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ABSTRACT

This paper describes the development of the CUHTK 2004 Man-
darin conversational telephone speech transcription system. The
paper details all aspects of the system, but concentrates on the de-
velopment of the acoustic models. As there are significant dif-
ferences between the available training corpora, both in terms of
topics of conversation and accents, forms of data normalisation
and adaptive training techniques are investigated. The baseline
discriminatively trained acoustic models are compared to a system
built with a Gaussianisation front-end, a speaker adaptively trained
system and an adaptively trained structured precision matrix sys-
tem. The final version of the evaluation system is then described.
Results with an improved language model, using general web-data,
are also presented.

1. INTRODUCTION

This paper presents the development of the CUHTK 2004 Man-
darin conversational telephone speech transcription system. At
Cambridge University HTK has been used to build large vocab-
ulary speech recognition systems particularly for American En-
glish [1, 2]. In this work the techniques that have been developed
for English transcription are applied to Mandarin conversational
telephone speech recognition. However, since Mandarin is a tonal
language, it is also necessary to change both the phone set and the
acoustic front-end to incorporate information about tone.

The paper is organised as follows. In the next section the re-
sources that were used are described, including the form of the
phone set. The baseline acoustic model and front-end develop-
ment are then described. This gives the baseline acoustic model
that is used as a basis for the more advanced acoustic modelling
techniques then discussed. The development framework and asso-
ciated experimental results are presented along with the final eval-
uation system. Finally experiments with an improved language
model, making use of general web-data [3], are described.

2. TRAINING DATA

This section briefly describes the resources and data that were used
for the development of the Mandarin system.
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2.1. Dictionary and Phone Set

The original phone set and dictionary were supplied by the Lin-
guistic Data Consortium (LDC). The dictionary consists of ap-
proximately 44,000 words and associated phonetic transcriptions.
The LDC phone set consists of 60 phones and associated tone
markers. It was found that one of the phones “u:e” occurred very
rarely and so was mapped to “ue”. This yielded a toneless phone
set of 59 phones. In order to further reduce the number of phones,
an additional mapping where long final phones were split was ex-
amined. Mappings of the form “[aeiu]n→[aeiu] n” were applied
to the dictionary. This yielded a phone set of 46 phones. In initial
experiments this 46 phone set was found to outperform the original
LDC 59 phone set.

As Mandarin is a tonal language, incorporating the tone mark-
ers into the acoustic models should improve the system perfor-
mance. Two ways of incorporating tonal information were inves-
tigated. The first used tonal phones as the basic phonetic unit
for the decision trees. Alternatively, phonetic questions can be
asked in the decision tree generation process. In preliminary ex-
periments, there was little difference in performance between the
two schemes, with both yielding gains over the toneless phone sys-
tem. For this work tonal information was incorporated using the
decision tree as this was felt to be more flexible and robustly han-
dles the rare tonal phones. For all experiments the mapped 46
phone set and associated dictionary derived from the LDC dictio-
nary were used with tonal decision tree questions. As there are
no natural word boundaries in Mandarin, the characters may be
partitioned into “words” in various ways. In this work the LDC
character to word segmenter was used. This segmented data was
used to generate the language model.

2.2. Acoustic Training and Test Data

The acoustic training data available for the 2004 CTS Mandarin
task consists of two parts, ldc04 and swm03, yielding a total of
about 72 hours of data. swm03 was made available for the 2003
RT04 Mandarin CTS task. It comprises two parts. The first section
of 15.2 hours is part of the LDC CallHome data (chm). The second
part is 16.6 hours of the LDC CallFriend data (cfm). ldc04 is a
new data set for the 2004 system. It was collected by the Hong
Kong University of Science and Technology (HKUST). There are
251 conversations (502 sides), corresponding to approximately 40
hours of training data. The test data for the 2004 evaluation was
also collected by HKUST. Development data, dev04, was made
available for this task comprising 2 hours of data, 24 conversations.
The 2003 evaluation data, taken from the LDC CallFriend data,
eval03, was also used to evaluate performance. This is a 1 hour



test set of 12 conversations. However the primary development
data was dev04, as this reflects the 2004 evaluation data.

