari-
ables. Shaded nodes are observable; all the other nodes are hidden. A conditional
independence assumption is made between nodes that are not connected by directed
arcs.

2.8 FAHMM Likelihood Calculation

An important aspect of any generative model is the complexity of the likeli-
hood calculations. The generative model in Equation (1) can be expressed by
the following two Gaussian distributions

Pl = jowi = n) =Nz pg;) 25)) (2)
plodan, = j.wj = m) =N (o Cja + pi, 5f5) (3)
The distribution of an observation o; given the state ¢, = j, state space

component wy = n and observation noise component wy = m can be obtained
by integrating the state vector x; out of the product of the above Gaussians.
The resulting distribution is also a Gaussian and can be written as

bjmn(0t) =p(0t]q; = j,w = m,wf =n) = /\/’(ot; [T Ejmn) (4)
where

M = Ciptly) + 1) (5)

% jmn = C 55,/ C) + 250, (6)



The state distribution of a FAHMM state j can be viewed as an M@ M @)
component full covariance matrix GMM with mean vectors given by Equation
(5) and covariance matrices given by Equation (6).

The likelihood calculation requires inverting MA@ full p by p covariance
matrices in Equation (6). If the amount of memory is not an issue, the in-
verses and the corresponding determinants for all the discrete states in the
system can be computed prior to starting off with the training and recogni-
tion. However, this can rapidly become impractical for a large system. A more
memory efficient implementation requires the computation of the inverses and
determinants on the fly. These can be efficiently obtained using the following
equality for matrix inverses (Harville, 1997)

(C; W)+ s
D YN 671045 SduiY oFED >l i RaY 610 (7)

Jym

where the inverses of the covariance matrices 2 and 2( are trivial to

compute since they are diagonal. The full matrices, C" 2(0) 1C' + E )

be inverted are only k& by k matrices. This is dramatlcally faster than 1nvert1ng
full p by p matrices if & < p. The determinants needed in the likelihood
calculations can be obtained using the following equality (Harville, 1997)

;s + s PS> il 1Teih >t oFNED o

]m| -
where again the determinants of the diagonal covariance matrices are trivial
to compute and often the determinant of the £ by k matrix is obtained as a
by-product of its inverse; e.g., when using Cholesky decomposition. In a large
system, a compromise has to be made between precomputing of the inverse
matrices and computing them on the fly. For example, caching of the inverses
can be employed because some components are likely to be computed more
often than others when pruning is used.

The Viterbi algorithm (Viterbi, 1967) can be used to produce the most likely
state sequence the same way as with standard HMMs. The likelihood of an
observation o, given only the state ¢ = j can be obtained by marginalising
the likelihood in Equation (4) as follows

M) M(z)

bj<0t) Ot‘qt = j Z Z C(x)bjmn Ot (8)

Any Viterbi algorithm based decoder such as token passing algorithm (Young,
Kershaw, Odell, Ollason, Valtchev, and Woodland, 2000) can be easily mod-



ified to support FAHMMSs this way. The modifications to forward-backward
algorithm are discussed in the following training section.

2.4 Optimising FAHMM Parameters

A maximum likelihood (ML) criterion is used to optimise the FAHMM pa-
rameters. It is also possible to find a discriminative training scheme such as
minimum classification error (Saul and Rahim, 1999) but for this initial work
only ML training is considered. In common with standard HMM training the

expectation maximisation (EM) algorithm is used. The auxiliary function for
FAHMMs can be written as

QM, M) =

3" [ PQIO. M)p(X]0,Q, M) log (O, X, QIM)d{ X 1) ()
{Qr}

where {Qr} and {X7} represent all the possible discrete state and continuous
state sequences of length T, respectively. A sequence of observation vectors
is denoted by O = o04,...,07, and X = xq,...,xr is a sequence of state
vectors. The set of current model parameters is represented by M, and M is
a set of new model parameters.