2.3. Wordlists and Language Models

Source # Words

ldc04 402.9K
swm03 401.7K
Mandarin TDT2 5.7M
Mandarin TDT3 4.0M
Mandarin TDT4 1.5M
People’s Daily 70.3M
Xinhua 12.8M
China Radio 56.0M

Table 1. Number of words using the LDC character to word seg-
menter for each of the language model sources.

In addition to the 72 hours of acoustic training, six news cor-
pora were used to train the language model, Mandarin TDT[2,3,4],
China Radio, People’s Daily and Xinhua. The size of each of the
possible language model sources is shown in table 1. The LDC
character to word segmenter was used for all sources. In order
to determine the wordlists, all the words that occur in the acous-
tic training data were used. The two acoustic training data sources,
and each of the news corpora, were kept as distinct sources for lan-
guage model (LM) generation. Trigrams were generated for each
of the sources and then interpolated.

Two sets of LMs are used in this work. The first set, tgint03
and tgintcat03, was built for the 2003 Mandarin system. As this
LM was built prior to the availability of the ldc04 training, that
acoustic data was not used. Thus the wordlist was only based
on the swm03 training data and yielded an 11k wordlist. The in-
terpolation weights were tuned on the eval03 test data1. As ex-
pected the interpolation weights were dominated by the acoustic
training data, 0.88. The tgincat03 LM additionally used a class-
based LM, 75 classes, built on the swm03 data. The second set
of language models, tgint04, tgintcat04 and fgintcat04, was built
with both the acoustic data sources and all the text corpora. Us-
ing all the words that appear in the acoustic training data gave an
17K wordlist. Again for interpolation the acoustic sources were
heavily weighted. The differences in the topics was reflected in
the fact that for example the word-based trigram language model,
tgint04, the ldc04 LM component was weighted by 0.73 compared
to the swm03 component with 0.15. The total contribution from
all the news corpora was about 0.12, with the majority from Peo-
ple’s Daily (0.09). A class based trigram language model was also
built on the acoustic sources, using 200 classes estimated from
all the acoustic training data. his was then interpolated with the
word-based trigram language model, tgintcat04. The final lan-
guage model, fgintcat04, interpolated four-gram language models
from the acoustic sources and trigram language models from the
news corpora. This interpolated model was then combined with
the trigram class-based language model.

1Though the interpolation weights were tuned on the test data this has
been found to yield no significant bias in the recognition results or perplex-
ity, very few parameters are being estimated.

Language Model eval03 dev04
PP OOV PP OOV

tgint03 172.8
1.04

234.1
3.67

tgintcat03 160.4 280.8

tgint04 218.4
0.50

173.2
1.03tgintcat04 — 165.9

fgintcat04 — 165.3

Table 2. Perplexity (PP) and out of vocabulary (OOV) rates (ex-
cluding English words).

Table 2 shows the perplexity scores and the OOV rates2. The
two sets of test data are clearly different. Using the 2003 lan-
guage models, yields good perplexity scores on the the eval03
data, but poor scores on the dev04 data. The opposite is true for
the 2004 language model. Using the interpolated class-based lan-
guage model gave over a 7 point reduction in perplexity on dev04.
A small additional gain was obtained using the four-gram model.
As there is such a large difference between the two sets of data, the
tgint04 language model will be used for all dev04 development re-
sults and the tgint03 language model for all eval03 development
results. This allows the differences in performance of the various
acoustic models to be concentrated on.

3. INITIAL DEVELOPMENT

This section describes the development of the baseline acoustic
models. The initial models used only the ldc04 acoustic training
data, as this is more closely related to the dev04 test data. A gender
independent decision tree clustered triphone system was built with
approximately 4,000 distinct states with 12 components per state.
For testing a manually partitioned version of the dev04 test set was
initially used (dev04PE) and an automatically segmented version
of eval03 data (eval03).

3.1. Front-End Processing

The basic front-end for the Mandarin system was set to be sim-
ilar to the English CTS system [1]. This uses a reduced band-
width analysis, 125–3800 Hz, to generate 12 PLP Cepstra along
with the zeroth Cepstra. First and second-order differences were
appended to give 39 features. Cepstral mean and variance normal-
isation (CMN/CVN) was also applied per conversation side.

Training Data Front-End CER(%)

ldc04 (S1)

CMN/CVN 47.0
+VTLN 43.2
+HLDA 42.0
+Pitch 41.6

Table 3. Baseline ML performance on dev04PE.

Table 3 shows the performance of the basic acoustic model
with the baseline CMN and CVN front-end. This yielded an error

2The calculation of the OOV rates were based on the LDC character to
word segmenter. Though the Mandarin OOV rate can be set to be zero by
adding all single characters to the dictionary in preliminary experiments
this made no difference to the CER.



rate of 47.0% on the dev04PE data. Using VTLN in both train-
ing and testing reduced the error rate by about 3.8% absolute. The
front-end was then expanded to incorporate third-order differences
and projected back to 39-dimensions using heteroscedastic LDA
(HLDA) [4] and the efficient optimisation in [5]. This gave a fur-
ther reduction in CER of 1.2%. It is also commmon for tonal lan-
guages to incorporate pitch into the front-end. Pitch was extracted
using ESPS waves and normalised in a similar fashion to [6]. The
pitch, along with the first and second-order differences, were then
added after the HLDA projection3, giving a complete feature vec-
tor of 42 dimensions. The final unadapted performance on the
dev04PE test set was 41.6%.

After fixing the front-end, standard model building approaches
used in the CUED evaluation systems were applied. The number
of components per state was made proportional to the amount of
training data for that state, though keeping the average number the
same, and minimum phone error (MPE) training applied [7]. For
the MPE training a modified version of the dynamic maximum
mutual information (MMI) prior presented in [8]. Here two lev-
els of I-smoothing were used. The first level smoothed the MMI
statistics with the ML statistics. The second level smoothed the
MPE statistics with the smoothed MMI statistics. This was found
to be more robust that the direct use of the MMI statistics as there
is only 72 hours of training data. The final error rate after MPE
training was 38.2% on dev04PE.

3.2. Model Structure

This section describes the initial development of the acoustic mod-
els. For this work both the dev04 and eval03 test sets were used
for development. The tgint04 LM was used for the dev04 test set
and the tgint03 LM was used for the eval03 test set. This was felt
to be necessary because of the difference in topics illustrated by
the large differences in the perplexity scores shown in table 2.

Training Data Avg. CER(%)
Comp. dev04PE eval03

swm03 —
12

— 48.6
ldc04 S1 38.2 56.6

ldc04+swm03
S2 12 36.3 48.2
S3 16 36.1 47.9
S4 20 36.0 47.2

Table 4. Baseline MPE model performance.

Table 4 shows the performance of various MPE trained sys-
tems. The first line, swm03, was trained using only the 2003
swm03 training data. This is simply to show a baseline number
on eval03. It is clear that in addition to the differences in topic,
there are also accent, possibly channel, differences between the
2003 and 2004 data sets. For the ldc04 trained system the perfor-
mance on eval03 was 8.0% absolute worse than that of the swm03
trained system.

ldc04 and swm03 were then combined together, though keep-
ing the decision tree and HLDA projection from the ldc04 data.
This is the S2 system in table 4. Not surprisingly using the 2003

3In initial experiments there was little difference between using HLDA
on the complete feature vector and projecting just the PLP features. As the
final P1 model is a non-Pitch model, using an HLDA projection of just the
PLPs simplifies the system build.

training data significantly reduced the error rate on the eval03 test
data. The performance of the S2 system is better than the swm03
trained system. In addition the error rate on the dev04PE test set
was also improved, though to a lesser extent than the eval03 data.
With the additional training data, additional components may be
robustly trained. Using an average of 16 components, the S3 sys-
tem, gave an additional 0.2% on dev04PE. An additional 4 com-
ponents, the S4 system, gave minimal difference on dev04PE, but
did decrease the error rate on the eval03 data. Since the primary
test was the dev04 data, the S3 system was selected as the starting
point for further comparisons.

Decision Tree/HLDA CER(%)
generation data dev04PE eval03

ldc04 S3 36.1 47.9
ldc04+swm03 S5 36.4 47.2

Table 5. Performance varying the decision tree and HLDA training
data, all models MPE trained.

All the ldc04 and ldc04+swm03 trained systems shown in ta-
ble 4 used the same decision tree and HLDA projection. Table 5
shows a comparison of the S3 system with training the decision
tree and HLDA projection on all the training data, rather than just
the ldc04 data. The effects of tuning the projection and decision
tree to a particular task are clear. Training a tree and projection on
all the data yielded lower error rates on the eval03 data, but higher
error rates on the dev04 data than the S3 system.