The sufficient statistics of the first term, P(Q|O, M), in the auxiliary func-
tion in Equation (9) can be obtained using the standard forward-backward
algorithm with likelihoods given by Equation (8). For the state transition
probability optimisation, two sets of sufficient statistics are needed, the pos-
terior probabilities of being in state j at time ¢, v;(t) = P(¢ = j|O, M),
and being in state ¢ at time ¢ — 1 and in state j at time ¢, §;(t) = P(¢—1 =
i,q; = j|O, M). For the distribution parameter optimisation the component
posteriors, Yjm,(t) = P(q: = j,wy = m,wy = n|O, M), have to be estimated.
These can be obtained within the forward-backward algorithm as follows

L @ o
Vjmn(t) = CimCin Djmn(0¢) D aijoui(t — 1)3;(t)
’ p(O) mm ; ’ ’

where Nj is the number of HMM states in the model, «;(t —1) is the standard
forward variable representing the joint likelihood of being in state i at time
t —1 and the partial observation sequence up to t —1, p(q;—1 = 7,01, ...,0;_1),
and (;(t) is the standard backward variable corresponding to the posterior of
the partial observation sequence from time ¢ 4+ 1 to T given being in state j

at time ¢, p(0441,...,07|q = J).



The second term, p(X |0, Q, M), in the auxiliary function in Equation (9) is
the state vector distribution given the observation sequence and the discrete
state sequence. Only the first and second-order statistics are required since
the distributions are conditionally Gaussian given the state and the mixture
components. Using the conditional independence assumptions made in the
model, the posterior can be expressed as

(o, Tilqy = J,w) = m,w} =n)

p<0t‘Qt :jvwz? - mawtm = n)

p(mt|ot7qt - ja wtO =1m, wtx = ’I’L) =

which using Equations (2), (3) and (4) simplifies to a Gaussian distribution
with mean vector, j,,(t), and correlation matrix, R;,,,(t), defined by

@ jonn (8) = 3] + K (00 — Cpaly) — ) (10)

—1
where K, = E%)C; (Cng-fl)C; + Eﬁ)b) . It should be noted that the
matrix inverted in the equation for K, is the inverse covariance matrix in
Equation (7) and the same efficient algorithms presented in Section 2.3 apply.

Given the two sets of sufficient statistics above the model parameters can be
optimised by solving a standard maximisation problem. The parameter update
formulae for the underlying HMM parameters in FAHMM are very similar to
those for the standard HMM (Young et al., 2000) except the above state vector
distribution statistics replace the observation sample moments. Omitting the
state probabilities, the state space parameter update formulae can be written
as

1 (12)

fugn) = = (13)

10



) 1

where diag(-) sets all the off-diagonal elements of the matrix argument to
zeros. The cross terms including the new state space mean vectors and the
first-order accumulates have been simplified in Equation (14). This can only
be done if the mean vectors are updated during the same iteration, and the
covariance matrices and the mean vectors are tied on the same level. The
parameter tying is further discussed in Section 3.2.

The new observation matrix, C'j, has to be optimised row by row as in SFA
(Gopinath et al., 1998). The scheme adopted in this paper follows closely the
maximum likelihood linear regression (MLLR) transform matrix optimisation
(Gales, 1998). The [th row vector ¢; of the new observation matrix can be
written as

-1

where the k& by k matrices Gj; and the k dimensional column vectors kj; are
defined as follows

M) 1 T oMme
n

(=)
G Z Z Z ]mn ]mn(t)
(

" (02
m=1 U]mz t=1 n=1
M) T M®
k Z Z fY]mn (Otl ,u_gn)Ll)w]mn<t)
m=1 U]ml t=1 n=1
where U(W)Ll is the lth diagonal element of the observation covariance matrix

Eﬁ)w oy and u l are the [th elements of the current observation and the

observation noise mean vectors, respectively.

Given the new observation matrix, the observation noise parameters can be
optimised using the following formulae

T
DY Yt

é(o) =

,_.

3
Il

—

11



jm o)
Z Z ’ijn@)
t=1 n=1
(0 1 L
im o > Vjmn(t)diag <0tot

A Rmnt wmnt A
+1C; p§‘;” gnl0) (1) [Cj M) (15)
e (1) 1
jmn(

Detailed derivation of the parameter optimisation can be found in (Rosti and
Gales, 2001).

A direct implementation of the training algorithm is inefficient due to the
heavy matrix computations required to obtain the state vector statistics. An
efficient two level implementation of the training algorithm is presented in
Section 3.4. Obviously, there is no need to compute the off-diagonal elements
of the new covariance matrices in Equations (14) and (15).