3.3. Segmentation

For the actual evaluation the segmentation for each side of the con-
versation is not given. In order to segment the data a simple GMM
classifier was used. The features used in the automatic segmenta-
tion were 12 PLP features, log energy, energy difference between
channels, and corresponding delta and acceleration coefficients.
Three GMMs (male speech, female speech and silence) were used
to identify speech segments. Both speech models had 64 Gaussian
components and the silence model had 1024 components.

Segmentation Diarisation Scores CER
MS FA DER (%)

Manual (dev04PE) — — — 36.1
Automatic (dev04) 3.6 5.8 9.42 37.3

Table 6. Effect on dev04 performance using manual versus auto-
matic segmentation with the S3 MPE unadapted acoustic model,
including diarisation results for missed speech (MS), false alarm
(FA) and diarisation error rate (DER).

Table 6 shows the effect of the use of an automatic segmenter
on the dev04 test data. The MPE trained S3 system was run on
the automatically segmented data. The increase in error rate from
using the automatic segmentation was about 1.2% absolute4.

4The DER are slightly different to those in the submitted ICASSP paper
as the the previous results did not use the official UEM file.



4. ACOUSTIC MODELS

In the previous section the development of the baseline acoustic
models was described. For the 2004 CTS English system [9] a
variety of more advanced acoustic models were investigated. This
section briefly describes some of these models. As in the English
CTS development these advanced models were used to rescore
lattices generated within the 10xRT framework described in sec-
tion 5.1 The three corpora, chm, cfm and ldc04, differ in terms of
dominant accents and topics. It is therefore useful to examine the
forms of normalisation for the data.

4.1. Gaussianisation

The use of CMN and CVN transforms the feature vector so that the
mean of each dimension for each side is 0 and the variance is 1.
There is no matching of the higher-order statistics. Histogram nor-
malisation is one approach that has been used to further normalise
data for CTS-English on a per-speaker basis [10]. A modified
version of this using a smoothed form based on a per-dimension
GMM is used in this work. It was found that there was little differ-
ence in performance between the histogram approach and the use
of GMMs, however the GMM yields a more compact, smoother
estimate, of the histogram. The feature-vector transformation for
elementi of the observationo, oi, is

õi = φ−1

 Z oi

−∞

MX
m=1

c
(sm)
i N (x; µ

(sm)
i , σ

(sm)2
i )dx

!
(1)

whereφ−1() is the standard Gaussian inverse cumulative density
function,c(sm)

i , µ(sm)
i andσ

(sm)2
i are the prior, mean and variance

for theith dimension for sides of componentm. The components
of the GMM are trained on a per-side basis, indicated bys, after the
application of the HLDA projection. All elements of the feature
vector, including pitch, were normalised.

4.2. Speaker Adaptive Training

An alternative approach to normalising the features is to use a lin-
ear transformation. One standard approach is to use constrained
MLLR, where the linear feature transformation is estimated by
maximising the likelihood of the data [11]. This is speaker adap-
tive training (SAT). The form of the transformation for vectoro
is

õ = A(s)o + b(s) (2)

The linear transformation parameters,A(s) andb(s) are trained
for each sides. One of the disadvantages of SAT is that in order
to estimate the test speaker transformation either supervised adap-
tation data, or some initial hypothesis, is required. This is not the
case for Gaussianisation as a GMM is simply estimated on all the
data from one-side. To ease this problem a corpus-based form of
adaptive training was examined. Here a linear transform was es-
timated for each corpus and the models adaptively trained. How-
ever, this only gave slight improvements in performance, approxi-
mately 0.2%, over the baseline HLDA system in the development
framework (table 7) so was not considered further.

4.3. Structured Precision Matrices

The baseline acoustic models are based on states with output distri-
butions using GMMs with diagonal covariance matrices. Recently
there has been work on using structured forms of precision ma-
trix models. The form of model used in this paper is based on
SPAM [12, 13]. Here the precision, inverse covariance, matrix can
be written as

Σ(m)−1 =

RX
i=1

λ
(m)
i S(i) (3)

whereλ
(m)
i are the basis co-efficients for each component in the

systemm andS(i) is theith basis matrix. For this workR was
set to be 39. For details of the basis matrix initialisation and MPE
training of these models see [13]. As there is significant variability
in the training corpora a SAT-SPAM system was built, where a
discriminative SPAM system was estimated in the space defined
by a SAT trained system [14].

5. DEVELOPMENT RESULTS

The system used for the experiments was based on the 2003 CUHTK
CTS English Rich Transcription evaluation system. A multi-branch,
multi-pass approach is used along with system-combination. For
details of the English versions of this framework see [1].

5.1. Development Framework

Segmentation

tgint04 Lattices

P2

P3xP3a

CMLLR/LatMLLR CMLLR/LatMLLR

P1

CNC
Alignment

1−best

CN

Lattice

MPE triphones, HLDA, 17k, tgint04

GI

GI

VTLN
Pitch

LSLR, 1 speech transform

MPE triphones, non−pitch, 17k, tgint04

Fig. 1. System structure (note tgint03 LM used for eval03).

Figure 1 shows the basic structure of the system. P1 is used to
provide an initial transcription for VTLN estimation. After VTLN



estimation, pitch is added to the features and the P2 models are
adapted using least squares regression mean and diagonal variance
transforms to the P1 hypothesis. This adapted P2 model is then
used to generate lattices for rescoring in the P3 stage. For the P3
stage, all models are adapted using speech and silence constrained
MLLR transforms and the P2 hypothesis. They are then further
adapted using lattice MLLR to estimate mean and diagonal vari-
ance transforms.

The final system output was derived by combining the confu-
sion networks generated by the P3a to P3x passes using Confusion
Network Combination (CNC) [15]. Finally, a forced alignment of
the final word-level output was used to obtain accurate word times
before scoring. For this initial development work, no note was
taken of the run-times, though the evaluation has real-time con-
straints.

System S3 CER (%)
dev04 eval03

P2-tgint04/03
HLDA

37.1 46.9
P2-cn 36.2 44.9

P3a-cn HLDA 35.8 45.0
P3b-cn SAT 35.0 44.2
P3s-cn SAT-SPAM 34.2 43.7
P3d-cn GAUSS 34.6 43.3
P3f-cn GAUSS-STC 34.2 43.0
P3g-cn GAUSS-SPAM 33.5 42.4
P3e-cn GAUSS-SAT 33.8 42.6
P3t-cn GAUSS-SAT-SPAM 33.2 41.8

P3d+P3s
CNC

33.4 42.9
P3g+P3t 33.1 41.8
P3e+P3t 32.8 41.4

Table 7. Development CER on dev04 and eval03.

Table 7 shows the results for the acoustic models within the
development framework. All the P3 numbers are given after con-
fusion network (CN) decoding. The performance of the baseline
MPE model (HLDA) in the P3 stage was disappointing compared
to the SAT system. Using SAT the error rate on both dev04 and
eval03 was decreased by 0.8% absolute compared to the HLDA
system. This shows the large variability of the acoustic training
data. This error rate was further decreased using the SAT-SPAM
system, which had the lowest CER on the dev04 data, 34.2%.

As there is such large variability in the acoustic data, addi-
tional normalisation should be helpful. Gaussianisation was there-
fore used to further normalise the data (GAUSS). From table 7, this
reduced the error rate by 1.2% and 1.7% absolute on the dev04 and
eval03 tasks compared to the HLDA system. Since Gaussianisa-
tion is a non-linear transformation of the features, it is useful to
apply an additional level of a global semi-tied transformation [5]
to the Gaussianised features5 (GAUSS-STC). This gave an addi-
tion 0.3 to 0.4% absolute reduction in error rate. Rather than using
as semi-tied transform, SPAM could be used in the Gaussianised
space (GAUSS-SPAM). This gave a further 0.6% to 0.7% reduc-
tion in error rate over the semi-tied system. Further normalisation
of the features can be obtained by combining the Gaussianisation
system with the CMLLR adaptive training. This gave the lowest

5For the standard HLDA transform this should yield little difference in
performances the HLDA transform can subsume the semi-tied transform

error rate with the GAUSS-SAT-SPAM system giving 33.2% and
41.8% on dev04 and eval03 respectively. This is 2.6% and 3.2%
absolute better than the standard HLDA system.