2.5 Standard Systems Related to FAHMDMs

A number of standard systems can be related to FAHMMs. Since the FAHMM
training algorithm described above is based on EM algorithm, it is only ap-
plicable if there is observation noise. Some of the related systems have the
observation noise set to zero which means that different optimisation meth-
ods have to be used. The related systems are presented in Table 1 and their
properties are further discussed below.

e By setting the number of state space mixture components to zero, M @ =
0, FAHMM reduces to a standard diagonal covariance Gaussian mixture
HMM. The observation noise acts as the state conditional output distribu-
tion of the HMM, and the observation matrix is made redundant because
no state vectors will be generated.

e By setting the number of state space mixture components to one, M®) = 1,
FAHMM corresponds to SFA (Gopinath et al., 1998). Even though the state
space distribution parameters are modelled explicitly, there are effectively

12



Table 1
Standard systems related to FAHMMs. FAHMM can be converted to the systems
on the left hand side by applying the restrictions on the right.

System Relation to FAHMMs
HMM M@ =0

SFA M@ =1

dynamic IFA MO =1

STC k=pand v, =0
Covariance EMLLT | £ > p and v; =0

an equal number of free parameters in this FAHMM and SFA which assumes
the state distribution with zero mean and identity covariance.

e By setting the number of observation space distribution components to one,
M =1, FAHMM corresponds to a dynamic version of IFA (Attias, 1999).
The only difference to the standard IFA is the independent state vector
element (factor) assumption which would require a multiple stream (facto-
rial) HMM (Ghahramani and Jordan, 1997) with 1-dimensional streams in
the state space. Effectively multiple streams can model a larger number of
distributions but the independence assumption is relaxed in this FAHMM
assuming uncorrelated factors instead of independent.

e By setting the observation noise to zero, v; = 0, and setting the state
space dimensionality equal to the observation space dimensionality, k = p,
FAHMM reduces to a semi-tied covariance matrix HMM. The only difference
to the original STC model in (Gales, 1999) is that the mean vectors are also
transformed in FAHMM.

e By setting the observation noise to zero, v; = 0, and setting the state space
dimensionality greater than the observation space dimensionality, k& > p,
FAHMM becomes a covariance version of extended maximum likelihood lin-
ear transformation (EMLLT) (Olsen and Gopinath, 2002) scheme. FAHMM
is based on a generative model which requires every state space covariance
matrix being a valid covariance matrix; i.e. positive definite. EMLLT, on the
other hand, directly models the inverse covariance matrices and allows “neg-
ative” variance elements as long as the resulting inverse covariance matrices
are valid.

3 Implementation Issues

When factor analysed HMMs are applied for large vocabulary continuous
speech recognition (LVCSR) there are a number of efficiency issues that must
be addressed. As EM training is being used to iteratively find the ML estimates

13



of the model parameters, an appropriate initialisation scheme is essential. Fur-
thermore, in common with standard LVCSR systems, parameter tying may be
used extensively. In addition, there is a large amount of matrix operations that
need to be computed. Issues with numerical accuracy have to be considered.
Finally, as there are two sets of hidden variables in FAHMMSs, an efficient two
level training scheme is presented.

3.1 Initialisation

One major issue with the EM algorithm is that there may be a number of
local maxima. An appropriate initialisation scheme may improve the chances
of finding a good solution. A sensible starting point is to use a standard HMM.
A single Gaussian mixture component HMM can be converted to an equivalent
FAHMM as follows

(=)

Ky = Ky

@ _ 1
%5 =52

C,=1I

o 0
=

| Fjik+1:p)
») _ %Ea‘[ltk} 0
=
0 Xjk+1p)

where pu;;,., represent the first k& elements of the mean vector and 3 is
the upper left k£ by k& submatrix of the covariance matrix associated with state
7 of the initial HMM.

The above initialisation scheme guarantees that the average log-likelihood of
the training data after the following iteration is equal to the one obtained using
the original HMM. The equivalent FAHMM system can also be obtained by
setting the observation matrices equal to zero and initialising the observation
noise as the HMM output distributions. However, the proposed method can
be used to give more weight on certain dimensions and should provide better
convergence. Here it is assumed that the first k£ feature vector elements are
the most significant. In the experiments, the state space dimensionality was
chosen to be k = 13 which corresponds to the static parameters in a standard
39-dimensional feature vector. Alternative feature selection techniques such as
Fisher ratio can also be used within this initialisation scheme.

14



3.2 Parameter Sharing

As discussed in Section 2.1, the number of free parameters per FAHMM state,
7, is the same as in a factor analysis model with Gaussian mixture distri-
butions. Table 2 summarises the numbers of free parameters per HMM and
FAHMM state discarding the mixture weights. The dimensionality of the state
space, k, and the number of observation noise components, M have the
largest influence on the complexity of FAHMMs.

Table 2

Number of free parameters per HMM and FAHMM state, 7, using M®) state
space components, M (?) observation noise components and no sharing of individual
FAHMM parameters. Both diagonal covariance and full covariance matrix HMMs
are shown.

System Free Parameters (n)
diagonal covariance HMM oM (O)p

full covariance HMM M©@p(p +3)/2
FAHMM 2AM®) — 1)k + pk +2M©p

When context-dependent HMM systems are trained the selection of the model
set is often based on decision-tree clustering (Bahl, de Souza, Gopalkrishnan,
Nahamoo, and Picheny, 1991). However, implementing decision-tree cluster-
ing for FAHMMs is not as straightforward as for HMMs. The clustering based
on single mixture component HMM statistics is not optimal for HMMs (Nock,
Gales, and Young, 1997). Since the FAHMMSs can be viewed as full covariance
matrix HMMs, decision-tree clustered single mixture component HMM models
may be considered as a sufficiently good starting point for FAHMM initialisa-
tion. The initialisation of the context-dependent models can be done the same
way as using standard context-independent HMMs described in Section 3.1.

In addition to state clustering, it is sometimes useful to share some of the
individual FAHMM parameters. It is possible to tie any number of parameters
between an arbitrary number of models at various levels of the model. For
example, the observation matrix can be shared globally or between classes
of discrete states as in semi-tied covariance HMMs (Gales, 1999). A global
observation noise distribution could represent a stationary noise environment
corrupting all the speech data. Implementing arbitrary tying schemes is closely
related to those used with standard HMM systems (Young et al., 2000). The
sufficient statistics required for the tied parameter are accumulated over the
entire class sharing it before updating. If the mean vectors and the covariance
matrices of the state space noise are tied on a different level, all the cross terms
between the first-order accumulates and the updated mean vectors, fi,,,, have
to be used in the covariance matrix update formula. Equation (14), including
all the cross terms, can be written as
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T M©
- ~ ~ () ~ () A

» > Vi (Rjmn(t) = &gn (i) — 152, (1))

Y= diaug(t:1 m=1

T M)

DD Vimn(t)

t=1 m=1
+ﬂ§i’ﬂ§i”)

where the first-order accumulates, >, 3., Vjmn (£)Zjmn (t), may be different to
those used for the mean vector update in Equation (13).

3.8 Numerical Accuracy

The matrix inversion described in Section 2.3 and the parameter estimation
require many matrix computations. Numerical accuracy may become an issue
due to the vast amount of sums of products. In the experiments it was found
that double precision had to be used in all the intermediate operations to
guarantee that the full covariance matrices were non-singular. Nevertheless,
single precision was used to store the accumulates and model parameters due
to the memory usage.

A large amount of training data is required to get reliable estimates for the
covariance matrices in a LVCSR system. Sometimes the new variance elements
may become too small for likelihood calculations. If any variance element
becomes too small within the machine precision, a division by zero will occur.
To avoid problems with FAHMMs the full covariance matrices in Equation (6)
must be guaranteed to be non-singular. The matrix C; Eg-fl) C; is at most rank
k provided the state space variances are valid. Therefore, it is essential that
the observation noise variances are floored properly. In the experiments it was
found that the flooring scheme usually implemented in HMM systems (Young
et al., 2000) is sufficient for the observation variances in FAHMMs. With very
large model sets the new estimates for the state space variances may become
negative due to insufficient data for the component. In the experiments such
variance elements were not updated.