5.2. Refinements

The development framework was simpler than the standard CUHTK
evaluation systems. Various refinements to this basic development
framework are described in this section.

5.2.1. Full Language Model

System (S3) LM CER (%)
dev04

P2 (HLDA)
tgint04 37.1
tgintcat04 36.7
fgintcat04 36.6

Table 8. Lattice expansion using class based LM with CER on
dev04.

The language model used in section 5.1 was a trigram lan-
guage model. From table 2 the perplexity of the data can be re-
duced by using class-based language models and four-grams. The
trigram P2 lattices from table 7 were expanded using the interpo-
lated class-based and word-based trigram language model (tgint-
cat04) and the interpolated class-based trigram and word-based
four-gram (fgintcat04). Table 8 shows the effect this has on the
CER for dev04. Using the more complex language models reduced
the CER, with the class-based LM giving about 0.4% absolute and
the four-gram a small gain of about 0.1%.

5.2.2. Lattice Regeneration and Task Porting

In previous systems [2] the use oflattice regenerationand lattice
combinationhave yielded gains. Here, part way through the MPE
training process a new set of lattices are generated using the latest
MPE trained model. Typically this is done after 4 iterations. The
results shown in table 7 shows that considerable normalisation is
required to compensate for the acoustic and speaker differences
within and between the two databases. Given these observations it
is sensible to also examine task discriminative porting [16] to the
ldc04 data.

System (S3) CER (%)
dev04

GAUSS 36.2
+regen/comb 36.0
+ldc04 port 35.9

Table 9. Unadapted decode numbers adding lattice regeneration
and combination and ldc04 task porting to the MPE-GAUSS sys-
tem.

Table 9 shows the performance of task porting to the ldc04
data after using lattice regeneration on top of a system with a
Gaussianisation front-end. Note for the unadapted numbers the
Gaussianised frontend gave about 1.1% absolute over the HLDA



numbers in table 6. The use of lattice regeneration and combi-
nation6 gave about 0.2% absolute over the standard MPE system.
The class porting gave a further 0.1% absolute. The use of gender-
dependent models as used in the English CTS system gave similar
gains to the task porting. However using the task porting required
no gender labelling of the conversation sides.

5.2.3. Improved P2 and Adaptation

From the results in the previous section the use of Gaussianisation,
which does not require any information about the word sequence,
yields over a 1.0% reduction in CER. This is therefore a good can-
didate to replace the initial HLDA model set for lattice generation.
The adaptation used in the development framework was based on
lattice-MLLR. An alternative approach is to use confidence-based
MLLR [17] where the accumulates are weighted by the confidence
of each word in the hypothesis.

System S3 Adapt CER (%)
dev04

P2-tgint04
GAUSS

34.8
P2-fgintcat04 34.2
P2-cn 33.8

P3e-l
GAUSS-SAT

(lattice) 33.0
P3e-c (conf) 32.8
P3t GAUSS-SAT-SPAM (lattice) 32.1

P3e-l+P3t
CNC

31.9
P3e-c+P3t 31.8

Table 10. Lattice-based MLLR (lattice) versus confidence-based
MLLR (conf). P2 lattices generated using GAUSS system and
expanded using fgintcat04.

For these experiments a GAUSS system was used to generate
the P2 lattices and the fgintcat04 LM used during the lattice ex-
pansion. From table 10 this gave a reduction in P2 error rate of
2.3% absolute (using tgint04) over the HLDA system. For the fi-
nal system combination stage, using lattice combination, the error
rate was reduced by by 0.9% absolute by rescoring GAUSS gen-
erated lattices rather than HLDA generated lattices and using the
more complex language model. Table 10 also shows a comparison
of the use of confidence-based versus lattice-based MLLR for the
GAUSS-SAT system. The use of confidence-based MLLR gave
about 0.2% absolute in the single branch and 0.1% absolute in the
final combination.

6. EVALUATION SYSTEM

The final evaluation system was based on the development frame-
work combined with the improvements in the previous section
and tuning of the P2 parameters to yield a less than 10xRT sys-
tem (10xRT) and less than 20xRT system (20xRT). The following
acoustic and language models were used at each of the stages. All
models used the same decision tree and HLDA projection trained
on the ldc04 data and an average of 16 components per state (the
S3 system).