3.4 Efficient Two Level Training

To increase the speed of training, a two level algorithm is adopted. The com-
ponent specific first and second-order statistics form the sufficient statistics
required in the parameter estimation described in Section 2.4. This can be
verified by substituting the state vector statistics, @ jyn, () and Ry, (t), from
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Equations (10) and (11) into the update Equations (12)-(15). The sufficient
statistics can be written as

T
;yjmn - Z Vimn (t)
t=1
T
[l’jmn - Z Vjmn (t)ot
t=1
5 T
ijn = Z Yimn (t)otol/t
t=1

Given these accumulates and the current model parameters, M, the required
accumulates for the new parameters can be estimated. Since the estimated
state vector statistics depend on both the data accumulates and the current
model parameters an extra level of iterations can be introduced. After updat-
ing the model parameters, new state vector distribution given the old data
accumulates and the new model parameters can be estimated. These within
iterations are guaranteed to increase the log-likelihood of the data. Fig. 2 illus-
trates the increase of the auxiliary function values during three full iterations,
10 within iterations each.

full iteration 1 full iteration 2 full iteration 3

auxiliary function
|
©
[&]

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
no. within iterations no. within iterations no. within iterations

Fig. 2. Auxiliary function values versus within iterations during 3 full iterations of
two level FAHMM training.

The efficient training algorithm can be summarised as follows

1)

(2) Estimate the state vector distribution p(a|j, m,n, O, M);

(3) Estimate new model parameters M:;

(4) If the auxiliary function value has not converged go to step 2 and update
the parameters M — M;

(5) If the average log-likelihood of the data has not converged go to step 1
and update the parameters M — M.

Collect the data statistics using forward-backward algorithm;

The within iterations decrease the number of full iterations needed in training.
The overall training time becomes shorter because less time has to be spent
collecting the data accumulates. The average log-likelihoods of the training

17



data against the number of full iterations are illustrated in Fig. 3. Four it-
erations of embedded training were first applied to the baseline HMM. The
FAHMM system with k£ = 13 was initialised as described in Section 3.1. Both,
one level training and more efficient two level training with 10 within itera-
tions, were used and the corresponding log-likelihoods are shown in the figure.

-62
_64 L
_66 L
°
o
o
<
£-68f
o
o
L -70f
o
g
©
_72 - ]
—74 —— HMM baseline I
—=— FAHMM one level training
—— FAHMM two level training, 10 within iter
_76 1 ! I I I
0 2 4 6 8 10 12

no. iterations

Fig. 3. Log-likelihood values against full iterations for baseline HMM and an untied
FAHMM with k& = 13. One level training and more efficient two level training with
10 within iterations were used.

4 Results

The results in this section are presented to illustrate the performance of some
FAHMM configurations on medium to large speech recognition tasks. Only
a small number of possible configurations have been examined and the con-
figurations have not been chosen in accordance with any optimal criterion.
Generally, configurations with fewer or equivalent number of free parameters
compared to the baseline were chosen. The state space size, k = 13, was used
since it was the number of static components in the chosen parameterisation.
The aim was to show how FAHMMSs perform with some possible configurations
as well as compare them to standard semi-tied systems.

18



4.1 Resource Management

For initial experiments, a standard medium size speech recognition task, the
ARPA Resource Management (RM) task, was used. Following the HTK “RM
Recipe” (Young et al., 2000), the baseline system was trained starting from
a flat start single Gaussian mixture component monophone system. A total
of 3990 sentences {train, dev_aug} were used for training. After four itera-
tions of embedded training, the monophone models were cloned to produce a
single mixture component triphone system. Cross word triphone models that
ignore the word boundaries in the context were used. These initial triphone
models were trained with two iterations of embedded training after which a
decision-tree clustering was applied to produce a tied state triphone system.
This system was used as an initial model set for standard HMM, STC and
FAHMM systems. A total of 1200 sentences {feb89, oct89, feb91l, sep92}
with a simple word-pair grammar were used for evaluation.