6For these experiments the lattice regeneration was performed using
an HLDA system, where a gain of 0.3% absolute over the standard MPE
trained system was obtained.

• P1: an MPE-trained non-VTLN HLDA system using the
ldc04+swm03 training data with the tgint04 language model.

• P2: an MPE trained GAUSS system with lattice regener-
ation and task porting to the ldc04 data. The lattice ex-
pansion for subsequent P3x rescoring used the fgintcat04
language model.

• P3e: an MPE-trained GAUSS-SAT system. No lattice re-
generation or task porting was used7. This branch was adapted
using confidence-based MLLR with word confidence scores
from P2-cn.

• P3t: an MPE-trained GAUSS-SAT-SPAM system with lat-
tice regeneration and task porting. This branch was adapted
using lattice-based MLLR.

In addition the segmentation was slightly modified. Though the
unadapted error rates for the segmentation were the same the dele-
tion rates were found to be slightly lower using the modified seg-
mentation. The eval04 test set consists of about 1 hour of data
taken from 12 conversations (24 sides).

6.1. Results

System S3 CER (%)
10xRT 20xRT

P1 HLDA (non-VTLN) 43.6 43.6
P2-tgint04

GAUSS
34.3 34.3

P2-fgintcat04 34.1 34.1
P2-cn 33.9 33.7

P3e-cn GAUSS-SAT (conf) 33.1 32.8
P3t-cn GAUSS-SAT-SPAM 32.1 32.1

P3e+P3t
CNC

32.1 31.7
P3e+P3t+P2 32.0 32.0

Table 11. Final 10xRT and 20xRT CER dev04 performance.

Table 11 shows the development results using the final version
of the evaluation system. For the final system combination, in ad-
dition to the two P3 branches, it is possible to use the P2-cn output.
For the 10xRT system this was found to give a slight gain in per-
formance, whereas for the 20xRT system a slight degradation was
obtained. P2 was therefore only combined in the 10xRT system.

System S3 CER (%)
10xRT 20xRT

P2-cn GAUSS 31.9 31.8

P3e-cn GAUSS-SAT (conf) 30.6 30.5
P3t-cn GAUSS-SAT-SPAM 30.0 30.2

P3e+P3t
CNC

29.4 29.5†

P3e+P3t+P2 29.7† 29.7

Table 12. Final 10xRT and 20xRT CER eval04 performance.†
indicates the system submitted for the evaluation

7A slight degradation in performance was found when lattice regenera-
tion and task porting were used.



Table 12 shows the breakdown of the evaluation system per-
formance on the eval04 test set. Overall similar trends to the de-
velopment numbers shown in table 11 can be seen. The one major
difference is that the 10xRT performance was degraded by the use
of the P2 branch in the CNC stage. Strangely the 10xRT perfor-
mance using the two-way P3 CNC system was slightly better than
the 20xRT system. The final primary submitted system gave er-
ror rates on eval04 of 29.7% and 29.5% for the 10xRT and 20xRT
systems respectively.

6.2. Processing Speed

Test Set RT factor
10xRT 20xRT

dev04 8.2 12.4
eval04 8.9 13.3

Table 13. dev04 and eval04 evaluation system real-time factors.

Table 13 shows the breakdown of the real-time factors for the
evaluation system on the dev04 and eval04 test sets. These were
obtained using a single CPU IBM x335 machine (3.2GHz Intel
Xeon, 2MB L3 cache 533MHz Bus) in hyperthreading mode run-
ning Linux.

7. GENERAL WEB DATA LANGUAGE MODEL

After the evaluation the University of Washington made available
additional Mandarin language model training data from the web.
The data was collected using Google with frequent N-gram queries.
Further details of the methodology used to collect thisgeneral
web-data(GWD) is described in [3]. The data consists of approxi-
mately 115 million words (about 102K unique words of which 58K
were English “words”). A word-based trigram language model
was generated using this GWD training data and used as an addi-
tional possible source for interpolation.

Source # Words Language Model
tgint04 +gwd

ldc04 402.9K 0.73 0.62
swm03 401.7K 0.15 0.10
People’s Daily 70.3M 0.09 0.01
GWD 115.0M — 0.26
others — 0.03 0.01

Table 14. Interpolation weights for the word-based trigram lan-
guage model with and without the general web data (GWD).