The baseline HMM system was produced by standard iterative mixture split-
ting (Young et al., 2000) using four iterations of embedded training per mix-
ture configuration until no decrease in the word error rate was observed. The
word error rates with the number of free parameters per HMM state up to 6
components are presented on the first row in Table 3, marked HMM. The best
performance was 3.76% obtained with 10 mixture components. The number
of free parameters per HMM state in the best baseline system was n = 780
per state. As an additional baseline a global semi-tied HMM system was built.
The single mixture baseline HMM system was converted to the STC system
by adding a global full 39 by 39 identity transformation matrix. The number
of free parameters of the system increased by 1521 compared to the baseline
HMM system. Since the number of physical states in the system was about
1600, the number of model parameters per state, 7, increased by less than
one. As discussed in Section 2.5, this STC system corresponds to a FAHMM
with state space dimensionality k& = 39 and observation noise equal to zero.
The number of mixture components was increased by the mixture splitting
procedure. Nine full iterations of embedded training were used with 20 within
iterations and 20 row by row transform iterations (Gales, 1999). The results
are presented on the second row in Table 3, marked STC. The best semi-
tied performance was 3.83% obtained with 5 mixture components. As usual,
the performance when using STC is better with fewer mixture components.
However, increasing the number of mixture components in a standard HMM
system can be seen to model the intra-frame correlation better.

A FAHMM system with state space dimensionality £ = 39 and a global obser-
vation matrix, denoted as GFAHMM, was built for comparison with the STC
system above. The global full 39 by 39 observation matrix was initialised to an
identity matrix and the variance elements of the single mixture baseline HMM
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Table 3
Word error rates (%) and number of free parameters, n, on the RM task, versus num-
ber of mixture components for the observation pdfs, for HMM, STC and GFAHMM
Systems.

System M© 1 2 3 4 5 6

n 78 | 156 | 234 | 312 | 390 | 468

HMM
wer|%)] || 7.79 | 6.68 | 5.05 | 4.32 | 4.09 | 3.99
n 78 | 156 | 234 | 312 | 390 | 468

STC
wer[%)] || 7.06 | 5.30 | 4.32 | 3.93 | 3.83 | 3.85
n 117 | 195 | 273 | 351 | 429 | 507

GFAHMM

wer[%] || 6.52 | 4.88 | 4.28 | 3.94 | 3.68 | 3.77

system were evenly distributed between the observation and state space vari-
ances as discussed in Section 3.1. The number of state space components was
set to one, M® = 1, and the observation space components were increased
by the mixture splitting procedure. The system corresponds to a global full
loading matrix SFA with non-identity state space covariance matrices. The
number of additional free parameters per state was 39 due to the state space
covariance matrices, which could not be subsumed into the global observation
matrix, and 1521 globally due to the observation matrix. Nine full iterations
of embedded training were used, each with 20 within iterations. The results
are presented on the third row in Table 3, marked GFAHMM. The best per-
formance, 3.68%), was achieved with 5 mixture components. The difference in
the number of free parameters between the best baseline, M(® = 10, and the
best GFAHMM system, M(® = 5, was 351 per state. Compared to the STC
system, GFAHMM has only 39 additional free parameters per state. However,
the GFAHMM system provides a relative word error rate reduction of 4% to
the STC system.

These initial experiments show the relationship between FAHMMs and STC
in practise. However, the training and recognition using full state space FAH-
MNMs is far more complex than using global STC even though the observation
matrix is shared globally. Since STC does not have observation noise, the
global transform can be applied to the feature vectors in advance and full
covariance matrices are not needed in the likelihood calculation. It should be
noted that the errors the above three systems make are very similar. This
was investigated by scoring the results of the systems against each other. The
highest error rates for this cross evaluation were less than 2.50%. The per-
formance of FAHMMSs using lower dimensional state space is reported in the
experiments below.
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4.2 Minitrain

The Minitrain 1998 Hub5 HTK system (Hain, Woodland, Niesler, and Whit-
taker, 1999) was used as a larger speech recognition task. The baseline was a
decision-tree clustered tied state triphone HMM system. Vocal tract length
normalisation (VTLN) was used to make the system gender independent.
Cross word triphone models with GMMs were used. The 18 hour Minitrain
set defined by BBN (Miller and McDonough, 1997) containing 398 conversa-
tion sides of Switchboard-1 corpus was used as the acoustic training data. The
test data set was the subset of the 1997 Hub5 evaluation set used in (Hain
et al., 1999). The best performance, 51.0%, was achieved with 12 components
which corresponds to n = 936 parameters per state. The mixture splitting
was not continued further since the performance started degrading after 12
components.

A FAHMM system with state space dimensionality 13 was built starting from
the single mixture component baseline system. An individual 39 by 13 obser-
vation matrix initialised as an identity matrix was attached to each state. The
first 13 variance elements of the HMM models were evenly distributed among
the observation and state space variances as discussed in Section 3.1. The mix-
ture splitting was started from the single mixture component baseline system
increasing the number of state space components while fixing the number of
observation space components to M(? = 1. The number of observation space
components of a single state space component system, M @) = 1, was then in-
creased and fixed to M(® = 2. The number of the state space components was
increased until no further gain was achieved and so on. The results up to the
best performance per column are presented in Table 4. As discussed in Section
2.5, the row corresponding to M*) = 1 is related to a SFA system and the first
column corresponding to M = 1 is related to a dynamic IFA without the
independent state vector element assumption. The same performance as the
best baseline HMM system was achieved using FAHMMs with 2 observation
and 4 state space components, 51.0% (n = 741). The difference in the num-
ber of free parameters per state is considerable: the FAHMM system has 195
less than the HMM one. The best FAHMM performance, 50.7% (n = 793),
was also achieved using fewer free parameters than the best baseline system,
though the improvement is not statistically significant.

These experiments show how the FAHMM system performs in a large speech
recognition task when a low dimensional state space was used. As the state
space dimensionality and the initialisation were selected based on intuition,
the results seem promising. Choosing the state space dimensionality auto-
matically is very challenging problem, and it can be expected to improve the
performance. Complexity control and more elaborate initialisation schemes
will be studied in the future.
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Table 4

Word error rates (%) and number of free parameters, 7, on the Minitrain task,
versus number of mixture components for the observation and state space pdfs, for
FAHMM system with k = 13. The best baseline HMM word error rate was 51.0%
with M©) =12 (n = 936).

M© 1 2 4
M@
) n 585 | 663 | 819
wer[%] || 53.3 | 51.7 | 51.0
5 n 611 | 689 | 845
wer[%)] || 53.3 | 51.4 | 51.3
A i 663 | 741 | 897
wer[%] || 53.0 | 51.0 | 50.9
6 i 715 | 793 | 949
wer[%] || 52.8 | 50.7 | 51.0
. n || 767 | 845
wer|[%] || 52.6 | 51.0

4.8  Switchboard 68 Hours

For the experiments performed in this section, a 68 hour subset of the Switch-
board (Hubb5) acoustic training data set was used. 862 sides of the Switchboard-
1 and 92 sides of the Call Home English were used. The set is described as
“h5train00sub” in (Hain, Woodland, Evermann, and Povey, 2000). As with
Minitrain, the baseline was a decision-tree clustered tied state triphone HMM
system with VTLN, cross word models and GMMs. The 1998 Switchboard
evaluation data set was used for testing. The baseline HMM system word
error rates with the number of free parameters per state are presented on
the first row in Table 5, marked HMM. The word error rate of the baseline
system went down to 45.7% with 30 mixture components. However, the num-
ber of free parameters in such a system is huge, n = 2340 per state. The 14
component system was a reasonable compromise because the word error rate,
46.5%, seems to be a local stationary point. As an additional baseline a global
semi-tied covariance HMM system was trained the same way as in the RM
experiments. The results for the STC system are presented on the second row
in Table 5, marked STC. The best performance, 45.7%, in the STC system
was obtained using 16 components.

FAHMM system with state space dimensionality k& = 13 was built starting
from the single mixture component baseline system. The initialisation and
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mixture splitting were carried out the same way as in the Minitrain experi-
ments in Section 4.2. Unfortunately, filling up a complete table was not feasible
since the training time grows very long. The number of full covariance matri-
ces defined in Section 2.3 is M@ M®) and the memory is quickly filled when
using effectively more than 16 full covariance matrices stored prior to training
or recognition. Despite the efficient inversion and caching described in Section
2.3, the training and recognition times grow too long with the current imple-
mentation. The most interesting results here are achieved using only one state
space component which corresponds to the SFA. The results are presented on
the third row in Table 5, marked SFA. Increasing the number of state space
components with a single observation space component, M© = 1, (IFA) did
not show much gains. This is probably due to the small increase in the num-
ber of model parameters in such a system. It is worth noting that the best
baseline performance was achieved using FAHMMs with considerably fewer
free parameters. The 12 component baseline performance, 46.7% (n = 936),
was achieved by using FAHMMs with fewer parameters - namely M(©) = 2
and M®) =8 which corresponds to 1 = 845 free parameters per state.