In the same fashion as the language models in table 2 (and the
ones used in the evaluation) the interpolation weights were esti-
mated using dev04. Table 14 shows the interpolation weights for
the various sources for the word-trigram language models. A sig-
nificant weight, 0.26, is applied to the general web data (GWD).
Similar trends were observed when four-gram acoustic data sources
were used. The interpolation weights between the four-gram acous-
tic model LMs and trigram news sources with the class-based tri-
gram language model were 0.78 and 0.22 respectively.

Language Model dev04 eval04
— +gwd — +gwd

tgint04 173.2 156.0 166.2 144.4
tgintcat04 165.9 151.8 160.7 142.8
fgintcat04 165.3 150.0 159.9 140.9

Table 15. Perplexity for original LM and LM including the gen-
eral web data (+gwd). OOV rate for eval04 was 0.75% excluding
English words.

Table 15 shows the effect of using the GWD on the perplexity
of the dev04 and eval04 data. Note the OOV rate for the eval04
data was 0.75% exluding English words, similar to the 1.03% for
dev04. The use of the GWD gave significant reductions in the
perplexity. On the eval04 data an almost 20 point reduction in per-
plexity was obtained. In [3] the news corpora were not used in the
interpolated language model. It was found that the additional news
corpora gave a slight reduction in perplexity compared to not using
them, for tgint04 not using the news-sources gave 156.9 compared
to 156.0 including the news corpora for dev04 and 145.3 and 144.4
for eval04. All experiments use the interpolated language model
with the news corpora.

Language Model System (S3) CER (%)
dev04

tgint04
GAUSS

36.2
tgint04+gwd 35.1

Table 16. Unadapted performance of MPE Gaussianised system
on the dev04 test set using the original LM (tgint04) and new LM
with global web-data (tgint04+gwd).

The CER performance of the new word-tri-gram language mod-
els with the general web-data (tgint04+gwd) was initially evalu-
ated using unadapted S3 GAUSS models. The new LM gave 1.1%
absolute reduction in CER on the dev04 test set.

Test
CNC

10xRT 20xRT
Set — +gwd — +gwd

dev04
P3e+P3t 32.1 30.8 31.7 30.6
P3e+P3t+P2 32.0 31.0 32.0 30.9

eval04
P3e+P3t 29.4 28.6∗ 29.5† 28.3∗

P3e+P3t+P2 29.7† 28.6 29.7 28.5

Table 17. 10xRT and 20xRT CER dev04 and eval04 performance
using language models with and without the general web data
(+gwd). † indicates the primary systems submitted and∗ indicates
the late contrast systems submitted.

The new language models were then used with the evaluation
framework of section 6. Initial decoding for P1 and P2 used the
tgint04+gwd word-based trigram language model. The lattices
were then expanded using fgintcat04+gwd. Table 17 shows the
final performance at the confusion network combination (CNC)
stage of the evaluation system on the dev04 and eval04 test sets.
Within the evaluation framework use of the GWD in the language



gave between 0.8% and 1.2% absolute gain reduction in CER. The
best performance for the eval04 task was 28.3% CER. This is 1.2%
absolute better the system without the GWD.

8. CONCLUSIONS

This paper has described the development of the CUHTK 2004
Mandarin conversational speech transcription system. The paper
has concentrated on the possible forms of acoustic model that could
be used. In particular, as there are significant differences in the
acoustic training data, two forms of data normalisation were inves-
tigated, Gaussianisation and speaker adaptive training. In addition,
the use of structured precision matrices was investigated, Results
were presented within a multi-pass system combination frame-
work, similar to the 2003 CTS 10xRT framework. Both forms
of normalisation and the use of structured transforms reduced the
character error rate. The use of Gaussianisation in combination
with SAT and SPAM yielded the lowest CER. The final CER on
the eval04 using the submitted system was 29.7% and 29.5% for
the less than 10xRT and 20xRT systems respectively. After the
evaluation a new language model was built using the general web-
data from the University of Washington. This gave a reduction in
error rate of around 1.0% absolute over the original evaluation sys-
tem. The performance of this system, submitted as a lated contrast,
was 28.6% and 28.3% for the less than 10xRT and 20xRT systems
respectively.
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