Table 5

Word error rates (%) and number of free parameters, 1, on the Hub5 68 hour task,
versus number of mixture components for the observation pdfs, for HMM, STC,
SFA and GSFA systems with k£ = 13. SFA is a FAHMM with a single state space
mixture component, M®) = 1. SFA has state specific observation matrices whereas
STC and GSFA have global ones.

System | M(© 1 2 4 6 8 10 12 14 16

n 78 | 156 | 312 | 468 | 624 | 780 | 936 | 1092 | 1248

HMM
wer[%] || 55.1 | 52.4 | 49.6 | 48.5 | 47.7 | 47.2 | 46.7 | 46.5 | 46.5
_— n 78 | 156 | 312 | 468 | 624 | 780 | 936 | 1092 | 1248
wer[%] || 54.3 | 50.4 | 48.4 | 47.3 | 46.7 | 46.3 | 46.3 | 45.8 | 45.7
<A n 585 | 663 | 819 | 975 | 1131 | 1287 | 1443 | 1599 | 1755
wer[%] || 49.1 | 48.0 | 47.2 | 46.6 | 46.3 | 46.4 | 46.0 | 45.8 | 45.9
n 91 | 169 | 325 | 481 | 637 | 793 | 949 | 1105 | 1261

GSFA
wer[%] || 55.2 | 52.1 | 49.4 | 48.4 | 47.4 | 46.9 | 46.7 | 46.4 | 46.1

To see how the tying of parameters influence the results, a FAHMM system
with state space dimensionality k£ = 13 and a global observation matrix C' was
built starting from the single mixture component baseline system as usual.
The initialisation was carried out the same way as in the Minitrain experi-
ments in Section 4.2. As before, filling up the table was not feasible due to the
number of effective full covariance components in the system. Examining the
preliminary results, the single state space component system appeared to be
the most interesting. The results for the single state space component system
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are presented on the fourth row in Table 5, marked GSFA. The 12 observa-
tion component system achieved the same performance as the 12 component
baseline system but further increasing the number of components proved to
be quite interesting. The 16 observation space component system achieved
46.1% (n = 1261), the same performance as 24 component baseline system
but with 611 free parameters fewer. It should also be noted that the STC
system outperforms these configurations of FAHMMSs in this task.

These experiments show that the current implementation of the FAHMM sys-
tem has its limits when the task size is increased from the Minitrain task.
The initialisation and choice of state space dimensionality require further at-
tention, as previously indicated. The main contribution of these experiments
was to show how an equivalent performance to HMMs can be achieved using
dramatically fewer model parameters in a large speech recognition task with
simple configurations of FAHMMs.

5 Conclusions

This paper has introduced the factor analysed HMM which is a general form
of acoustic model. It combines a standard Gaussian mixture HMM with a
shared and independent factor analysis model. FAHMM should provide a
better model for the correlation between the feature vector elements com-
pared to a standard diagonal covariance matrix HMM. It can be viewed as
a compromise between diagonal and full covariance matrix systems. In addi-
tion, FAHMM can be viewed as a general state space model which allows a
number of subspaces to be explored. A variety of configurations and sharing
schemes, some of which correspond to standard systems, have been investi-
gated. The ML estimation using EM algorithm is presented along with several
schemes to improve both, time and memory efficiency. The speech recogni-
tion performance is evaluated in experiments using three medium to large
vocabulary continuous speech recognition tasks. The results show that equiv-
alent or slightly better performance compared to standard diagonal covariance
Gaussian mixture HMMs can be achieved with considerably fewer model pa-
rameters. The FAHMM with 2 observation and 8 state space components gave
performance equal to the best HMM systems for both Minitrain and Hubb 68
hour tasks.

Due to the flexibility of FAHMMs a large number of configurations can be
explored. The number of Gaussian mixture components in both, the state and
observation space, can be chosen. Different techniques to optimally choose the
configuration have to be investigated. Another important question is how to
choose an optimal state space dimensionality. These are standard problems in
speech recognition and machine learning. The automatic complexity control
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for FAHMM based systems has to be addressed in the future.
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